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TWO GENERAL CENTRE PRODUCING
SYSTEMS FOR THE POINCARÉ PROBLEM

G. R. Nicklason

Abstract We consider the polynomial system dx
dt

= −y − axs+3yn−s−3 −
bxs+1yn−s−1, dy

dt
= x+ cxs+2yn−s−2+dxsyn−s where n ≥ 3 is an odd integer

and s = 0, . . . , n − 3 is an even integer. We calculate the first three nonzero
Lyapunov coefficients for the system and obtain a Gröbner basis for the ideal
generated by them. Potential centre conditions for the system are obtained by
setting the basis elements equal to zero and solving the resulting system. This
gives five basic solutions and within this set we find two well known classes of
centres and three new centre producing systems. One of the three is a variant
of one of the other new systems, so we obtain two general independent systems
which produce multiple centre conditions for each n ≥ 5.

Keywords Centre-focus problem, Lyapunov coefficients, Gröbner basis, hy-
pergeometric function.
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1. Introduction

In this work we consider centre conditions for the system

dx

dt
= −y − p(x, y),

dy

dt
= x+ q(x, y) (1.1)

where p and q are homogeneous polynomials of degree n ≥ 2. That is, conditions
such that all trajectories of the system on a sufficiently small neighborhood of the
origin are closed curves. Specifically, we consider general systems for which

p(x, y) = axs+3yn−s−3 + bxs+1yn−s−1 = xsyn−s−3(ax3 + bxy2),

q(x, y) = cxs+2yn−s−2 + dxsyn−s = xsyn−s−3(cx2y + dy3)
(1.2)

where 0 ≤ s ≤ n − 3 is an integer. If n is even or if n and s are both odd, the
system always defines symmetric centres. That is, its phase portrait has a line of
symmetry which passes through the origin. To avoid these well known centres we
restrict our attention to those cases for which n is odd and s is even. We shall show
that in addition to generating Hamiltonian and constant invariant (see Section 2)
forms, the system also has two other independent centre producing forms. One of
these produces (n− 1)/2 centre conditions for each n and the other, because of the
symmetrical form of the system, gives only [(n+ 1)/4] conditions where [. . . ] is the
greatest integer function. The only forms of these systems which are integrable in
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the sense that an integrating factor can be found are the s = 0 cases [12] along with
the s = (n− 3)/2 and s = n− 3 cases of one of the systems. Also associated with
(1.1) is the ordinary differential equation

dy

dx
= −x+ q(x, y)

y + p(x, y)
. (1.3)

Throughout the paper any integrating factor µ of (1.3) will be such that

∂

∂y

(
µ(x, y)(x+ q(x, y))

)
− ∂

∂x

(
µ(x, y)(y + p(x, y))

)
= 0.

One of the major problems encountered in showing that a particular system
gives rise to a centre is to establish the sufficiency of the conditions which have
been obtained. For the system (1.2) the problem is made more difficult because we
must not only show it for general values of n but also for the subcases generated by
allowing s to vary. A few general systems valid for arbitrary values of n are known.
In each case the centre nature of the system is established either by showing the
existence of an integrating factor for it or by demonstrating that certain parity
conditions with regard to related differential equations are satisfied. The system
p(x, y) = axn−1y − 2bx2yn−2 + byn, q(x, y) = axn − 2axn−2y2 + bxyn−1 having
integrating factor

µ(x, y) = (1 + 2(axn−1 + byn−1) + (axn−1 − byn−1)2)−(n+3)/(2n−2)

is obtained in [2] and several other systems are given in [12, 13]. In particular, the
s = 0 forms of the systems obtained herein are shown to be integrable in [12] and
this led, at least in part, to the study of more general systems of the type defined by
(1.2). Examples of the use of parity properties can be found in [12]. Other criteria
can be used to establish whether a given system produces a centre.

In his original work [14], Poincaré developed a method for determining if the
origin is a centre for (1.1) by seeking an analytic solution of (1.3). This takes the
form

U(x, y) =
1

2
(x2 + y2) +

∞∑
k=2

Uαk
(x, y)

where Uαk
(x, y) is a homogeneous polynomial of degree αk = k(n − 1) + 2. This

solution is required to satisfy the condition

dU

dt
=
∂U

∂x

dx

dt
+
∂U

∂y

dy

dt
=

∞∑
k=1

Vαk
(x2 + y2)αk/2 ≡

∞∑
ℓ=2

Ṽ2ℓ(x
2 + y2)ℓ.

Here, the Vαk
, Ṽ2ℓ are called Lyapunov coefficients and they are homogeneous poly-

nomials in the coefficients of the system. We note that if αk is odd, then Vαk
= 0.

The origin is said to be a fine focus of order N if Ṽ2ℓ = 0 for ℓ ≤ N but Ṽ2N+2 ̸= 0.
A necessary and sufficient condition for the existence of a centre is the vanishing of
all the Lyapunov coefficients.

It has been conjectured [4] that all systems which produce centres are either
integrable in the sense of Darboux (as are the s = 0 systems obtained herein)
or Liouville or they are rationally (algebraically) reversible. Although it is now
known that this is not true in general, it was reiterated in [15] for the case of
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elementary centres. Another possibility is that the given system can be transformed
to one of Liénard type and the known centre conditions (see [5]) for these types of
systems applied. The general system (1.1) can be transformed to such a system, but
having rational rather than polynomial coefficients and all attempts to show rational
reversibility of the systems obtained in this paper have produced no worthwhile
results. Another possible route to showing the sufficiency of centre conditions is to
transform the system to various types of Abel equations (see [6,11]) or to transform
the system to a corresponding complex form.

To obtain necessary conditions for a centre for (1.2), we calculate as many of
the initial Lyapunov coefficients as possible. Although the system depends upon
four parameters, we are actually able to show that the centre conditions are defined
by the vanishing of the first three nonzero Lyapunov coefficients. Due to parity
conditions, two of the first five are identically zero which results in nonzero Lyapunov
coefficients Vα1 , Vα3 , Vα5 of degrees 1, 3, and 5 respectively. We note that this is
very similar to what happens for the reduced cubic system (n = 3, s = 0) derived
from (1.2). The Vαk

are calculated in terms of trigonometric integrals, primarily
because this seemed the only possible way to do it, and from these a Gröbner basis
is computed. This has a much simpler form than the original set of coefficients and
easily allows for the determination of possible centre conditions.

