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NEW IDENTIFICATION AND CONTROL
METHODS OF SINE-FUNCTION JULIA SETS∗

Jie Sun1,2, Wei Qiao2,3† and Shutang Liu3

Abstract In this paper, we propose two new methods to realize drive-
response system synchronization control and parameter identification for two
kinds of sine-function Julia sets. By means of these two methods, the zero
asymptotic sliding variables and the stability theory in difference equations
are applied to control the fractal identification. Furthermore, the problem of
synchronization control is solved in the case of a drive system with unknown
parameters, where the unknown parameters of the drive system can be iden-
tified in the asymptotic synchronization process. The results of simulation
examples demonstrate the effectiveness of the new methods.

Keywords Julia set, synchronization, parameter identification.

MSC(2000) 34H05, 93C28.

1. Introduction

The fractals theory which describes fractal properties and corresponding applica-
tions was proposed by Mandelbort [9]. As a forefront nonlinear science theory, the
fractals has successfully explained a lot of nonlinear phenomena (Mandelbrot [10]
and Liu et al. [7]). At present, this theory has a variety of applications in the
meteorology, cancer cell growth, image processing, geography and so on (Wang et
al. [12], Wang et al. [13], Yang et al. [21], Yu and Chen [22], Wang and He [14], Ding
and Jiang [2]). In recent years, researchers have paid much attention to fractal sets
which come from an analytic mapping iteration on the complex plane. The analytic
mapping iteration divides the complex plane into two parts: Fatou set and Julia
set. It has been found that the generalized Mandelbrot-Julia (M-J) sets which enjoy
an important role in the fractals with a fine and complex structure. In 2004 and
2007, Wang et al. [15, 16] studied the application of M-J sets in physics. That is a
typical Langevin problem, i.e. the analysis about the dynamics of a charged particle
which is under the continuous influence of a constant impulse at one-dimensional
discrete-time points in a double-well potential and a time-dependent magnetic field.
Nowadays, the M-J fractal system research is mainly based on a complex mapping
as a representative of the polynomial function f(z, c) = zα + c, c ∈ C, but for a
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non-polynomial function it is rarely studied (Fu et al. [3]). Moreover, many math-
ematicians are interested in properties and dimensions of the polynomial-function
Julia set in theoretical studies (Wu and Chen [17], Wang and Shi [18], Gao [5],
Wang and Sun [19], Ashish et al. [1], Huang and Wang [6]). Importantly, people
often have actual requirements for the non-linear domain-range and parameters of
the fractal collection. For example, some significant achievements about the fractal
synchronous control have been reported (Zhang et al. [23], Liu and Liu [8], Wang
and Liu [20]). It is pointed out that these methods are feasible only in the case of
knowing the drive system parameters. However, the drive system parameters are
usually unknown, so synchronization control of the drive-response system is difficult
to be solved by the existing methods. In this paper, for two kinds of sine-function
Julia sets, we propose two new methods to realize drive-response system synchro-
nization control and parameter identification. By applying the zero-asymptotical
sliding variable discrete control method and the stability theory in difference equa-
tions to sine-function Julia sets, synchronous control of the drive-response system
and parameter identification of the drive system are achieved simultaneously under
the conditions that the drive system has unknown parameters.

2. Design of synchronization controller and param-
eter identifier for sine-function Julia sets

2.1. Preliminaries

A Julia set J(f) is created by the iteration of a complex variable function f , which
is defined to be the closure of the repelling periodic points of f . For the complex
polynomial f , its Julia set has the following properties.

(i) J(f) is nonempty and bounded;

(ii) J(f) is fully invariant, i.e., J(f) = f(J(f)) = f−1(J(f));

(iii) J(f)=J(fp), for any positive integer p;

(iv) If ω is an attractive fixed point of f , then ∂A(ω) = J(f), where A(ω) is the
attractive domain of the attractive fixed point ω. That is, A(ω) = {z ∈ C :
fk(z)→ ω, (k →∞)}, i.e., ω →∞.

