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IMPROVING THE COMPLEXITY OF
CHAOTIC SEQUENCE BASED ON THE PCA

ALGORITHM

Wei Xu1, Qun Ding2,† and Xiaogang Zhang3

Abstract The principal component analysis (PCA) is an effective statisti-
cal analysis method in statistical data analysis, feature extraction and data
compression. The method simplifies multiple related variables into a linear
combination of several irrelevant variables, through the less-comprehensive
index as far as possible to replace many of the original data, and can reflect
the information provided by the original data. This paper studies the signal
feature extraction algorithm based on PCA, and extracts sequences’ feature
which generated by Logistic mapping. Then we measured the complexity of
the reconstructed chaotic sequences by the permutation entropy algorithm.
The testing results show that the complexity of the reconstruction sequences
is significantly higher than the original sequences.
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1. Introduction

Chaos, as a classical complex phenomenon of nonlinear dynamic systems, has at-
tracted widespread attention for its broadband, noise-like, and sensitive features.
In recent years, with more research on chaos, chaos has replaced the traditional
pseudo-random sequence in many commercial and spread-spectrum communication
systems [4,10]. The encryption method of a password system based on chaos is sim-
ple, fast, easy to be realized. The relationship between cryptograph, plaintext and
key is very complicated and any change of plaintext or key will cause great changes
in encrypted files, which makes an encryption system has higher security [16].

Chaos of the nonlinear dynamic systems has the geometric and statistical fea-
tures that deterministic movements usually do not have, such as local instability and
overall stability, strange attractor, continuous power spectrum, positive Lyapunov
index, fractal dimension, positive measure entropy, and so on. To sum up, chaos
has the following three main qualitative characteristics [17]: Inherent randomness,
Fractal dimension characteristics, Universality.

The complexity of the data sequences is not only a similarity degree of measure-
ment between chaotic pseudo-random sequence and random sequence, but also a
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complexity degree of measurement by using part of the sequence to recovery the w-
hole. The bigger complexity of a sequence is, the smaller the possibility of recovery
is. Therefore, the complexity of a sequence is an important index to quantify the
performance of chaotic sequences. It is important to study the chaotic complexity.

The researches of complexity have received attention worldwide. Kolmogrov [7]
defined a measure entropy and used it to measure the disordered degree of system
movements. And then Lempel et al. [8] realized the measure entropy method by
computer. Pincus [11] proposed the definition of approximate entropy through
measuring the complexity of time series, and then Bandt et al. [1] proposed a
permutation entropy for measuring time series. Xiao et al. [13] proposed a symbolic
dynamics approach for the complexity analysis of chaotic pseudo-random sequences.
Next, Larrondo et al. [9] proposed an intensive statistical complexity measure to
quantify the performance of chaotic pseudorandom number generators. Chen et
al. [2] proposed a new complexity metric to evaluate the unpredictability of the
chaotic pseudorandom sequences based on the fuzzy entropy.

Kolmogorov-Sinai entropy proposed can measure the complexity of chaotic sys-
tems, but it needs a lot of sample space and heavy computation. The approximate
entropy is a method of quantizing the complexity of time series based on edge
probability distribution statistics. It can accurately calculate the complexity of the
sequences, but the result is influenced by different parameters. The symbolic dy-
namics approach can reduce the degree of dependence on the parameters, but before
we measure the complexity, we must get the size of the symbol space of the initial
sequences, which is very difficult to obtain without priori knowledge in practice.
Permutation entropy is an appropriate complexity measure for chaotic time series,
in particular in the presence of dynamical and observational noise, since the method
is extremely fast. It seems preferable when there are huge data sets and there is no
time for preprocessing and fine-tuning of parameters.

In order to get higher complexity of chaos random sequences, using principal
component analysis algorithm in feature extraction of Logistic chaotic map se-
quences in this paper, we eliminate the signal correlation between each component
to improve the complexity of the sequences. We draw conclusion after calculat-
ing the sequence complexities of the original testing sequences and reconstructing
sequences by permutation entropy algorithm.

2. Principal component analysis

Principal component analysis (PCA) was first proposed by Pearson in 1901. Then,
a large number of papers performed thorough research to it which make its the-
ory gradually perfect [6]. PCA method is a kind of commonly used linear map-
ping method in pattern recognition. It is based on the data signal analysis of the
second-order statistical characteristic. The method simplifies the multiple related
variables into a linear combination of several irrelevant variables, under the prin-
ciple of minimum data information loss, by a linear transformation using abandon
part of information, with a few new variables instead of multidimensional variables,
so as to realize the high-dimensional variable space mapping to a low-dimensional
space [3, 12,15].