In the next Section we provide some of necessary background details and present
the main result. The following two Sections are devoted to obtaining the necessary
and sufficient conditions for the systems which we obtain to be centres. In particular,
the proof of sufficiency is aided by the fact that the system (1.2) includes some easily
identifiable centres which means that the general coefficient Vαk

can be expressed in
a specific fashion with respect to the basis generators of the ideal <Vα1 , Vα3 , Vα5>.
We also give a probable generalization of one of the systems obtained, although a
direct proof of this is not yet available.

2. The Main Result

Setting x = r(θ) cos θ, y = r(θ) sin θ in (1.3), we obtain

dr

dθ
=

ξ(θ)rn

1 + η(θ)rn−1
(2.1)

where

ξ(θ) = sin θ q(cos θ, sin θ) − cos θ p(cos θ, sin θ),

η(θ) = sin θ p(cos θ, sin θ) + cos θ q(cos θ, sin θ).
(2.2)

For the system (1.2), (2.2) becomes

ξ(θ) = −(cos θ)s(sin θ)n−s−3(a cos4 θ + (b− c) cos2 θ sin2 θ − d sin4 θ),

η(θ) = (cos θ)s+1(sin θ)n−s−2((a+ c) cos2 θ + (b+ d) sin2 θ).
(2.3)

From this we can note that ξ, η are even, odd functions of θ respectively. Substi-
tuting u = rn−1 in (2.1) produces an Abel equation of the second kind which can
be further transformed to an Abel equation of the first kind using the standard
transformation [3]

ρ(θ) =
u(θ)

1 + η(θ)u(θ)
.
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This gives
dρ

dθ
= −(n− 1)ξ(θ)η(θ)ρ3 + ((n− 1)ξ(θ) − η′(θ))ρ2. (2.4)

If the coefficient functions in (2.4) satisfy a relation of the form ξ(θ) = Kη′(θ) where
K ̸= 0 is a constant, the equation will have a constant first invariant I1. Systems
which satisfy this condition are centres for (1.1) and in the following we shall refer
to them as constant invariant centres. In particular, the Hamiltonian solution has
K = −1/(n+ 1).

At this time we present the main result of the paper.

Theorem 2.1. Let n ≥ 3 be an odd integer, 0 ≤ s ≤ n− 3 an even integer and C
a nonzero constant. If either

a = (n− s− 2)2C, b = −((n− 3)s− s2 + 2n− 3)C,

c = ((n− 3)s− s2 + 2n− 3)C, d = −(s+ 1)2C,
(2.5)

or
a = (n− s)(n− s− 2)C, b = (s2 + s− ns− 3n+ 2)C,

c = (s− 1)(n− s− 2)C, d = −(s2 − 1)C
(2.6)

in (1.2) then the origin is a centre.

The s = 0 forms of these systems were obtained in [12] where it was shown that
(2.5), (2.6) have integrating factors given by

µ(x, y) =
[
1 + 2 (n− 1)Cxyn−2 + (n− 1)2C2x2y2n−4 − 2 (n− 1)C2y2n−2

]α
where α = (n− 3)/(2(n− 1)) and

µ(x, y) =
[
1 − 2 (n− 1)Cxyn−2 + 2 (n− 1)C2y2n−2

]−(2n−1)/(n−1)

respectively. Moreover, the s = (n− 3)/2 case of (2.5) is always Hamiltonian (even
for s odd) and due to the symmetry of its coefficients, s = n−3 is also an integrable
case. We have spent considerable time seeking other integrable forms, but without
success. For s ̸= 0, n − 3 the systems do not seem to possess invariant curves of
the form f(x, y) = 0 which are necessary for the construction of integrating factors
of Darboux type. We further observe that since the coefficients of (1.2) defined in
Theorem 2.1 are functions of n and s they have the elementary property that if we
let (n, s) → (n + ν, s + σ) where ν and σ are even integers which satisfy n + ν ≥
3, 0 ≤ s+ σ ≤ n+ ν − 3, they generate the coefficients of the similarly transformed
system. In the end it is this translation property along with the presence of the
integrable s = 0 systems which allow for the proof of sufficiency of the centre nature
of the systems defined by (2.5) and (2.6).

3. Calculation of the Lyapunov Coefficients

At this point we need some method for determining the Lyapunov coefficients for
(1.2). Since n and s can take on arbitrary values, no method which assumes a
particular value of n is applicable. The only suitable approach that we found was
in terms of trigonometric integrals. For this purpose we adapted the conditions
given in [1] to our problem. In this form they apply to the coefficients of the Abel
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equation (2.4), although equivalent conditions can easily be determined from the
recurrence relation generated by assuming a series solution for (2.1). The vanishing
of the first five Lyapunov coefficients is given by∫ 2π

0

ξ(θ) dθ = 0, (3.1)∫ 2π

0

ξ(θ)η(θ) dθ = 0, (3.2)∫ 2π

0

[(n− 1)ξ1(θ) − η(θ)]ξ(θ)η(θ) dθ = 0, (3.3)∫ 2π

0

[(n− 1)ξ1(θ) − η(θ)]2ξ(θ)η(θ) dθ = 0, (3.4)∫ 2π

0

ξ(θ)η(θ)[(n− 1)ξ1(θ) − η(θ)][((n− 1)ξ1(θ) − η(θ))2 − (n− 1)Ψ(θ)] dθ = 0

(3.5)

where

ξ1(θ) =

∫
ξ(θ) dθ, Ψ(θ) =

∫
ξ(θ)η(θ) dθ.

In view of the parity conditions noted earlier for ξ, η the integrals in (3.2) and
(3.4) vanish identically, so those remaining provide the conditions for the first three
nonzero Lyapunov coefficients.