From the definition of Julia set and its properties, we can control the trajectory of
iterative points and achieve the objective of controlling Julia set. Now, we consider
two complex systems with the same structure:

xn+1 = f(xn, ai, c), (2.1)

yn+1 = f(yn, ai, cn). (2.2)

We design a controller for system (2.2) in order to correlate with system (2.1), that
is,

yn+1 = f(yn, ai, cn) + un(xn, yn, ai), (2.3)

where ai (i = 1, 2, . . . ) are given complex numbers, and c is an unknown complex
parameter which needs to be identified. Then, system (2.1) is a drive system and
system (2.3) is a response system. The controller un of system (2.3) control drive
system (2.1) and response system (2.3) to achieve asymptotic synchronization. If
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the parameters ai, c, cn are given, their corresponding Julia sets are also identified,
which are written as J∗, Jn respectively. If

lim
n→∞

(Jn ∪ J∗ − Jn ∩ J∗) = ∅ (2.4)

then systems (2.1) and (2.3) can achieve synchronization.
In fact, we know that the orbits of Julia set J(f) and f are closely related,

according to the definition of Julia set. Therefore, we design the following controller
based on Julia sets synchronization as soon as their orbits synchronized. When
n→∞, systems (2.1) and (2.3) gradually synchronize with the same initial iterative
value, in the meantime, the unknown parameter c of system (2.3) is identified, that
is, cn → c.

2.2. Design of synchronous controller and parameter identifier
for sine-function Julia sets

For a class of sine-function Julia sets,

xn+1 = c sin(xn), (2.5)

where c is a complex constant, we discuss the synchronization problem and identi-
fication of parameter c.

We can obtain the Julia set by iterative calculation of the points in a bounded
region using the above property (i). Therefore, suppose, in the bounded region D,
we only consider the iteration of the mid-point of D. Using the above property (ii),
we only need to calculate the points, whose trajectories are all in the D, because if
there is an n0 to make fn0(z) 6∈ D, using the property (ii), we know z 6∈ J .

System (2.5) is the drive system, and the other system with the same structure
of sine-function Julia sets is the response system:

yn+1 = cn sin(yn) + un, (2.6)

where un is the synchronous controller to be designed.
We assume that the drive system and the response system are uncertainty fractal

sets, i.e., the parameter c is unknown. Then, we design an appropriate synchronous
controller for the drive system in the case of the response system with unknown
parameters. Thus, we will realize system (2.5) and system (2.6) completely fully
synchronizing and c is identified at the same time.

We take the error variables between the drive system and the response system
as follows:

e1(n) = xn − yn, (2.7)

e2(n) = cn − c. (2.8)

Next, we design the synchronous controller

un = xn+1 − cn sin(yn) + (k1 − 1)e1(n), (2.9)

where the constant k1 satisfies 0 < k1 < 2. It should be remarked that the controller
un is not a truly real-time controller, which needs to be implemented with one-step



Sine-function Julia sets 223

time delay, namely, the controller needs to be kept for one step by a zero-order-
holder and then takes the actual control action.

We design the parameter identification law

cn+1 = (1− k2)cn + k2xn+1/ sin(xn), (2.10)

where the constant k2 satisfies 0 < k2 < 2.

Lemma 2.1 (Furuta [4]). If σ(n) is a sliding variable of a single-input and single-
output discrete variable structure control system, then the discrete control variable
satisfies

σ(n)∆σ(n) < −1

2
[∆σ(n)]2, σ(n) 6= 0, (2.11)

where ∆σ(n) = σ(n+ 1)−σ(n) and |σ(n+ 1)| < |σ(n)|, in which σ(n) tends to zero
when n→∞.

Theorem 2.1. If the synchronous controller of system (2.6) is described by (2.9)
and its parameter identifier is described by (2.10), then drive system (2.5) and
response system (2.6) with arbitrary initial value can achieve global asymptotic syn-
chronization, and the parameter of sine-function Julia sets can be identified.

Proof. From the previous discussion, if systems (2.5) and (2.6) realize track syn-
chronization, then the Julia sets of systems (2.5) and (2.6) realize global asymptotic
synchronization with arbitrary initial value. We only prove that systems (2.5) and
(2.6) realize track synchronization, that is, |xn − yn| → 0 (n→∞). This is equiva-
lent to that |e1(n)| → 0 (n→∞).

From (2.5)-(2.7), we have

e1(n+ 1)− e1(n) = c sin(xn)− cn sin(yn)− un − xn + yn. (2.12)

Substituting (2.9) into (2.12), we obtain

e1(n+ 1)− e1(n)

=c sin(xn)− cn sin(yn)− xn + yn − (k1 − 1)e1(n) + xn+1 − cn sin(yn)

=− k1e1(n). (2.13)

According to the sliding variable property, we take e1(n) as the sliding variable. If
0 < k1 < 2 is satisfied, then it follows from (2.13) that

e1(n)[e1(n+ 1)− e1(n)] = −k1[e1(n)]2

< −1

2
k2

1[e1(n)]2 = −1

2
[e1(n+ 1)− e1(n)]2. (2.14)

That is,

e1(n)[e1(n+ 1)− e1(n)] < −1

2
[e1(n+ 1)− e1(n)]2. (2.15)

Hence, we have |e1(n+1)| < |e1(n)| according to Lemma 2.1, that is, |e1(n)| → 0 as
n → ∞. So, Julia sets of systems (2.5) and (2.6) have achieved global asymptotic
synchronization with arbitrary initial value.

