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A GLOBAL SUPERCONVERGENT L∞-ERROR
ESTIMATE OF MIXED FINITE ELEMENT
METHODS FOR SEMILINEAR ELLIPTIC

OPTIMAL CONTROL PROBLEMS

Li Li

Abstract In this paper, we discuss the superconvergence of mixed finite
element methods for a semilinear elliptic control problem with an integral
constraint. The state and co-state are approximated by the order k = 1
Raviart-Thomas mixed finite element spaces and the control variable is ap-
proximated by piecewise constant functions. Approximation of the optimal
control of the continuous optimal control problem will be constructed by a
projection of the discrete adjoint state. It is proved that this approximation
has convergence order h2 in L∞-norm. Finally, a numerical example is given
to demonstrate the theoretical results.
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1. Introduction

It is well known that the finite element approximation plays an important role in
the numerical treatment of optimal control problems. There have been extensive
studies in convergence and superconvergence of finite element approximations for
optimal control problems, see, for example, [1,6,12–14,17,18,21–23]. A systematic
introduction of finite element methods for PDEs and optimal control problems can
be found in, for example, [10,20].

Since 2006, Chen etc. have done some works on priori error estimates and
superconvergence properties of mixed finite elements for optimal control problem-
s [3–5,7,8,16]. In [4], the author used the postprocessing projection operator, which
was defined by Meyer & Rösch (see [21]) to prove a quadratic superconvergence of
the control by mixed finite element methods. Recently, the authors derived error
estimates and superconvergence of mixed methods for convex optimal control prob-
lems in [5]. Hou & Chen [7] derived a superconvergent L2-error estimates of RT1
mixed methods for semilinear elliptic optimal control problems. Next, in [15], Hou
investigated the RT0 mixed finite element methods for a semilinear elliptic optimal
control problem with a pointwise control constraint, he derive a superconvergence
result for the control variable and L∞-error estimates for all variables even for the
divergence of the vector-valued functions. In [8], Chen & Hou considered the same
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problem as in [15], they derived the superconvergence for the vector-valued func-
tions and a priori H−1-error estimates for the control, the state and the co-state. As
far as we know, there is no superconvergent L∞-error estimates of RT mixed finite
element method for semilinear elliptic optimal control problems in the literature.

The aim of this paper is to investigate the superconvergence property of mixed
finite element approximation for a semilinear elliptic control problem with an inte-
gral constraint. Firstly, we derive the superconvergence property between average
L2 projection and the approximation of the control variable, the convergence order
is h2 instead of h

3
2 in [5], which is caused by the different admissible set. Then, after

solving a fully discretized optimal control problem, a control û is calculated by the
projection of the adjoint state zh in a postprocessing step. Although the approxi-
mation of the discretized solution is only of order h in L∞-norm, we will show that
this postprocessing step improves the convergence order to h2. Finally, we present
a numerical experiment to demonstrate the practical side of the theoretical results
about superconvergence.

We consider the following semilinear optimal control problems for the state
variable y and the control u with an integral constraint:

min
u∈Uad

{
1

2
∥y − yd∥2 +

ν

2
∥u∥2

}
(1.1)

subject to the state equation

− div(A(x)grady) + ϕ(y) = u, x ∈ Ω, (1.2)

which can be written in the form of the first order system

divppp+ ϕ(y) = u, ppp = −A(x)grady, x ∈ Ω, (1.3)

and the boundary condition

y = 0, x ∈ ∂Ω, (1.4)

where Ω is a bounded domain in R2. Uad denotes the admissible set of the control
variable, defined by

Uad =

{
u ∈ L∞(Ω) :

∫
Ω

udx ≥ 0

}
. (1.5)

We assume that the function ϕ(·) ∈ W 2,∞(−R,R) ∩ H3(−R,R) for any R > 0,
ϕ′(y) ∈ L2(Ω) for any y ∈ H1(Ω), and ϕ′ ≥ 0. Moreover, we assume that yd ∈
W 1,∞(Ω) and ν is a fixed positive number. The coefficient A(x) = (aij(x)) is a
symmetric matrix function with aij(x) ∈ W 2,∞(Ω), which satisfies the ellipticity
condition

c∗|ξ|2 ≤
2∑

i,j=1

aij(x)ξiξj , ∀ (ξ, x) ∈ R2 × Ω̄, c∗ > 0.

Now, we recall a result from [1].

Lemma 1.1. For every p ≥ 2 and every function g ∈ Lp(Ω), the solution y of

− div(Agrady) + ϕ(y) = g in Ω, y|∂Ω = 0, (1.6)

belongs to H1
0 (Ω)∩W 2,p(Ω). Moreover, there exists a positive constant C such that

∥y∥W 2,p(Ω) ≤ C∥g∥Lp(Ω). (1.7)
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The plan of this paper is as follows. In Section 2, we construct the mixed finite
element approximation scheme for the optimal control problem (1.1)-(1.4) and give
its equivalent optimality conditions. The main results of this paper are stated
in Section 3. In Section 3, we derive the superconvergence properties between the
average L2 projection and the approximation, as well as between the postprocessing
solution and the exact control solution. In Section 4, we present a numerical example
to demonstrate our theoretical results. In the last section, we briefly summarize the
results obtained and some possible future extensions.

In this paper, we adopt the standard notation Wm,p(Ω) for Sobolev spaces on
Ω with a norm ∥ · ∥m,p given by ∥v∥pm,p =

∑
|α|≤m

∥Dαv∥pLp(Ω), a semi-norm | · |m,p

given by |v|pm,p =
∑

|α|=m
∥Dαv∥pLp(Ω). We setWm,p

0 (Ω) = {v ∈Wm,p(Ω) : v|∂Ω = 0}.