To establish the conditions for the vanishing of the Lyapunov coefficients, each
of the nonzero integrals in (3.1)–(3.5) is reduced to a single integral. Setting the
coefficient of the integral to zero gives the necessary condition. In order to do this,
we make repeated use of the result∫

(cosx)α(sinx)β dx =
(cosx)α−1(sinx)β+1

β + 1
+
α− 1

β + 1

∫
(cosx)α−2(sinx)β+2 dx.

(3.6)
Integrating ξ from (2.3) and using (3.6), we obtain

ξ1(θ) =
−a

n− s− 2
(cos θ)s+3(sin θ)n−s−2

+
1

n− s

(
c− b− s+ 3

n− s− 2
a

)
(cos θ)s+1(sin θ)n−s

+

[
s+ 1

n− s

(
c− b− s+ 3

n− s− 2
a

)
+ d

] ∫
(cos θ)s(sin θ)n−s+1 dθ.

(3.7)

Evaluating this at the limits 0 and 2π and noting that the integral will be nonze-
ro, we see that the condition for the vanishing of the first Lyapunov coefficient is
coincident with the coefficient of the integral being zero. Ordinarily, the Lyapunov
coefficient would include the value of the integral. However, this is of no interest
in this case, so in this and the following we shall denote the coefficients of these
integrals by V k but continue to refer to them as Lyapunov coefficients. Thus

V 1 =
s+ 1

n− s

(
c− b− s+ 3

n− s− 2
a

)
+ d (3.8)
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and if V 1 = 0, we can express ξ1 in the simpler form

ξ1(θ) =
−a

n− s− 2
(cos θ)s+3(sin θ)n−s−2 − d

s+ 1
(cos θ)s+1(sin θ)n−s. (3.9)

To compute the next nonzero coefficient, we consider the integral (3.3) having
integrand [(n− 1)ξ1(θ) − η(θ)]ξ(θ)η(θ). From (2.3)

ξ(θ)η(θ) =(cos θ)2s+1(sin θ)2n−2s−5

× (A cos6 θ +B cos4 θ sin2 θ + C cos2 θ sin4 θ +D sin6 θ)
(3.10)

where

A = −a(a+ c), B = ac− bc+ c2 − 2ab− ad,

C = bc− b2 + 2cd− bd+ ad, D = (b+ d)d.
(3.11)

Also

(n− 1)ξ1(θ) − η(θ) = (cos θ)s+1(sin θ)n−s−2(A′ cos2 θ +B′ sin2 θ) (3.12)

where

A′ =
as+ cs− cn+ 3a− 2na+ 2c

n− s− 2
, B′ = −bs+ ds+ b+ nd

s+ 1
. (3.13)

Combining (3.10)–(3.13), we finally obtain

[(n− 1)ξ1(θ) − η(θ)]ξ(θ)η(θ) = (cos θ)3s+2(sin θ)3n−3s−7

× (A1 cos8 θ +A2 cos6 θ sin2 θ +A3 cos4 θ sin4 θ +A4 cos2 θ sin6 θ +A5 sin8 θ)
(3.14)

where

A1 = AA′, A2 = A′B +AB′, A3 = A′C +BB′, A4 = A′D +B′C, A5 = B′D.
(3.15)

Integrate (3.14) from 0 to 2π and convert all integrals to

I =

∫ 2π

0

(cos θ)3s+2(sin θ)3n−3s+1 dθ

using (3.6). All explicitly evaluated terms vanish due to periodicity but I is nonzero,
so its coefficient becomes the next Lyapunov coefficient. We have

V 3 =

([(
A1

q1 − 1

p1 + 1
+A2

)
q1 − 3

p1 + 3
+A3

]
q1 − 5

p1 + 5
+A4

)
q1 − 7

p1 + 7
+A5 (3.16)

where q1 = 3s+ 10 and p1 = 3n− 3s− 7. Assuming V 3 = 0, we also obtain

ψ(θ) =

∫
ξ(θ)η(θ)[(n− 1)ξ1(θ) − η(θ)] dθ = (cos θ)3s+3(sin θ)3n−3s−6

× (B1 cos6 θ +B2 cos4 θ sin2 θ +B3 cos2 θ sin4 θ +B4 sin6 θ)

(3.17)

where

B1 =
A1

p1 + 1
, B2 =

1

p1 + 3

(
q1 − 1

p1 + 1
A1 +A2

)
,

B3 = − 1

q1 − 5

(
A4 +

p1 + 7

q1 − 7
A5

)
, B4 = − A5

q1 − 7
.

(3.18)
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The calculation of the next Lyapunov coefficient is similar to that of the previous
two, but it is first necessary to express the condition in a manner in which it can be
fully evaluated. There appears to be no simple way to express the function Ψ, but
an integration by parts removes the necessity to do so. We can replace the current
integral with∫ 2π

0

[2((n− 1)ξ(θ) − η′(θ))[(n− 1)ξ1(θ) − η(θ)] − (n− 1)ξ(θ)η(θ)]ψ(θ) dθ

where ψ is given by (3.17). All component functions have already been evaluated
and it is a straightforward matter to express the nonvanishing portion of the integral
in terms of a single integral. We obtain

V 5 =

(
T
q2 − 9

p2 + 9
+G6

)
q2 − 11

p2 + 11
+G7 (3.19)

where

T =

([(
G1

q2 − 1

p2 + 1
+G2

)
q2 − 3

p2 + 3
+G3

]
q2 − 5

p2 + 5
+G4

)
q2 − 7

p2 + 7
+G5.

In these q2 = 5s+ 16 and p2 = 5n− 5s− 11. Also

G1 = B1F1, G2 = B2F1 +B1F2, G3 = B3F1 +B2F2 +B1F3,

G4 = B4F1 +B3F2 +B2F3 +B1F4, G5 = B4F2 +B3F3 +B2F4,

G6 = B4F3 +B3F4, G7 = B4F4

where the Bk’s are given by (3.18) and

F1 = 2(n− s− 2)(A′)2 − (n− 1)A,

F2 = 2
(
2(n− s− 1)A′B′ − (s+ 3)(A′)2

)
− (n− 1)B,

F3 = −2
(
2(s+ 2)A′B′ − (n− s)(B′)2

)
− (n− 1)C,

F4 = −2(s+ 1)(B′)2 − (n− 1)D.