At present, there are two common methods on the choice of the number of prin-
cipal components [5]: one is the principal component regression method, another is
a principal component contribution rate cumulative percentage.
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The PCA algorithm is described as follows:
Set X = [x1, x2, ... , xp]

T which is a p-dimensional random vector. If the mean
of X is 0, and the covariance matrix is C, the PCA method is to put the p random
variables integrated into m new variables y1, y2, ..., ym, i.e.

y1 = a11x1 + a12x2 + ...+ a1pxp,
y2 = a21x1 + a22x2 + ...+ a2pxp,
......................................
ym = am1x1 + am2x2 + ...+ ampxp.

(2.1)

Denote it by Y = AX, where

A =


a11 a12 · · · a1p
a21 a22 · · · a2p
· · · · · · · · · · · ·
am1 am2 · · · amp

 =


a′1
a′2
· · ·
a′m

 . (2.2)

The coefficient’s selection principles of transform matrix A are as follows:
1. The y1 and y2 ( i ̸= j, i, j = 1, 2, ...) are unrelated;
2. y1 is the largest variance in the linear combination of x1, x2, ..., xp, even the

a′1X has the maximum variance; y2 has no relation to y1, and is the second largest
variance in the linear combination of x1, x2, ..., xp; . . ., ym is themth largest variance
in the linear combination of x1, x2, ..., xp, and has no relation to the others. The ym
is called the mth principal component of the original random variables x1, x2, ..., xp.

According to the above, we get the new variable y1 by transforming the random
variable X,

V ar(y1) = V ar(a′1X)

= E(a′1X − Ea′1X)(a′1X − Ea′1X)′

= a′1E(X − EX)(X − EX)′a1

= a′1Ca1, (2.3)

where C is the covariance matrix of X.
The method for solving the first principal component y1 is seeking the vector a1

under the condition of a′1a1 = 1, such that

V ar(y1) = V ar(a′1X) = a′1Ca1 (2.4)

is maximum. For the random vector X, set its covariance matrix is C be

Cx = E{(xi − µx)(xi − µx)
T }

=
1

n

n∑
i=1

[(xi − µx)(xi − µx)
T ]. (2.5)

We use cij to denote the component of C which represents the covariance of xi

and xj . The changes of components are the deviation degree to its average. If the
two components xi and xj are uncorrelated, then their covariance is zero, namely
cij = cji = 0.

We suppose the p characteristic values of C are λ1,λ2,. . . ,λp and λ1 ≥ λ2 ≥. . .≥
λp ≥0 (because C is nonnegative), and its corresponding orthonormal characteristic
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vector are u1,u2, . . . ,up. We can see that C is a symmetric matrix according to the
nature of the covariance matrix. We can find its orthogonal basis by calculating its
eigenvalues and eigenvectors. So, there is an orthogonal array U = (u1, u2, ... up),
where ui = (u1i, u2i,..., upi)

T ,

C = U

λ1

. . .

λp

UT =

p∑
i=1

λiuiu
T
i . (2.6)

If the vector α is the unit vector of p dimension, namely α= (α11, α12, ..., α1p)
T ,

then

αTCα =

p∑
i=1

λiα
Tuiu

T
i α

=

p∑
i=1

λi(α
Tui)

2. (2.7)

Because λ1 is the maximum eigenvalue of C , so

αTCα ≤ λ1

p∑
i=1

(αTui)
2

= λ1α
TUUTα

= λ1 (2.8)

i.e.
V ar(a′1X) = a′1Ca1 ≤ λ1. (2.9)

When the vector α = ui,

uT
1 Cu1 = uT

1 (

p∑
i=1

λ1uiu
T
i )u1

= λ1(u
T
1 u1)

2

= λ1. (2.10)

As a result, we select vector α as the corresponding orthonormal characteristic
vector u1 of the largest eigenvalue λ1 of C, which makes the variance of αTX = uT

1 X
be maximum. The maximum value is λ1, thus

y1 = u1X = (u11, u21, ..., up1)

x1

· · ·
xp

 . (2.11)

So, y1 is the first principal component for the random vector X. Similarly, the
other principal components can be calculated in turn, and calculation steps are
shown as follows: for i = 2, 3, ..., p,

V ar(uT
i X) = uT

i Cui

=

p∑
i=1

uT
i λjuju

T
j ui

= λi(u
T
i ui)