For p = 2, we denote Hm(Ω) = Wm,2(Ω), Hm
0 (Ω) = Wm,2

0 (Ω), and ∥ · ∥m =
∥·∥m,2, ∥·∥ = ∥·∥0,2. In addition C denotes a general positive constant independent
of h, where h is the spatial mesh-size for the control and state discretization.

2. Mixed methods for optimal control problems

In this section, we shall construct mixed finite element approximation scheme of
the control problem (1.1)-(1.4). For sake of simplicity, we assume that the domain
Ω is a convex polygon. Now, we introduce the co-state elliptic equation

− div(A(x)gradz) + ϕ′(y)z = y − yd, x ∈ Ω, (2.1)

which can be written in the form of the first order system

divqqq + ϕ′(y)z = y − yd, qqq = −A(x)gradz, x ∈ Ω, (2.2)

and the boundary condition

z = 0, x ∈ ∂Ω. (2.3)

The domain Ω is said to be Hs+2-regular if the Dirichlet problem

− div(Agradξ) + a0ξ = F in Ω, ξ|∂Ω = 0 (2.4)

is uniquely solvable for F ∈ L2(Ω) and if

∥ξ∥s+2 ≤ C∥F∥s, (2.5)

for all F ∈ Hs(Ω) and a0 ∈ L2(Ω).
Let

VVV = H(div; Ω) =
{
vvv ∈ (L2(Ω))2,divvvv ∈ L2(Ω)

}
, W = L2(Ω). (2.6)

We recast (1.1)-(1.4) as the following weak form: find (ppp, y, u) ∈ VVV ×W × Uad
such that

min
u∈Uad

{
1

2
∥y − yd∥2 +

ν

2
∥u∥2

}
, (2.7)

(A−1ppp,vvv)− (y, divvvv) = 0, ∀ vvv ∈ VVV , (2.8)

(divppp, w) + (ϕ(y), w) = (u,w), ∀ w ∈W. (2.9)
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It follows from [20] that the optimal control problem (2.7)-(2.9) has a solution
(ppp, y, u), and that a triplet (ppp, y, u) is the solution of (2.7)-(2.9) if there is a co-state
(qqq, z) ∈ VVV ×W such that (ppp, y, qqq, z, u) satisfies the following optimality conditions:

(A−1ppp,vvv)− (y,divvvv) = 0, ∀ vvv ∈ VVV , (2.10)

(divppp, w) + (ϕ(y), w) = (u,w), ∀ w ∈W, (2.11)

(A−1qqq,vvv)− (z, divvvv) = 0, ∀ vvv ∈ VVV , (2.12)

(divqqq, w) + (ϕ′(y)z, w) = (y − yd, w), ∀ w ∈W, (2.13)

(νu+ z, ũ− u) ≥ 0, ∀ ũ ∈ Uad, (2.14)

where (·, ·) is the inner product of L2(Ω).
In [9], the expression of the control variable is given. Here, we adopt the same

method to derive the following equality:

u = (max{0, z̄} − z)/ν, (2.15)

where z̄ =
∫
Ω
z/

∫
Ω
1 denotes the integral average on Ω of the function z.

Let Th denote a regular triangulation of the polygonal domain Ω, hT denotes
the diameter of T and h = max hT . Let VVV h×Wh ⊂ VVV ×W denotes the order k = 1
Raviart-Thomas mixed finite element space [11,24], namely,

∀ T ∈ Th, VVV (T ) = PPP 1(T )⊕ span(xP1(T )), W (T ) = P1(T ),

where P1(T ) denote polynomials of total degree at most 1, PPP 1(T ) = (P1(T ))
2,

x = (x1, x2), which is treated as a vector, and

VVV h := {vvvh ∈ VVV : ∀ T ∈ Th, vvvh|T ∈ VVV (T )}, (2.16)

Wh := {wh ∈W : ∀ T ∈ Th, wh|T ∈W (T )}. (2.17)

And the approximated space of control is given by

Uh := {ũh ∈ Uad : ∀ T ∈ Th, ũh|T = constant}. (2.18)

Before the mixed finite element scheme is given, we introduce two operators.
Firstly, we define the standard L2(Ω)-projection [11] Ph : W →Wh, which satisfies:
for any ϕ ∈W

(Phϕ− ϕ,wh) = 0, ∀ wh ∈Wh, (2.19)

∥ϕ− Phϕ∥0,ρ ≤ Chr∥ϕ∥r,ρ, 1 ≤ ρ ≤ ∞, ∀ ϕ ∈W r,ρ(Ω), r = 1, 2, (2.20)

∥ϕ− Phϕ∥−1 ≤ Ch3|ϕ|2, ∀ ϕ ∈ H2(Ω). (2.21)

Next, recall the Fortin projection (see [2] and [11]) Πh : VVV → VVV h, which satisfies:
for any qqq ∈ VVV

(div(Πhqqq − qqq), wh) = 0, ∀ wh ∈Wh, (2.22)

∥qqq −Πhqqq∥ ≤ Chr∥qqq∥r, ∀ qqq ∈ (Hr(Ω))2, r = 1, 2, (2.23)

∥div(qqq −Πhqqq)∥ ≤ Chr∥divqqq∥r, ∀ divqqq ∈ Hr(Ω), r = 1, 2. (2.24)