A, . . . ,D are given by (3.11) and A′, B′ by (3.13).
In Section 5 we calculate a form of the next coefficient V 7 which is specifically

related to the systems given in Theorem 2.1 and show that it does vanish for these
cases. In the next Section we consider the ideal generated by V 1, V 3, V 5 and obtain
a Gröbner basis for it.

4. Determination of Possible Centre Conditions

We consider the ideal V =<V 1, V 3, V 5, . . .> generated by the sequence of Lya-
punov coefficients arising from the system (1.2) and the ideal V =<V 1, V 3, V 5>
generated by (3.8), (3.16), (3.19). By Hilbert’s basis theorem, it is known that V
has a finite number of generators, but it is not possible to say ab initio how many
are required. In the following we show that the generators of V also generate V.
All computations in this Section and throughout the paper were carried out using
Maple 13.
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A necessary condition that (1.2) has a centre at the origin is that the first three
nonzero Lyapunov coefficients should vanish. The forms V 3, V 5 are not particularly
amenable to this purpose, so we used the Groebner package of Maple to obtain
a basis for V. This results in a surprisingly simple form for the basis elements.
Denoting the ideal of generators by B =<B1, B2, B3>, we find

B1 =(s+ 1)(s+ 3)a+ (s+ 1)(n− s− 2)b

− (s+ 1)(n− s− 2)c− (n− s)(n− s− 2)d,

B2 =[(s+ 1)b− (n− s)d]

× [(s2 − 1)b− (s+ 1)(3s+ 5)c+ 4(s2 + 3s− ns− 2n+ 3)d]

× [(s+ 1)b− (s+ 1)c− (n− 2s− 3)d],

B3 =[(s+ 1)(s+ 3)c+ (ns+ 5n− s2 − 5s− 8)d]

× [(s+ 1)2c+ (ns+ 2n− s2 − 3s− 3)d][(s+ 1)c+ (n− s− 2)d]

× [(s+ 1)b− (n− s)d][(s+ 1)b− (s+ 1)c− (n− 2s− 3)d].

(4.1)

Potential centre conditions are now found by solving the system B1 = B2 =
B3 = 0 for a, b, c, d. We obtain

a =
n− s− 2

s+ 3
c, b =

n− s

s+ 1
d; (4.2)

a =
n− s− 2

s+ 1
d, b = c+

n− 2s− 3

s+ 1
d; (4.3)

a =
(n− s− 2)2

ns+ 2n− s2 − 3s− 3
c, b = −c, d = − (s+ 1)2

ns+ 2n− s2 − 3s− 3
c; (4.4)

a =
n− s

s− 1
c, b = −ns+ 3n− s2 − s− 2

(s− 1)(n− s− 2)
c, d = − s+ 1

n− s− 2
c; (4.5)

a =
(n− s− 2)(n− s− 4)

ns+ 5n− s2 − 5s− 8
c, b = − (s+ 1)(n− s− 4)

ns+ 5n− s2 − 5s− 8
c,

d = − (s+ 1)(s+ 3)

ns+ 5n− s2 − 5s− 8
c.

(4.6)

In these c is arbitrary and d is arbitrary as well in (4.2) and (4.3). Solution (4.2)
leads to Hamiltonian systems for (1.2) and (4.3) gives constant invariant forms, so
these define centre conditions. The remaining solutions are those of interest, and of
these, (4.6) is a variant of (4.5) obtained by replacing s by n− s− 3. This produces
the same system as (4.5) but rotated through 90◦, so we do not include it in the
statement of Theorem 2.1. If s = (n − 3)/2, (4.4) reduces to a particular case of
(4.2).

The nature of the problem being considered requires that n and s be non–
negative integers, however (4.2)–(4.6) are defined for almost all values of the vari-
ables and the more general choices will still cause the expressions for the Lyapunov
coefficients to vanish. That is to say, the vanishing of these coefficients produces an
identity in n and s which holds for all values of the variables except those for which
a, b, d fail to be defined. This observation is key to establishing the sufficiency of
the conditions (4.4)–(4.6). For future reference we also include the solution of the
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system B1 = B2 = 0. In addition to (4.2) and (4.3) this also gives

a = −2(n− s− 2)

s− 1
c− (3n− 3s− 4)(n− s− 2)

s2 − 1
d,

b =
3s+ 5

s− 1
c+

4(ns− 3s− s2 + 2n− 3)

s2 − 1
d.

(4.7)

5. Sufficiency of Conditions

In this Section we consider the sufficiency of the conditions given by (4.4)–(4.6).
That is, we want to show that V k is in B for all odd values k ≥ 1. We have already
indicated that this must be true for (4.2) and (4.3) as well as for certain cases of
the other solutions. In general we have

V k = b
(1)
k B1 + b

(2)
k B2 + b

(3)
k B3 + Rk (5.1)

where the Bk’s are given by (4.1) and Rk is a remainder term which could include
one or more previously undetermined generators of the ideal V.

We want to show that Rk = 0 for each of the proposed centre conditions. In
order to do this it is convenient to consider the ideal V ∗

=<B1,B2>. The only
centres defined in V ∗

are given by (4.2) and (4.3), so in order to obtain any one of
(4.4)–(4.6) it is necessary to impose an additional condition. This can always be
expressed in the form d = α(n, s)c and results in the vanishing of B3.

The ideal V ∗
admits a prime decomposition in terms of IA =<A1,A2>, IB =

<B1,B2> and IC =<C1, C2> where

A1 = −(s+ 1)b+ (n− s)d,

A2 = (s+ 3)a− (n− s− 2)c,

B1 = −(s+ 1)b+ (s+ 1)c+ (n− 2s− 3)d,

B2 = (s+ 1)a− (n− s− 2)d,

C1 = (s+ 1)(3s+ 5)a+ 2(s+ 1)(n− s− 2)b+ (n− s− 2)(n− s− 4)d,

C2 = −(s2 − 1)b+ (s+ 1)(3s+ 5)c+ (4(n− 3)s− 4s2 + 8n− 12)d.