2

= λi. (2.12)
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When i ̸= j ,

Cov(uT
i X,uT

j X) = uT
i Cuj

= uT
i (

p∑
k=1

λkuku
T
k )uj

=

p∑
k=1

λk(u
T
i uk)(u

T
k uj)

= 0. (2.13)

We know that uT
2 X is irrelevant to uT

1 X and is biggest variance in all linear
combinations of x1, x2, . . . , xp since λ1 ≥ λ2 ≥. . .≥ λp. Similarly, uT

mX is irrelevant
to uT

1 X, uT
2 X,. . . , uT

m−1X and is the biggest variance in all linear combinations of
x1, x2, . . . , xp. We set

y2 = u2X,
y3 = u3X,

· · ·
yp = upX.

(2.14)

We call yi the ith principal component, and y1, y2, ..., yp are unrelated each
other. In practice, we often not take all principal components, but only take the
first m (m < p) principal components. The selection of m often is according to the
contribution rate which we had set. The contribution rate is given by

g =

m∑
i=1

λi

p∑
i=1

λi

. (2.15)

Here, g is the contribution rate, generally 0.9 or higher.
As a result, the original p variables are converted to m, which can be accurate

enough to describe the original information, where the loss of information is not
much, but we can get rid of overlapping information.

The µ is the average of raw data X. If M is a new matrix containing the
eigenvalues of the covariance matrix of the raw data, and the mean of data and the
covariance matrix had been calculated, then yi can be obtained by

yi = M(xi − µx). (2.16)

This yi is a point in the orthogonal system, defined by the feature vector. The
component y can be seen as a shift of orthogonal basis. According to the properties
of the orthogonal matrix, that is A−1 = AT , the source data x can be reconstruct
by y:

xi = MT (yi + µx). (2.17)

Thus, the original vector x in another axis can be solved by the orthogonal basis.

3. The PE algorithm

PE algorithm is based on the complexity of Kolmogorov, by using the concept of
information entropy, to calculate the complexity of data sequences. The algorithm
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uses multidimensional reconstitution space similarity to measure the complexity of
the entire sequences, and analyze all the similar characteristics of the embedded
dimension [1].

For chaotic sequences, the algorithm is described as follows:
(1) Given a discrete-time sequence of length n, {xi, i = 1, 2, ..., N}, generated

by the system equations iteratedly, reconstruct a phase space to {xi}, and get the
sequence of reconstruction:

X(i) = [x(i), x(i+ τ), ..., x(i+ (p− 1)τ)], 1 ≤ i ≤ N − p+ 1, (3.1)

where p and τ are embedding dimension and delay time, respectively. Using maxi-
mum overlapping situation here, set τ = 1, that is, move back a data point to each
subsequence to get a child sequence.

(2) The pth reconstructed components [x(i), x(i+ τ), ..., x(i+ (p− 1)τ)] of X(i)
are arranged in ascending order, giving the relation:

[x(i+ j1−1)τ) ≤ x(i+ j2−1)τ) ≤ ... ≤ x(i+ jp−1)τ)], 1 ≤ j ≤ N −p+1. (3.2)

If any two values x(i) of the sequence are equal, according to the size of the j
values to sort, we can get a set of symbol sequences by an arbitrary vector Xi:

A(g) = [j1, j2, ...jp], 1 ≤ g ≤ N − p+ 1. (3.3)

(3) There are p! arrangements for p different symbols, that is, a total of p!
different symbol sequences, in which symbol sequence A(g) is one of them. To
arrange all of the same symbol sequence A(g) as a group, there are a total of k
group different symbol sequences in the N − p + 1 group sequences. The number
of each group of sequences ar Num1, Num2, ..., Numk respectively. Calculate the
probability P1, P2,. . . ,Pk of each symbol sequence:

Pk =
Numk

N − p+ 1
. (3.4)

(4) According to the form of Shannon entropy, the PE of k different symbol
sequences for the time sequence {xi}, i = 1, 2, ..., n, can be defined as:

H(p) = −
k∑

i=1

Pk lnPk. (3.5)

(5) Theoretically, when Pk = 1/p!, H(p) reaches a maximum value of ln(p!) .
Actually H(p) ≤ ln(N − p + 1) according to the literature [8]. For convenience,
standardizing H(p) by using ln(N − p+ 1):

0 ≤ h(p) =
H(p)

ln(N − p+ 1)
≤ 1. (3.6)

The general steps for calculating the PE of a chaotic pseudo-random sequence
are similar to the steps mentioned above. The difference is that the chaotic sequence
should be quantized into a chaotic pseudo-random sequence in the first step (1).
Then, reconstruct the chaotic pseudo-random sequence. In step (2), we don’t need
to sort to the reconstructed sequence, since the size of the chaotic pseudo-random
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sequence itself has a certain relationship, so just need to calculate the number of
the same sequence numbers Numk, and then go directly to step (3).