We have the commuting diagram property

div ◦Πh = Ph ◦ div : VVV →Wh and div(I −Πh)VVV ⊥Wh, (2.25)
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where and after, I denote the identity operator.
Furthermore, we also define the standard L2-orthogonal projection Qh : Uad →

Uh, which satisfies: for any u ∈ Uad

(u−Qhu, uh) = 0, ∀ uh ∈ Uh. (2.26)

We have the approximation property:

∥u−Qhu∥−s,r ≤ Ch1+s|ϕ|1,r, s = 0, 1, ∀ u ∈W 1,r(Ω). (2.27)

Then the mixed finite element discretization of (2.7)-(2.9) is as follows: find
(ppph, yh, uh) ∈ VVV h ×Wh × Uh such that

min
uh∈Uh

{
1

2
∥yh − yd∥2 +

ν

2
∥uh∥2

}
, (2.28)

(A−1ppph, vvvh)− (yh,divvvvh) = 0, ∀ vvvh ∈ VVV h, (2.29)

(divppph, wh) + (ϕ(yh), wh) = (uh, wh), ∀ wh ∈Wh. (2.30)

The optimal control problem (2.28)-(2.30) again has a solution (ppph, yh, uh), and that
a triplet (ppph, yh, uh) is the solution of (2.28)-(2.30) if there is a co-state (qqqh, zh) ∈
VVV h ×Wh such that (ppph, yh, qqqh, zh, uh) satisfies the following optimality conditions:

(A−1ppph, vvvh)− (yh, divvvvh) = 0, ∀ vvvh ∈ VVV h, (2.31)

(divppph, wh) + (ϕ(yh), wh) = (uh, wh), ∀ wh ∈Wh, (2.32)

(A−1qqqh, vvvh)− (zh,divvvvh) = 0, ∀ vvvh ∈ VVV h, (2.33)

(divqqqh, wh) + (ϕ′(yh)zh, wh) = (yh − yd, wh), ∀ wh ∈Wh, (2.34)

(νuh + zh, ũh − uh) ≥ 0, ∀ ũh ∈ Uh. (2.35)

For the variational inequality (2.35) we have

uh = Qh

(
−zh
ν

+max

{
0,
zh
ν

})
, zh =

∫
Ω
zh∫

Ω
1
. (2.36)

In the rest of the paper, we shall use some intermediate variables. For any control
function ũ ∈ Uad, we first define the state solution (ppp(ũ), y(ũ), qqq(ũ), z(ũ))∈ (VVV ×W )2

associated with ũ that satisfies

(A−1ppp(ũ), vvv)− (y(ũ), divvvv) = 0, ∀ vvv ∈ VVV , (2.37)

(divppp(ũ), w) + (ϕ(y(ũ)), w) = (ũ, w), ∀ w ∈W, (2.38)

(A−1qqq(ũ), vvv)− (z(ũ),divvvv) = 0, ∀ vvv ∈ VVV , (2.39)

(divqqq(ũ), w) + (ϕ′(y(ũ))z(ũ), w) = (y(ũ)− yd, w), ∀ w ∈W. (2.40)

Then, we define the discrete state solution (ppph(ũ), yh(ũ), qqqh(ũ), zh(ũ))∈ (VVV h ×
Wh)

2 associated with ũ that satisfies

(A−1ppph(ũ), vvvh)− (yh(ũ),divvvvh) = 0, ∀ vvvh ∈ VVV h, (2.41)

(divppph(ũ), wh) + (ϕ(yh(ũ)), wh) = (ũ, wh), ∀ wh ∈Wh, (2.42)

(A−1qqqh(ũ), vvvh)− (zh(ũ), divvvvh) = 0, ∀ vvvh ∈ VVV h, (2.43)

(divqqqh(ũ), wh) + (ϕ′(yh(ũ))zh(ũ), wh) = (yh(ũ)− yd, wh), ∀wh ∈Wh. (2.44)
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Thus, as we defined before, the exact solution and its approximation can be
written in the following way:

(ppp, y, qqq, z) = (ppp(u), y(u), qqq(u), z(u)),

(ppph, yh, qqqh, zh) = (ppph(uh), yh(uh), qqqh(uh), zh(uh)).

3. Superconvergence and postprocessing

In this section, we will give a detailed superconvergence analysis. Now, we are in
the position of deriving the estimates for ∥Phy(uh)− yh∥−1 and ∥Phz(uh)− zh∥.

Let (ppp(uh), y(uh), qqq(uh), z(uh)) ∈ (VVV ×W )2 and (ppph, yh, qqqh, zh) ∈ (VVV h ×Wh)
2

be the solutions of (2.37)-(2.40) and (2.41)-(2.44) with ũ = uh respectively. We can
easily obtain the following error equations

(A−1(ppp(uh)− ppph), vvvh)− (y(uh)− yh, divvvvh) = 0, ∀ vvvh ∈ VVV h, (3.1)

(div(ppp(uh)− ppph), wh) + (ϕ(y(uh))− ϕ(yh), wh) = 0, ∀ wh ∈Wh, (3.2)

(A−1(qqq(uh)− qqqh), vvvh)− (z(uh)− zh, divvvvh) = 0, ∀ vvvh ∈ VVV h, (3.3)

(div(qqq(uh)− qqqh), wh) + (ϕ′(y(uh))z(uh)− ϕ′(yh)zh, wh)

= (y(uh)− yh, wh), ∀ wh ∈Wh. (3.4)

As a result of (2.19), we can rewrite (3.1)-(3.4) as

(A−1(ppp(uh)− ppph), vvvh)− (Phy(uh)− yh, divvvvh) = 0, ∀ vvvh ∈ VVV h, (3.5)