(5.2)

For general values of the parameters a, b, c, d these have the property that IA
vanishes only for (4.2), IB vanishes only for (4.3) and IC vanishes only for (4.4)–
(4.6). However, if we allow certain relations to be defined between the parameters
c and d, there are two centre conditions which are defined in a dual fashion. One
of these is defined for IA, IC and the other for IB, IC and they provide some useful
information regarding the structure of the Lyapunov coefficients.

Since the centres defined by (4.2) and (4.3) can be obtained by solving B1 =
B2 = 0, it follows that we can write (5.1) as

V k = α
(1)
k A1 + α

(2)
k A2 = β

(1)
k B1 + β

(2)
k B2

= γ
(1)
k C1 + γ

(2)
k C2 + R

(C)
k

(5.3)

where none of the coefficient functions α
(1)
k , . . . , γ

(2)
k vanish for any centre condition.

The reduction of V k modulo IC results in R
(C)
k being expressed in terms of c and d.
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One advantage of this is that whenever any one of (4.2), (4.3) or (4.7) is substituted

into R
(C)
k its value remains unchanged. Also, from (4.1) and (5.2) we have

B1 = −(n− s− 2)A1 + (s+ 1)A2 = −(n− s− 2)B1 + (s+ 3)B2

=
s+ 3

3s+ 5
C1 −

n− s− 2

3s+ 5
C2.

(5.4)

Substituting the non-centre conditions (4.7) into C1 and C2 causes them to vanish
and (5.3) becomes

Ṽ k = (α̃
(1)
k +Aα̃

(2)
k )Ã1 = (β̃

(1)
k +Bβ̃

(2)
k )B̃1 = R

(C)
k

where the tildes indicate the transformed values due to the substitution. Since
Ṽ k ̸= 0 for k ≥ 5 we see that R

(C)
k is also nonzero. The substitution means that

B1 = 0 and from (5.4) we have Ã2/Ã1 = A = (n − s − 2)/(s + 1), B̃2/B̃1 = B =
(n− s− 2)/(s+ 3) where

Ã1 = − (s+ 1)(3s+ 5)

s− 1
c− (s+ 3)(3n− 3s− 4)

s− 1
d,

B̃1 = −2
(s+ 1)(s+ 3)

s− 1
c− (s+ 3)(3n− 2s− 5)

s− 1
d.

(5.5)

We can make either Ã1 or B̃1 vanish by imposing conditions of the form d = β1c, d =
β2c respectively where

β1 = − (s+ 1)(3s+ 5)

(s+ 3)(3n− 3s− 4)
, β2 = −2

s+ 1

3n− 2s− 5
. (5.6)

These conditions define the dually defined centres mentioned earlier. The conditions
given by (5.6) are similar to those defined in (4.4)–(4.6) where we have respective
values

α1 = − (s+ 1)2

ns+ 2n− s2 − 3s− 3
, α2 = − s+ 1

n− s− 2
, α3 = − (s+ 1)(s+ 3)

ns+ 5n− s2 − 5s− 8
(5.7)

for substitutions of the form d = αc.
The remainder R

(C)
k is a homogeneous polynomial of degree k in c and d. So if

we make a substitution of the form d = αc, we can write R
(C)
k

∣∣
d=αc

= R̃
(C)
k (α) =

Qk(α)ck where Qk is a polynomial of degree k in α which must vanish for any centre
condition arising from (4.7). In particular this must be true for the conditions
defined by (5.5), (5.6). Also, Qk+2 is a polynomial which has a degree that is 2
greater than the degree of Qk, so there are always two more values of α for which

R̃
(C)
k+2 vanishes but R̃

(C)
k does not. Since they cannot represent centre conditions,

these additional values do not interest us. In general we have

Q5+j(α) = qj(α)(α− β1)(α− β2)(α− α
(j)
1 )(α− α

(j)
2 )(α− α

(j)
3 ) (5.8)

for j = 0, 2, 4, . . . where qj is a polynomial of degree j. We have extended the
results in [1] to show that a condition for the seventh Lyapunov coefficient to be
zero can be expressed (after many rearrangements and integrations by parts) as∫ 2π

0

[
(n− 1)λ(θ)Φ(θ) + 2 ξ(θ)η(θ)Λ5(θ)

]
dθ = 0
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where Φ(θ) = 9 Λ2(θ)Ψ2(θ) + ψ2(θ) − (n − 1)Ψ3(θ), Λ(θ) = (n − 1)ξ1(θ) − η(θ)
and λ(θ) = Λ′(θ). The evaluation of the function Ψ defined in (3.5) requires a
general sum and although it is possible to rewrite the integral in such a manner
that Ψ appears only to the first power, we have been unable to eliminate the sum
entirely. When the integral is evaluated it gives the expected form Q7(α) = (a2α

2 +
a1α+ a0)(α− β1)(α− β2)(α− α1)(α− α2)(α− α3) where the coefficients a2, a1, a0
depend upon seven 3F2 hypergeometric functions of unit argument. We had hoped
to give the explicit form for our q2, but the expression is too large to reproduce
in a reasonable fashion. A secondary issue which we do not consider here is the
possibility of summing the hypergeometrics which are not well–poised. Since q2 has
just three coefficients, there are certainly relations (quite complicated) amongst the
hypergeometrics which would reduce the number which appear. These relations do
not seem to be of the form defined by the usual contiguous relations but perhaps
can be reduced to such. One of the hypergeometrics is

3F2

([
− s, n− s+ 1, 7n2 − 7s

2

]
,
[
n− s+ 2, 7n2 − s+ 9

2 ]; 1
)

with the others having similar forms.

For j = 0, 2 and i = 1, 2, 3 we can take {α(j)
i } = {αi} and we need to establish

that the same relation holds for all values of j. In addition to the two known cases,
we have shown by direct calculation that this is true in every case n = 5, . . . , 25, s =
0, 2, . . . , n−3 for j = 4, 6, . . . , 20 and also for n = 27, . . . , 61, s = 0, 2, . . . , n−3 for
j = 4, 6. It is difficult to carry out the symbolic calculations much beyond this point
because the expressions being calculated become very large and Maple ultimately
returns the error message “object too large.”