Obviously, the changes of H(p) reflects the randomicity of the original sequence.
The value of H(p) is smaller means the complexity of the sequences is smaller, and
it works the other way as well. Ref. [13,14] discussed the validity of the calculation
for length N of a sequence and the value of p. If the value of N is too small, it
would lose its statistical significance. Generally, 1000 ≤ N ≤ 10000; 3 ≤ p ≤ 15.
Compared with other algorithms, the PE algorithm has many good characteristics
such as clear conception, quick calculation, etc.

4. Generated chaotic sequences

4.1. The Logistic map

The Logistic map is given by:

xn+1 = µxn(1− xn), 0 ≤ x ≤ 1, 0 < µ ≤ 4. (4.1)

Figure 1 displays the sequence diagram of the Logistic map, where iteration
and initial values respectively are 1024 and 0.3. Figure 2 displays the Lyapunov
exponent’ trend of the Logistic map with the change of parameter µ.

 

Figure 1. Sequence diagram of the Logistic
map

 

Figure 2. Lyapunov exponent of the Logistic
map as a function of parameter µ

We got a sequence with length of 3072 generated by the Logistic map. The
sequence is transformed into a 64× 48 matrix through phase space reconstruction.
Then, we extracted features to the matrix, where the selection of contribution rate
is more than 90% for the first 35 principal components, according to each compo-
nent contribution rate. After that, we reconstructed the sequences. The diagram
of the first 35 principal components contribution rates and the sequence chart of
reconstruct sequence are shown in Figure 3, Figure 4, respectively. We can see from
Figure 4, that the refactoring sequence extracted from the original chaotic sequence
retains the sensitivity and uncertainty of the original sequence.

Next, we test the complexity of the two sequences by using the PE algorithm.
The complexities of the two kinds of sequence test results are shown in Figure 5.

We can see from Figure 5, that the complexity of the reconstructed chaotic
sequence is significantly higher than the original. In the same way, we take the
sequences with lengths of 5000 and 10000 points respectively to test the complexity
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Figure 3. The first 35 principal component
contribution rate

Figure 4. Sequence diagram of the refactoring
sequence

of the original sequence and the sequence of reconstruction. The test results are
shown in Figure 6 and Figure 7, respectively.

Figure 5. The complexity of the two kinds of sequences

We can see from Figure 5, that the complexity of the reconstructed chaotic
sequence is significantly higher than the original. In the same way, we take the
sequences with lengths of 5000 and 10000 points respectively to test the complexity
of the original sequence and the sequence of reconstruction. The test results are
shown in Figure 6 and Figure 7, respectively.

We can see from Figure 6 and Figure 7 that the complexity of the reconstructed
sequence is higher than that of the original chaotic sequence, namely the randomness
of the reconstructed sequence is stronger. It is more suitable to apply chaotic
sequences in information security and secure communications. The main reason is
that the PCA converts multiple variables into a few variables based on statistical
analysis of data. In the study of multivariate data, due to the number of many
variables, which have a certain relationship each other, there exists information
overlap to a certain extent. PCA is through a dimension reduction method to
simplify the data from several variables to find fewer variables, these new variables
as maximum as possible to reflect the information of the original variables, and the
new variables are unrelated to each other.

We finally tested the correlation of the original sequence and the reconstructed
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Figure 6. The complexity of the two kinds of
sequences (5000)

Figure 7. The complexity of the two kinds of
sequences (10000)

sequence, with the test results shown in Figure 8 and Figure 9.