(div(ppp(uh)− ppph), wh) + (ϕ(y(uh))− ϕ(yh), wh) = 0, ∀ wh ∈Wh, (3.6)

(A−1(qqq(uh)− qqqh), vvvh)− (Phz(uh)− zh,divvvvh) = 0, ∀ vvvh ∈ VVV h, (3.7)

(div(qqq(uh)− qqqh), wh) + (ϕ′(y(uh))z(uh)− ϕ′(yh)zh, wh)

= (Phy(uh)− yh, wh), ∀ wh ∈Wh. (3.8)

For sake of simplicity, we now denote

τ = Phy(uh)− yh, e = Phz(uh)− zh. (3.9)

Lemma 3.1. Let (ppp(uh), y(uh), qqq(uh), z(uh)) ∈ (VVV × W )2 and (ppph, yh, qqqh, zh) ∈
(VVV h ×Wh)

2 be the solutions of (2.37)-(2.40) and (2.41)-(2.44) with ũ = uh respec-
tively. Assume that the domain Ω is Hs+2-regular (0 ≤ s ≤ 1), then we have

∥Phy(uh)− yh∥−1 + h∥Phy(uh)− yh∥ ≤ Ch3(∥u∥+ ∥Qhu− uh∥). (3.10)

Proof. As we can see,

∥τ∥−1 = sup
ψ∈H1(Ω),ψ ̸=0

(τ, ψ)

∥ψ∥1
, (3.11)

we then need to bound (τ, ψ) for ψ ∈ H1(Ω). Let ξ ∈ H3(Ω)∩H1
0 (Ω) be the solution

of (2.4) with a0 = Φ, where

Φ =


ϕ(y(uh))− ϕ(yh)

y(uh)− yh
, y(uh) ̸= yh,

ϕ′(yh), y(uh) = yh.
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We can see from (2.4), (2.22) and (3.5)

(τ, F ) = (τ,−div(Agradξ)) + (τ,Φξ)

= −(τ,div(Πh(Agradξ))) + (τ,Φξ)

= −(A−1(ppp(uh)− ppph),Πh(Agradξ)) + (τ,Φξ). (3.12)

Note that

(div(ppp(uh)− ppph), ξ) + (A−1(ppp(uh)− ppph), Agradξ) = 0. (3.13)

Thus, from (3.6), (3.12) and (3.13), we derive

(τ, F ) =(A−1(ppp(uh)− ppph), Agradξ −Πh(Agradξ))

+ (div(ppp(uh)− ppph), ξ − Phξ)− (Φ(y(uh)− Phy(uh)), ξ)

+ (ϕ(y(uh))− ϕ(yh), ξ − Phξ). (3.14)

From (2.23), we have

(A−1(ppp(uh)− ppph), Agradξ −Πh(Agradξ)) ≤ Ch2∥ppp(uh)− ppph∥ · ∥ξ∥3. (3.15)

Let ũ = uh and w = divppp(uh) + ϕ(y(uh))− uh in (2.38), we can find that

divppp(uh) + ϕ(y(uh))− uh = 0. (3.16)

Similarly, by (2.19) and (2.32), it is easy to see that

divppph = uh − Phϕ(yh). (3.17)

By (3.16), (3.17) and (2.20), we have

(div(ppp(uh)− ppph), ξ − Phξ) + (ϕ(y(uh))− ϕ(yh), ξ − Phξ)

=(Phϕ(yh)− ϕ(yh), ξ − Phξ) ≤ Ch3∥ϕ∥1∥ξ∥2. (3.18)

For the third term on the right side of (3.14), using (2.19), (2.20) and the
assumption on ϕ, we get

(Φ(y(uh)− Phy(uh)), ξ)

=(Φ(y(uh)− Phy(uh)), ξ − Phξ) + (y(uh)− Phy(uh), (Φ− PhΦ)Phξ)

≤Ch∥ϕ∥1,∞∥y(uh)− Phy(uh)∥ · ∥ξ∥1 + Ch∥ϕ∥2,∞∥y(uh)− Phy(uh)∥ · ∥ξ∥
≤Ch3∥ξ∥1∥y(uh)∥2. (3.19)

By (2.5), (3.11), (3.14), (3.15) and (3.18)-(3.19), we derive

∥Phy(uh)− yh∥−1 ≤ Ch2∥ppp(uh)− ppph∥+ Ch3∥y(uh)∥2. (3.20)

Similarly, we arrive at

∥Phy(uh)− yh∥ ≤ Ch∥ppp(uh)− ppph∥+ Ch2∥y(uh)∥1. (3.21)

Choosing vvvh = Πhppp(uh)−ppph in (3.5) and wh = Phy(uh)−yh in (3.6), respectively.
Then adding the two equations to get

(A−1(Πhppp(uh)− ppph),Πhppp(uh)− ppph) + (ϕ(Phy(uh))− ϕ(yh), Phy(uh)− yh)

=− (A−1(ppp(uh)−Πhppp(uh)),Πhppp(uh)− ppph)

− (ϕ(y(uh))− ϕ(Phy(uh)), Phy(uh)− yh). (3.22)
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Note that

(ϕ(y(uh))− ϕ(Phy(uh)), Phy(uh)− yh) ≤ Ch∥ϕ∥1,∞∥y(uh)∥1∥Phy(uh)− yh∥.(3.23)

Using (3.22), (3.23), (2.23) and the assumptions on A and ϕ, we find that

∥Πhppp(uh)− ppph∥ ≤ Ch(∥ppp(uh)∥1 + ∥y(uh)∥1) + ∥Phy(uh)− yh∥. (3.24)

Substituting (3.24) into (3.21), using (2.23), for sufficiently small h, we have

∥Phy(uh)− yh∥ ≤ Ch2(∥ppp(uh)∥1 + ∥y(uh)∥1). (3.25)

Then, substituting (3.24) and (3.25) into (3.20), using (2.23), we find that

∥Phy(uh)− yh∥−1 ≤ Ch3(∥ppp(uh)∥1 + ∥y(uh)∥2). (3.26)

From Lemma 1.1, we have

∥ppp(uh)∥1 + ∥y(uh)∥2 ≤ C∥y(uh)∥2 ≤ C∥uh∥ ≤ C(∥u∥+ ∥Qhu− uh∥). (3.27)

By (3.25)-(3.27), we complete the proof.