The system (1.2) with a and b given by (4.7) and d = α, c = 1 has (5.8) for
j = 0, 2, 4, . . . as its general Lyapunov coefficient. This reduced system always has
two centres corresponding to the choices α = β1, β2 and a third possible centre for
a specific choice α = αi, i = 1, 2, 3. Since each of these conditions depends upon
n and s, we suppose that Q5+j = Q5+j(n, s) (clearly the Lyapunov coefficients are
functions of n and s) and note that each individual term can be expressed in a

similar fashion. In the following we make the obvious association of α
(j)
i with αi

for each i wherever it occurs. We are now in a position to proceed with the proof
of Theorem 2.1.

Proof of Theorem 2.1. The necessity of the conditions of Theorem 2.1 are
provided by equations (4.4)–(4.6) and we can now also show that these are sufficient
as well.

Set Qi,j(n, s) = α(n, s) − α
(j)
i (n, s) for each j = 0, 2, 4, . . . and i = 1, 2, 3 and

note that Qi,j(n, s) = 0 defines an identity in n and s which is satisfied for arbitrary
values of the variables. Hence it follows that if Qi,j(n, s) = 0 for any fixed values of
n and s then Qi,j(n, s+ σ) = 0 for any even integer σ such that 0 ≤ s+ σ ≤ n− 3.
(We note that all of our general results clearly exhibit this behaviour.) For i = 1, 2;

all n; and each j we have α
(j)
i (n, 0) = αi(n, 0) since these systems define centres and

a similar result holds for α3 with α
(j)
3 (n, n−3) = α3(n, n−3). So for i = 1, 2 we have

Qi,j(n, 0) = 0 and this gives Qi,j(n, σ) = 0 = α(n, σ)−αi(n, σ). The general result
then follows because the remaining system (4.6) depending on α3 is essentially the
same as (4.5). In addition to the preceding, we note that we can uniquely invert
the equations (5.7) defining α1, α2 on the region n ≥ 3, 0 ≤ s ≤ n− 3 and express
Q5+j as a function of α1, α2. This further shows that if either of these roots ever
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appears in (5.8) for some j, it must appear in full form and not some modified (e.g.
s = 0 ) form.

Remark 5.1. Denote the set of general systems (4.4)–(4.6) by Sn,s. Then we can see
that, ultimately, the reason the Sn,s systems are centres is because the corresponding
S3,0 systems are centres. For if Qi,j(n, s) = 0 for any fixed values n and s, then
Qi,j(n+ν, s+σ) = 0 for all values n+ν and s+σ for which the expressions (5.7) are
defined. Since Qi,j vanishes in the n = 3 case, it must vanish for all other cases as
well. From this point of view the Sn,s systems can be considered as a consequence (at
least with respect to the vanishing of the Lyapunov coefficients) of the S3,0 systems.
This relationship is only evident when we consider the trigonometric form for the
Lyapunov coefficients and we might well ask if there are other systems which behave
in a similar manner. In the following we give a probable extension of (2.5) which has
a similar format, although we have been unable thus far to compute the necessary
Lyapunov coefficients for it. There do seem to be other systems similar in form to
those discussed in this paper which are valid for odd integers n ≥ 5. Specifically,
we believe that there are systems satisfying p(x, y) = p(x,−y), q(x,−y) = −q(x, y)
and having length (n + 1)/2 (i.e. number of terms) which originate for each odd
integer n. This is certainly true for n = 3, 5 and it may also be true for n = 7, but
for this latter case we have thus far obtained only a single system. This particular
system, for which a specific choice of parameters gives p(x, y) = 27x7 − 347x5y2 +
161x3y4−33xy6, q(x, y) = 27x6y−739x4y3+553x2y5−33 y7, has several properties
in common with one of our known three term systems, however its general form is
more complex than any of the two or three term systems known to us. This could
mean that the system does not belong to such a family or (and we believe this more
likely) it could simply be the result of extending this idea to larger values of n.
The first one hundred fifty Lyapunov coefficients for the given system are zero, so
it probably is a centre. However, for this along with the other general systems we
have mentioned, no general proof of their centre nature is yet available. We do not
know of any systems of this type for even values of n ≥ 4, primarily because of the
need to calculate Lyapunov coefficients having twice the degree of a system having
similar form for n odd. Also, any systems of the form (1.2) are always symmetric
if n is even, regardless of the parity of s, so we would require a different form than
this as a generator.

Remark 5.2. In the Introduction we mentioned the conjecture [15] that all elemen-
tary centres are integrable in some form or are rationally (algebraically) reversible.
For the Sn,s systems described in Theorem 2.1 we have not found any evidence of
general integrability, except for the specific cases mentioned, and neither have we
been able to establish that they are rationally reversible. It would be very inter-
esting from the point of view of solving a related Abel differential equation [12] if
these systems could be shown to be integrable, but we doubt that this is true and
we also do not believe they are reversible, although an exhaustive study of either of
these possibilities has not been undertaken. Their centre nature derives from the
fact that using a trigonometric form, they generate Lyapunov coefficients having
similar functional form to that of the defining (and integrable) S3,0 systems. Based
on these considerations, we believe that the conjecture is probably not true.

There is extensive computational evidence that the system (2.5) can be gener-
alized. Our investigation using specific odd values of n with three term systems led
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us to the conclusion that a more complete form of the system can be written as

p(x, y) =A(n− s− 2)2xs+3yn−s−3 +B(n− s− 2)xs+2yn−s−2

−A[(n− 3)s− s2 + 2n− 3]xs+1yn−s−1,

q(x, y) =A[(n− 3)s− s2 + 2n− 3]xs+2yn−s−2

+B(s+ 1)xs+1yn−s−1 −A(s+ 1)2xsyn−s

(5.9)

where A, B are arbitrary parameters and n ≥ 2. Since this system was developed
by considering only odd values of n, it is somewhat surprising that it is also valid
for n even. If n is odd, we again have s = 0, 2, . . . , n− 3, but if n is even any value
s = −1, 0, . . . , n − 2 is allowed. The basic form of the defining system would have
six parameters, one of which can be removed by scaling, so to establish this form
we believe we would have to show that the first five nonzero Lyapunov coefficients
would vanish. Since the parity conditions found in (1.2) do not hold for a general
system of the form (5.9), these would be given by the trigonometric integrals in
(3.1)–(3.5) for odd values of n. At this time we have shown that the first three of
these are zero, however the inclusion of the additional terms (B ̸= 0) makes their
calculation much more difficult. For example, there is no simple counterpart for ξ1
given by (3.9). The problem for n even seems completely out of reach as it would
require calculation of Lyapunov coefficients up to degree 10 (i.e. Vα10). On the
other hand, we believe this system is valid and that its validity suggests some type
of regularity between the Lyapunov coefficients for systems of odd or even degree.
We state the extended result as a conjecture because we have not actually shown
that the required Lyapunov coefficients are zero, although the many calculations
carried out with specific values strongly suggest that this is true.