Figure 8. The correlation test of the original
sequence

Figure 9. The correlation test of the recon-
structed sequence

We can see from the graphs that the correlation of reconstructed sequences is
better than the original sequence. It is mainly due to the following three aspects of
the role of PCA for dimension reduction:

(1) After dimension reduction, all of the principal components become orthogo-
nal to each other, which form an orthogonal basis of the data space, and therefore
has no redundant information;

(2) The order of the principal component is according to the variances in de-
scending order, which is always the main component of the maximum variance first
appeared in the resulting sequence;

(3) Small variance contributions in the component of the principal components
were deleted, usually by ignoring components mainly containing noise. The data
dimension reduction is the most important, benefiting noise reduction. Usually,
the first several principal components’ variances will be more than the sum of the
original data with 90% of the total variance, so the PCA can reduce the dimen-
sions of the variables without significant loss of information. After PCA dimension
reduction, multidimensional data will transform from a high-dimension space to a
low-dimension space, which not only reduce the amount of calculation, but also
reveal the original data features.
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5. Conclusion

PCA is an effective method in the statistical analysis of data, and it is widely used
in signal processing and neural network calculation. It is the best transformation in
data compression in the sense of minimum mean square error, decreasing relevance
and highlighting the role of difference. This paper applies a feature extraction algo-
rithm based on PCA to the classic Logistic chaotic map for signal feature extraction,
and apply the PE algorithm to test the complexity of the data sequences. Through
simulation experiment, we can see that by using the PCA to reconstruct the se-
quences, the complexity has been greatly improved. This shows that the refactored
sequence has better randomness, therefore is more suitable for the application of
chaotic sequences in information security and secure communications.

Acknowledgments

This paper is supported by Science and Technology Research Projects of Hei-
longjiang Province Education Department (No.12541647). The Youth Science Foun-
dation of Heilongjiang University (No.QL201305). The Specialized Research Fund
for the Doctoral Program of Higher Education, Ministry of Education (No.20132301-
110004). Innovated Team Project of “Modern Sensing Technology” in Colleges and
Universities of Heilongjiang Province (No.2012TD007).

References

[1] C. Bandt and B. Pompe, Permulation entropy a natural complexity measure
for time series, Physical Review Letters, 88(17)2002, 174102-1-174102-4.

[2] X. Chen, Z. Li and B. Bai, A new complexity metric of chaotic pseudoran-
dom sequences based on fuzzy entropy, Journal of Electronics & Information
Technology, 33(5)(2011), 1198-1203.

[3] A. Chen, Identify some feature extraction method in face recognition research,
[Ph.D. Thesis]. Nanjing: Nanjing University of Science and Technology, 2006.

[4] L. Huang and Q. Yin, A chaos synchronization secure communication sys-
tem based on output control, Journal of Electronics & Information Technology,
31(10)(2009), 2402-2405.

[5] D. Hu, Z. Zhao and Y. Zheng, Based on principal component analysis of sensor
fault detection and diagnosis, Instrumentation Technology, (6)2005, 30-32.

[6] J.E. Jackson, A User’s Guide To Principal Components, New York: John Wi-
ley, 1991.

[7] A N. Kolmogrov, Three approaches to the quantitative definition of informa-
tion, Problem in Information Transmission, 1(1)(1965), 1-7.

[8] A. Lempel and J. Ziv, On the complexity of finite sequences, IEEE Transactions
on Information Theory, 22(1)(1976), 75-81.

[9] H.A. Larrondo, C.M. Gonzalez, M.T. Martin, et al., Intensive statistical com-
plexity measure of pseudorandom number generators, Physica A, 356(2005),
133-138.



272 W. Xu, Q. Ding & X. Zhang

[10] U. Parlitz and S. Ergezinger, Robust communication based chaotic spreading
sequences, Physics Letters A, 188(2)(1994), 146-150.

[11] S.M. Pincus, Approximate entropy as a measure of system complexity, Proc
Natl Acad Sci, 88(1991), 2297-2301.

[12] R. Ren and H. Wang, Multivariate Statistical Data Analysis Theory, Method,
Instance, Beijing: National Defence Industry Press, 1997.

[13] F. Xiao, G. Yan and Y. Han, A symbolic dynamics approach for the complexity
analysis of chaotic pseudorandom sequences, Acta Physica Sinica, 53(9)(2004),
2877-2880.

[14] W. Xu, Q. Ding and X. Zhang, Detection complexity of chaotic sequence, In-
formation Technology Journal, 12(20)(2013), 5487-5491.

[15] S. Yang, D. Wu and H. Su, Control chart is out of control mode based on
PCA and SVM intelligent identification method, Journal of System Simulation,
17(5)2006, 1314-1318.

[16] Y. Zheng, J. Pan, Y. Song, H. Cheng and Q. Ding, Research on the quantifi-
cations of chaotic random number generator, International Journal of Sensor
Networks, 15(1)(2014), 139-143.

[17] G. Zhao and J. Fang, Modern information safety and advances in appli-
cation research of chaos-based security communication, Progress in Physics,
23(2)(2003), 212-252.