Lemma 3.2. Let (ppp(uh), y(uh), qqq(uh), z(uh)) ∈ (VVV × W )2 and (ppph, yh, qqqh, zh) ∈
(VVV h ×Wh)

2 be the solutions of (2.37)-(2.40) and (2.41)-(2.44) with ũ = uh respec-
tively. Assume that the domain Ω is Hs+2-regular (0 ≤ s ≤ 1), then we have

∥Phz(uh)− zh∥ ≤ Ch3(∥yd∥1 + ∥u∥+ ∥Qhu− uh∥). (3.28)

Proof. Since

∥e∥ = sup
ψ∈L2(Ω),ψ ̸=0

(e, ψ)

∥ψ∥
, (3.29)

we then need to bound (e, ψ) for ψ ∈ L2(Ω). Let ξ be the solution of (2.4) with
a0 = ϕ′(y(uh)). From (2.4), (2.22) and (3.7), we can see that

(e, F ) =(e,−div(Agradξ)) + (e, ϕ′(y(uh))ξ)

=− (e, div(Πh(Agradξ))) + (e, ϕ′(y(uh))ξ)

=− (A−1(qqq(uh)− qqqh),Πh(Agradξ)) + (e, ϕ′(y(uh))ξ). (3.30)

Note that

(div(qqq(uh)− qqqh), ξ) + (A−1(qqq(uh)− qqqh), Agradξ) = 0. (3.31)

Thus, it follows from (2.19), (3.30) and (3.31), we derive

(e, F ) =(A−1(qqq(uh)− qqqh), Agradξ −Πh(Agradξ)) + (div(qqq(uh)− qqqh), ξ − Phξ)

− (Phy(uh)− yh, Phξ) + (ϕ′(y(uh))z(uh)− ϕ′(yh)zh, ξ − Phξ)

+ (ϕ′(y(uh))(Phz(uh)− z(uh)), ξ) + (zh(ϕ
′(yh)− ϕ′(y(uh))), ξ)

= :

6∑
i=1

Ii. (3.32)
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For I1, by (2.23), we have

I1 ≤ C∥qqq(uh)− qqqh∥ · ∥Agradξ −Πh(Agradξ)∥ ≤ Ch∥qqq(uh)− qqqh∥ · ∥ξ∥2. (3.33)

Let ũ = uh and w = divqqq(uh) + ϕ′(y(uh))z(uh) − y(uh) + yd in (2.40), we can
find that

divqqq(uh) + ϕ′(y(uh))z(uh) = y(uh)− yd. (3.34)

Similarly, by (2.19) and (2.34), it is easy to see that

divqqqh = yh − Phyd − Phϕ
′(yh)zh. (3.35)

By (2.20) and (3.34)-(3.35), we have

I2 =(Phϕ
′(yh)zh − ϕ′(y(uh))z(uh), ξ − Phξ) + (Phyd − yd, ξ − Phξ)

+ (y(uh)− Phy(uh), ξ − Phξ) + (Phy(uh)− yh, ξ − Phξ)

=(Ph(ϕ
′(y(uh))z(uh))− ϕ′(y(uh))z(uh), ξ − Phξ)

+ (Phyd − yd, ξ − Phξ) + (y(uh)− Phy(uh), ξ − Phξ)

≤Ch3(∥ϕ∥2∥z(uh)∥1,∞ + ∥yd∥1 + ∥y(uh)∥1)∥ξ∥2. (3.36)

From (2.19), we arrive at

I3 = (τ, ξ) ≤ C∥τ∥−1∥ξ∥1. (3.37)

Note that

ϕ′(y(uh))z(uh)− ϕ′(yh)zh = z(uh)(ϕ
′(y(uh))− ϕ′(yh)) + ϕ′(yh)(z(uh)− zh).(3.38)

Then, by (2.20), (3.25) and the assumption on ϕ, we find that

I4 ≤C∥z(uh)∥0,∞∥ϕ∥2,∞∥y(uh)− yh∥ · ∥ξ − Phξ∥
+ C∥ϕ∥1,∞∥z(uh)− zh∥ · ∥ξ − Phξ∥

≤Ch3∥z(uh)∥1,∞∥ϕ∥2,∞∥ξ∥1 + Ch∥ϕ∥1,∞∥ξ∥2∥Phz(uh)− zh∥. (3.39)

As for I5, by the assumption on ϕ, (2.19) and (2.20), we derive

I5 =(ϕ′(y(uh))(Phz(uh)− z(uh)), ξ − Phξ)

+ (Phz(uh)− z(uh), (ϕ
′(y(uh))− Ph(ϕ

′(y(uh))))Phξ)