Conjecture 5.1. The system (5.9) is a centre of (1.1) for the indicated values of
n and s.

For fixed values of A and B it is obvious that the system’s Lyapunov coefficients
satisfy Vαk

= Vαk
(n, s). Since the n = 2 and n = 3 cases are centres, the same

argument as used above would show that all other cases must be centres as well.
Also, the s = 0 case is integrable for each n. An integrating factor for it using a
different parametrization is given in [12]. The system (2.6) can also be extended,
but in a somewhat different fashion. We will discuss this and several other related
systems in another work.

6. Another General System

The simple system (1.1) with p(x, y) = axn, q(x, y) = byn was considered in [7,
Proposition 5.2]. There it was suggested that a necessary (and sufficient) condition
that the origin be a centre for even values of n satisfying 2 ≤ n ≤ 100 is that
ab(a2−b2) = 0. In the following we show that this is both a necessary and sufficient
condition for a centre for all even values of n. We felt that some of the methodology
used in this paper would lead naturally into a discussion of this problem, however
we were somewhat surprised at the extensive calculations required to produce the
final result. In the following we assume that n is even which means that all Vαk

= 0
if k is odd.
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From (2.2) we have

ξ(θ) = b(sin θ)n+1 − a(cos θ)n+1, η(θ) = a sin θ(cos θ)n + b cos θ(sin θ)n

and

ξ1(θ) = −
n/2∑
k=0

(−1)k

2k + 1

(
n/2

k

)(
b(cos θ)2k+1 + a(sin θ)2k+1

)
.

It is interesting to note the relation ξ′(θ) = (n+1)η(θ) which can be used to simplify
some of the calculations. Thus

Ψ(θ) =

∫
ξ(θ)η(θ) dθ =

1

n+ 1

∫
ξ(θ)ξ′(θ) dθ =

1

2(n+ 1)
ξ2(θ)

=
1

2(n+ 1)

(
a2(cos θ)2n+2 + b2(sin θ)2n+2

)
− ab

n+ 1
(sin θ)n+1(cos θ)n+1

from which we can see from (3.2) that Vα2 = 0 regardless of the parity of n. So the
first nonzero Lyapunov coefficient is given by (3.4). In order to avoid the squaring
of sums, we perform an integration by parts and consider the integral

− 2

∫ 2π

0

[(n− 1)ξ1(θ) − η(θ)][(n− 1)ξ(θ) − η′(θ)]Ψ(θ) dθ. (6.1)

To calculate the coefficient we determine the even part of this integral. This consists
of terms of the form (cos θ)α(sin θ)β where α, β are nonnegative integers such that
β is even. In this case we have

Iα,β = Iβ,α =

∫ 2π

0

(cos θ)α(sin θ)β dθ = 4

∫ π
2

0

(cos θ)α(sin θ)β dθ

= 2B

(
α+ 1

2
,
β + 1

2

)
= 2

Γ
(
α+1
2

)
Γ
(

β+1
2

)
Γ
(

α+β
2 + 1

) .

(This is the same method that was used to evaluate Q7 in the previous Section.)
Evaluating (6.1), we obtain the form Vα4 = Knπab(a

2 − b2) where

Knπ = − n(n− 1)

n+ 1

n/2∑
k=0

(−1)k

2k + 1

(
n/2

k

)
I3n+2k+4,0

+
n(n− 1)

n+ 1

n/2∑
k=0

(−1)k

2k + 1

(
n/2

k

)
I3n+2k+2,2

− n(n− 1)

n+ 1

n/2∑
k=0

(−1)k

2k + 1

(
n/2

k

)
(2In+2k+4,2n + In+2k,2n+4 − 3In+2k+2,2n+2)

− 2n

n+ 1
(I3n+4,n − 2I3n+2,n+2 + I3n,n+4) .

(6.2)

The first term (involving I3n+2k+4,0) is the only one which does not tend to zero as
n→ ∞. Denoting this by S1 (including sign) and the others in order by S2, S3 and
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S4 where S4 does not involve a summation, we can write Vα4 = (S1 + S2 + S3 +
S4)ab(a2 − b2).

Each of the sums in (6.2) can be evaluated in terms of hypergeometric functions.
Since S1 is the dominant sum, we demonstrate using it. Converting the terms being
summed to Gamma functions, we find that the ratio of consecutive terms is

ak+1

ak
= −2k + 1

2k + 3

(
n
2 − k

) (
3n
2 + k + 5

2

)(
3n
2 + k + 3

)
(k + 1)

=

(
k + 1

2

) (
k − n

2

) (
k + 3n

2 + 5
2

)(
k + 3

2

) (
k + 3n

2 + 3
)

(k + 1)
.

Since this is a rational function of k, it leads to a hypergeometric function 3F2

having upper parameters 1/2, −n/2, 3n/2 + 5/2, lower parameters 3/2, 3n/2 + 3
and which is evaluated at 1. Normalizing so that the leading term in the sum is 1,
we obtain

S1 = −2n(n− 1)
√
π

n+ 1

Γ
(
3n
2 + 5

2

)
Γ
(
3n
2 + 3

) 3F2

([
1
2 ,−

n
2 ,

3n
2 + 5

2

]
,
[
3
2 ,

3n
2 + 3

]
; 1

)
and the remaining sums can be evaluated in a similar fashion.