≤C∥ϕ∥1,∞∥z(uh)− Phz(uh)∥ · ∥ξ − Phξ∥
+ Ch∥ϕ∥2,∞∥z(uh)− Phz(uh)∥ · ∥Phξ∥

≤Ch3∥ϕ∥2,∞∥z(uh)∥2∥ξ∥2. (3.40)

For I6, by (2.19), (2.20), the embedding ∥v∥0,∞ ≤ c∥v∥2 and the assumption on
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ϕ, we obtain

I6 =(ϕ′(yh)− ϕ′(y(uh)), (zh − z(uh))ξ) + (ϕ′(yh)− ϕ′(Phy(uh)), z(uh)ξ)

+ (ϕ′′(y(uh))(Phy(uh)− y(uh)), z(uh)ξ)

+

(
1

2
ϕ′′′(y(uh) + θ(Phy(uh)− y(uh)))(Phy(uh)− y(uh))

2, z(uh)ξ

)
=(ϕ′(yh)− ϕ′(y(uh)), (zh − z(uh))ξ) + (ϕ′(yh)− ϕ′(Phy(uh)), z(uh)ξ)

+ (ϕ′′(y(uh))(Phy(uh)− y(uh)), z(uh)ξ − Ph(z(uh)ξ))

+ (Phy(uh)− y(uh), (ϕ
′′(y(uh))− Ph(ϕ

′′(y(uh))))Ph(z(uh)ξ))

+
1

2
(ϕ′′′(y(uh) + θ(Phy(uh)− y(uh)))(Phy(uh)− y(uh))

2, z(uh)ξ)

≤C∥ϕ∥2,∞∥y(uh)− yh∥ · ∥ξ∥0,∞∥z(uh)− zh∥
+ C∥ϕ∥2,∞∥Phy(uh)− yh∥−1∥z(uh)∥1,∞∥ξ∥1
+ Ch∥z(uh)∥1,∞∥y(uh)− Phy(uh)∥(∥ϕ∥2,∞∥ξ∥1 + ∥ϕ∥3∥ξ∥0,∞)

+ C∥ϕ∥3∥y(uh)− Phy(uh)∥20,∞∥z(uh)∥0,∞∥ξ∥
≤Ch(h2∥y(uh)∥2 + h2∥z(uh)∥2 + ∥e∥)∥ξ∥2
+ C∥z(uh)∥1,∞∥τ∥−1∥ξ∥2, 0 ≤ θ ≤ 1. (3.41)

Substituting the estimates I1-I6 in (3.32), for sufficiently small h, by (3.29), we
derive

∥Phz(uh)− zh∥ ≤ Ch∥qqq(uh)− qqqh∥+ C∥τ∥−1 + Ch3(∥y(uh)∥2 + ∥z(uh)∥2). (3.42)

Next, using (2.22), we rewrite (3.7)-(3.8) as

(A−1(Πhqqq(uh)− qqqh), vvvh)− (Phz(uh)− zh, divvvvh)

=− (A−1(qqq(uh)−Πhqqq(uh)), vvvh), ∀ vvvh ∈ VVV h, (3.43)

(div(Πhqqq(uh)− qqqh), wh) + (ϕ′(y(uh))(Phz(uh)− zh), wh)

=− (ϕ′(y(uh))(z(uh)− Phz(uh)), wh) + (Phy(uh)− yh, wh)

+ ((ϕ′(y(uh))− ϕ′(yh))zh, wh), ∀ wh ∈Wh. (3.44)

Choosing vvvh = Πhqqq(uh)−qqqh in (3.43) and wh = Phz(uh)−zh in (3.44), respectively.
Then adding the two equations to get

(A−1(Πhqqq(uh)− qqqh),Πhqqq(uh)− qqqh) + (ϕ′(y(uh))(Phz(uh)− zh), Phz(uh)− zh)

=− (A−1(qqq(uh)−Πhqqq(uh)),Πhqqq(uh)− qqqh) + (Phy(uh)− yh, Phz(uh)− zh)

− (ϕ′(y(uh))(z(uh)− Phz(uh)), Phz(uh)− zh)

+ ((ϕ′(y(uh))− ϕ′(yh))zh, Phz(uh)− zh). (3.45)

Note that

(ϕ′(y(uh))(z(uh)− Phz(uh)), Phz(uh)− zh)

≤Ch∥ϕ∥1,∞∥z(uh)∥1∥Phz(uh)− zh∥ (3.46)
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and

((ϕ′(y(uh))− ϕ′(yh))zh, Phz(uh)− zh)

≤((ϕ′(y(uh))− ϕ′(Phy(uh)))zh, Phz(uh)− zh)

+ ((ϕ′(Phy(uh))− ϕ′(yh))zh, Phz(uh)− zh)

≤C∥ϕ∥1,∞∥zh∥ · ∥Phz(uh)− zh∥(h∥y(uh)∥1,∞ + ∥Phy(uh)− yh∥0,∞), (3.47)

where

∥zh∥ ≤ ∥z(uh)− Phz(uh)∥+ ∥Phz(uh)− zh∥+ ∥z(uh)∥
≤ C∥z(uh)∥1 + ∥Phz(uh)− zh∥. (3.48)

Using (3.45)-(3.48), (2.23), the assumptions on A and ϕ, we find that

∥Πhqqq(uh)− qqqh∥ ≤ Ch2(∥qqq(uh)∥2 + ∥z(uh)∥2 + ∥z(uh)∥1,∞) + c∥τ∥+ ∥e∥. (3.49)

Substituting (3.49) into (3.42), for sufficiently small h, by (2.23), we derive

∥Phz(uh)− zh∥ ≤Ch3(∥z(uh)∥2 + ∥y(uh)∥1 + ∥yd∥1 + ∥u∥
+ ∥Qhu− uh∥+ ∥z(uh)∥1,∞ + ∥qqq(uh)∥2). (3.50)

Since the domain Ω is H3-regular, we have

∥z(uh)∥1,∞ + ∥qqq(uh)∥2 + ∥z(uh)∥2 ≤ C∥z(uh)∥3 ≤ C(∥y(uh)∥1 + ∥yd∥1). (3.51)

Thus, using (3.27), (3.50) and (3.51), we complete the proof.

Lemma 3.3. Let (ppp(Qhu), y(Qhu), qqq(Qhu), z(Qhu)) and (ppp(u), y(u), qqq(u), z(u)) be
the solutions of (2.37)-(2.40) with ũ = Qhu and ũ = u, respectively. Assume that
u ∈ H1(Ω). Assume that the domain Ω is H2-regular, then we have

∥z(u)− z(Qhu)∥0,∞ ≤ Ch2. (3.52)

Proof. First, in [7], we know that

∥y(Qhu)− y(u)∥ ≤ Ch2. (3.53)

Choosing ũ = u and ũ = Qhu in (2.39) and (2.40), we have

− div(A∇(z − z(Qhu))) + ϕ′(y(Qhu))(z − z(Qhu))

=y − y(Qhu)− z(ϕ′(y)− ϕ′(y(Qhu))). (3.54)

Using Lemma 1.1 and the classical imbedding theorem, we can see that

∥z − z(Qhu)∥0,∞ ≤C∥z − z(Qhu)∥2 ≤ C∥y − y(Qhu)− z(ϕ′(y)− ϕ′(y(Qhu)))∥
≤C∥y − y(Qhu)∥+ C∥z(ϕ′(y)− ϕ′(y(Qhu)))∥
≤C∥y − y(Qhu)∥+ C∥z∥0,∞∥ϕ∥2,∞∥y − y(Qhu)∥. (3.55)

Thus, using (3.53) and (3.55), we complete the proof.
Let y(u) be the solution of (2.7)-(2.9) and J(·) : L2(Ω) → R be a G-differential

convex functional near the solution u which satisfies the following form:

J(u) =
1

2
∥y − yd∥2 +

ν

2
∥u∥2. (3.56)
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Then we can find that

(J ′(uh), v) = (νuh + z(uh), v), (3.57)

(J ′(Qhu), v) = (νQhu+ z(Qhu), v). (3.58)

In many applications, J(·) is local convex near the solution u. The convexity
of J(·) is closely related to the second order sufficient conditions of the control
problem, which are assumed in many studies on numerical methods of the problem.
Then, there exists a constant c > 0, independent of h, such that

(J ′(Qhu)− J ′(uh), Qhu− uh) ≥ c∥Qhu− uh∥2, (3.59)

where u and uh are solutions of (2.10)-(2.14) and (2.31)-(2.35) respectively, Qhu is
the orthogonal projection of u which is defined in (2.26). We shall assume that the
above inequality throughout this paper.

Now, we will discuss the following superconvergence property for the control
variable.

Lemma 3.4. Let u be the solution of (2.10)-(2.14) and uh be the solution of (2.31)-
(2.35), respectively. Assume that u ∈ H1(Ω) and all the conditions in previous
Lemmas are valid. Then, we have

∥Qhu− uh∥ ≤ Ch2. (3.60)

Proof. We choose ũ = uh in (2.14) and ũh = Qhu in (2.35) to get the following
two inequalities:

(νu+ z, uh − u) ≥ 0, (3.61)

(νuh + zh, Qhu− uh) ≥ 0. (3.62)

Note that uh − u = uh −Qhu+Qhu− u. Adding the above two inequalities to
get

(νuh + zh − νu− z,Qhu− uh) + (νu+ z,Qhu− u) ≥ 0. (3.63)

Thus, by (3.63), (3.59) and (2.19), we find that

c∥Qhu− uh∥2 ≤ (J ′(Qhu)− J ′(uh), Qhu− uh)

=ν(Qhu− uh, Qhu− uh) + (z(Qhu)− z(uh), Qhu− uh)

=ν(Qhu− u,Qhu− uh) + ν(u− uh, Qhu− uh) + (z(Qhu)− z(uh), Qhu− uh)

≤(zh − z,Qhu− uh) + (νu+ z,Qhu− u) + (z(Qhu)− z(uh), Qhu− uh)

=(zh − Phz(uh), Qhu− uh) + (νu+ z,Qhu− u)

+ (z(Qhu)− z(u), Qhu− uh). (3.64)

By Lemma 3.2 and Lemma 3.3, we arrive at

(zh − Phz(uh), Qhu− uh) ≤ Ch6 +
ν

4
∥Qhu− uh∥2 + Ch3∥Qhu− uh∥2 (3.65)

and

(z(Qhu)− z(u), Qhu− uh) ≤ Ch4 +
ν

4
∥Qhu− uh∥2. (3.66)
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From (2.15), we know that

νu+ z = max{0, z̄} = constant. (3.67)

Thus, we have

(νu+ z,Qhu− u) = (νu+ z)

∫
Ω

(Qhu− u) = 0. (3.68)

Combining (3.64)-(3.66) with (3.68), for sufficiently small h, we derive (3.60).
Let (ppp(uh), y(uh), qqq(uh), z(uh)) and (ppp(Qhu), y(Qhu), qqq(Qhu), z(Qhu)) be the so-

lutions of (2.37)-(2.40) with ũ = uh and ũ = Qhu, respectively. Then we have the
following error equations