The initial values of Kn are K2 = −1/4, K4 = −125/256, K6 = −84057/131072
and we note that they agree exactly with those obtained by direct calculation of
Vα4 . They also have the same numerator values as those given in [7]. Using (6.2)
we have shown by direct evaluation that Kn < 0 for n ≤ 10000 with the sign
remaining constant due to the dominance of S1. By this point asymptotic forms of
the expression are valid. After some work, we can show that

3F2

([
1
2 ,−

n
2 ,

3n
2 + 5

2

]
,
[
3
2 ,

3n
2 + 3

]
; 1

)
∼

√
π

2n
+ O

(
1

n3/2

)
as n→ ∞.

Also, from the standard asymptotic for Γ functions, Γ(x + a)/Γ(x + b) ∼ xa−b +
O(xa−b−1) as x→ ∞, we have

Γ(3n
2 + 5

2 )

Γ(3n
2 + 3)

∼
√

2

3n
+ O

(
1

n3/2

)
as n→ ∞.

Combining these results, we find that

S1 ∼ − 2π√
3

+ O

(
1

n

)
as n→ ∞,

a result which is well supported numerically. The remaining Sk tend to zero with
S3, S4 being pretty well negligible by n = 20. Thus Kn ∼ −2/

√
3 = −1.1547005 . . .

as n→ ∞. The exact value of Kn for n = 10000 is −1.1543157 . . . which is in good
agreement with both the asymptotic value and the order estimate. Hence it follows
that Kn ̸= 0 for any n.

If a = 0, b ̸= 0 then ξ is odd and η is even. These conditions give symmetric
centres since the solution r(θ) of (2.1) is an even function of θ and the phase
portrait has the x–axis as a line of symmetry. If a ̸= 0, b = 0 the transformation
θ → θ+π/2 will produce a new system which again has symmetry about the x–axis.
If b = ±a ̸= 0, then respective transformations of the form θ → θ±π/4 will make ξ
odd and η even and these are symmetric centres as well. This leads to the following.
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Proposition 6.1. Let n ≥ 2 be an even integer and p(x, y) = axn, q(x, y) = byn

for constants a, b. If ab(a2 − b2) ̸= 0, then the origin for the system (1.1) is a fine
focus of order N = 4n− 3. A necessary and sufficient condition for the origin to be
a centre is ab(a2 − b2) = 0.

The system has at most one independent parameter and as we have seen, the
vanishing of one nonzero Lyapunov coefficient is sufficient to ensure that all Lya-
punov coefficients will be zero.

7. Final Comments

One of the most difficult tasks in proving that a proposed set of conditions yields a
centre for a general system of the type (1.1) is that of establishing the sufficiency of
the conditions. If the system possesses an analytic solution or an analytic, nonzero
integrating factor on a neighborhood of the origin, the origin will be a centre. Other
possibilities include symmetry in the system itself or in a related equation such as
(2.4) or systems which are rationally or algebraically reversible. But if we cannot
place the system within one of these or several other known categories, the problem
remains.

In the proof of the homogeneous n = 2, 3 cases, the centre conditions are clas-
sified according to several irreducible components. One of these is the Hamiltonian
component and another is the Sibiriskii or symmetric component. It is general-
ly accepted (see [10]) that these two components always form irreducible parts of
the centre stratum for a given n. The systems discussed here do not contain any
elements of the symmetric component, but they do contain a portion of the Hamil-
tonian component. We observe that the systems defined by (2.5) are Hamiltonian if
s = (n−3)/2, otherwise they are not. That is, they span more than one irreducible
component of the centre stratum. We believe this leads to obvious questions about
how many of the individual irreducible components are actually involved. There
has been some interesting probalistic work [9] done on various systems and this
correctly predicts the classification of irreducible components for the homogeneous
n = 2, 3 cases. It would be interesting to apply this technique to (1.1) for other
values of n in conjunction with the systems discussed herein to see if it is possible
to obtain a better understanding of the breakdown of irreducible components for
these systems.

In [8] the author obtained a relation involving the Lyapunov coefficients of a
system by expressing a specific set of Lyapunov coefficients in terms of the basis of
generators formed by the parameters of the system. In terms of the results in this
paper, this can be put in the form

(detM)V k = αkB1 + βkB2 + γkB3

where detM is the determinant of a particular matrix and αk, βk, γk are homo-
geneous polynomials of degree k + 6, k + 4, k + 2 respectively. For the systems
considered in this paper we have detM = λB3 where λ is a homogeneous poly-
nomial of degree 2 which does not vanish at any centre condition. An expression
of this form is always possible and the author poses the question as to whether or
not it can be used to obtain a desired result for the Lyapunov coefficients, namely
expressing them in terms of a particular set of generators. The answer, with re-
gards to the results in this paper, is that it cannot be used in such a manner. Its
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application leads, after some time, to a rather trivial identity. The main problem is
that detM is in B (a general condition of this type is always true) and regardless of
what polynomial in a, b, c, d it multiplies, (detM)V k is always in B. So, in order
to analyze the expression more fully, we need to know something of the behaviour
of the coefficient functions αk, βk, γk which is not possible for general values of k.
In particular, we would have to show that each of these coefficients is in B as well.

References

[1] M. Briskin, J.-P. Francoise and Y. Yomdin, Center conditions, compositions
of polynomials and moments on algebraic curves, Ergod. Th. & Dynam. Sys.,
19(1999), 1201-1220.

[2] J. Chavarriga, A class of integrable polynomial vector fields, Appl. Math. (War-
saw), 23(1995), 339-350.

[3] L. Cherkas, Number of limit cycles of an autonomous second–order system,
Differ. Uravn., 12(1976), 944-946.

[4] C. Christopher and J. Llibre, Algebraic aspects of integrability for polynomial
systems, Qualit. Theory Dynam. Systems, 1(1999), 71-95.

[5] C. Christopher and D. Schlomiuk, On algebraic methods for producing centers
in polynomial differential systems, J. Fixed Point Theory Appl., 3(2008), 331-
351.

[6] J. Devlin, N. G. Lloyd and J. M. Pearson, Cubic systems and Abel equations,
J. Differential Equations, 147(1998), 435-454.

[7] A. Gasull and J. Torregrosa, A new approach to the computation of the Lya-
punov constants, Comput. Appl. Math., 20(2001), 1-29.
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