(A−1(ppp(Qhu)− ppp(uh)), vvv)− (y(Qhu)− y(uh), divvvv) = 0, (3.69)

(div(ppp(Qhu)− ppp(uh)), w) + (ϕ(y(Qhu)− ϕ(y(uh)), w) = (Qhu− uh, w), (3.70)

(A−1(qqq(Qhu)− qqq(uh)), vvv)− (z(Qhu)− z(uh),divvvv) = 0, (3.71)

(div(qqq(Qhu)− qqq(uh)), w) + (ϕ′(y(Qhu)z(Qhu)− ϕ′(y(uh))z(uh), w)

= (y(Qhu)− y(uh), w), (3.72)

for any vvv ∈ VVV and w ∈W .
Similar to Lemma 3.3, using Lemma 3.4, we can prove the following estimate.

Lemma 3.5. Assume that all the conditions in Lemma 3.4 are valid. Then we
have

∥z(Qhu)− z(uh)∥0,∞ ≤ Ch2. (3.73)

Lemma 3.6. Assume that all the conditions in Lemma 3.4 are valid and u ∈
W 1,∞(Ω). Let u and uh be the solutions of (2.10)-(2.14) and (2.31)-(2.35), respec-
tively. Then we have

∥u− uh∥0,∞ ≤ Ch. (3.74)

Proof. By (2.27) and the inverse inequality, we arrive at

∥u− uh∥0,∞ ≤C(∥u−Qhu∥0,∞ + ∥Qhu− uh∥0,∞)

≤C(h∥u∥1,∞ + h−1∥Qhu− uh∥). (3.75)

Gathering (3.75) and Lemma 3.4, we derive (3.74).
Moreover, in order to improve the accuracy of the control approximation on a

global scale, similar to the case in [21], we construct the following a postprocessing
projection operator of the discrete co-state to the admissible set

û = (max{0, zh} − zh)/ν. (3.76)

Now, we can prove the following global superconvergence result.

Theorem 3.1. Assume that all the conditions in previous Lemmas are valid. Let
u be the solution of (2.10)-(2.14) and û be the function constructed in (3.76). Then
we have

∥u− û∥0,∞ ≤ Ch2. (3.77)
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Proof. By use of (2.20), Lemma 3.2, Lemma 3.3, Lemma 3.5 and the inverse
estimate, we find that

∥z − zh∥0,∞ ≤∥z − z(Qhu)∥0,∞ + ∥z(Qhu)− z(uh)∥0,∞ + ∥z(uh)− Phz(uh)∥0,∞
+ ∥Phz(uh)− zh∥0,∞ ≤ Ch2. (3.78)

From (2.15) and (3.76), we arrive at

|u− û| ≤ C|z − zh|+ C|z̄ − zh| ≤ C∥z − zh∥0,∞. (3.79)

By (3.78) and (3.79), we complete the proof.

4. Numerical experiments

In this section, we present below an example to illustrate the theoretical results. The
optimization problems were solved numerically by projected gradient methods, with
codes developed based on AFEPack [19]. The discretization was already described
in previous sections: the control function u was discretized by piecewise constant
functions, whereas the state (y,ppp) and the co-state (z,qqq) were approximated by the
order k = 1 Raviart-Thomas mixed finite element functions. In our examples, we
choose the domain Ω = [0, 1]× [0, 1], ϕ(y) = y3, ν = 1 and A = E, where E denotes
the unit matrix.

Example 4.1. We consider the following two-dimensional elliptic optimal control
problem

min
u∈Uad

{
1

2
∥y − yd∥2 +

1

2
∥u∥2

}
(4.1)

subject to the state equation

divppp+ y3 = f + u, ppp = −grady, (4.2)

where

y = sin(πx1) sin(πx2),

z = sin(2πx1) sin(2πx2),

u = max(0, z̄)− z, (4.3)

f = 2π2y + y3 − u,

yd = y − 3y2z − 8π2z.

In the numerical implementation, we choose the exact solution u which satisfies∫
Ω
udx = 0. In Table 1, the errors ∥u − uh∥0,∞, ∥Qhu − uh∥ and ∥u − û∥0,∞

obtained on a sequence of uniformly refined meshes are shown. In Figure 1, we
show the convergence orders by slopes, and we denote û by uproj . The theoretical
results can be observed clearly from the data.
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h ∥u− uh∥0,∞ ∥Qhu− uh∥ ∥u− û∥0,∞
1/16 9.4053e-02 1.2416e-04 3.5683e-02
1/32 4.6952e-02 2.5624e-05 8.9063e-03
1/64 2.3667e-02 6.3276e-06 2.2173e-03
1/128 1.1783e-02 1.4925e-06 5.5672e-04

Table 1. The errors of Example on a sequential uniform refined meshes.

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

log
10

(sqrt(dofs))

lo
g 10

(e
rr

or
)

 

 

||u−u
h
||

0,∞

||Q
h
u−u

h
||

||u−u
proj

||
0,∞

k=−1.0
k=−2.0

Figure 1. Convergence orders of u− uh, Qhu− uh and u− uproj in different norms.

5. Conclusions

In this paper, we discussed the order k = 1 Raviart-Thomas mixed finite element
methods for semilinear elliptic optimal control problem (1.1)-(1.4). We have derived
a second order superconvergence result of mixed finite element methods for the
control problem when the control was approximated by piecewise constant functions.
In our future work, we will investigate the superconvergence of mixed finite element
methods for optimal control problems governed by bilinear and quasilinear elliptic
equations.
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