Similarly, according to the sliding variable property and (2.10), if e2(n) is the
sliding variable and 0 < k2 < 2, we get

cn+1 − cn = cn+1 − c− (cn − c)
= e2(n+ 1)− e2(n)

= −k2e2(n). (2.16)
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If 0 < k2 < 2 is satisfied, then it follows from (2.16) that

e2(n)[e2(n+ 1)− e2(n)] = −k2[e2(n)]2

< −1

2
k2

2[e2(n)]2 = −1

2
[e2(n+ 1)− e2(n)]2. (2.17)

That is,

e2(n)[e2(n+ 1)− e2(n)] < −1

2
[e2(n+ 1)− e2(n)]2. (2.18)

According to the Lemma 2.1, we obtain |e2(n + 1)| < |e2(n)|, i.e., |e2(n)| → 0. It
ensures that cn asymptotically tends to the actual value of c as n→∞.

Example 2.1. Let c = i, c0 = 0.6 for drive system (2.5) and response system
(2.6). After n steps, the Julia sets of drive system (2.5) and response system (2.6)
are shown in Figure 1, where k1 = 1.8, k2 = 1.5.

(a) (b) (c)

(d) (e) (f)

Figure 1. The Julia sets of response system (2.6) after (a) 5 steps, (b) 20 steps, (c) 50 steps, (e) 80
steps, and the Julia sets of drive system (2.5) after (d) 50 steps, (f) 80 steps, where k1 = 1.8, k2 = 1.5.

The figures show that response system (2.6) synchronizes drive system (2.5) after
50 steps. Moreover, response system (2.6) keeps synchronous with drive system (2.5)
after 80 steps. Besides, the identification process of cn in response system (2.6) and
|e1(n)| changing with n are shown in Figure 2.

From the simulation results, in the iterative process the real and imaginary
parts of cn are stable at 0 and 1 and the synchronization error |e1(n)| tends to zero.
Hence, response system (2.6) and drive system (2.5) achieve synchronization, where
the unknown c of drive system (2.5) can be identified.

As the values of k1 and k2 increase from 0 to 2, the changing processes of cn
and |e1(n)| are shown in Figure 3.

From the results, we know that as the values of k1 and k2 increase from 0 to 1,
the identification process of cn is getting better and |e1(n)| tends to 0 more quickly.
When the values of k1 and k2 continue to increase from 1 to 2, the identification
process of cn is getting worse, and |e1(n)| tends to 0 slower. So, when the values
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Figure 2. The (a) real, (b) imaginary parts of cn of system (2.6) and (c) |e1(n)| between systems (2.5)
and (2.6) changing with n, where k1 = 1.8 and k2 = 1.5.
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Figure 3. The (a) real, (b) imaginary parts of cn and (c) |e1(n)| change with n for different k1 and k2.

of k1 and k2 are near 1, the identification effect of cn is the best, and the speed of
|e1(n)| tending to 0 gets the fast. That is to say, the speed of the response system
and the drive systems achieving synchronization is the fastest.

However, if k1 = 2.5, k2 = 3, the identification process of cn of response system
(2.6) and the changing process of |e1(n)| are shown in Figure 4.
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Figure 4. The (a) real, (b) imaginary parts of cn of system (2.6) and |e1(n)| changing with n, where
k1 = 2.5 and k2 = 3.

From Figure 4, we know that |e1(n)| between the two synchronous systems and
the cn of system (2.6) tend to infinity gradually. Therefore, the synchronization of
the two systems can not be achieved and the unknown c of drive system (2.5) can
not be identified.
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2.3. Design of synchronous controller and parameter identifier
for another sine-function Julia set

In this section, we discuss the problem of synchronous controller and parameter
identifier for another sine-function Julia set:

zn+1 = sin(z2
n) + c.

In this case, the drive system and the response system can be written as

xn+1 = sin(x2
n) + c, (2.19)

yn+1 = sin(y2
n) + cn + un. (2.20)

The error between drive system (2.19) and response system (2.20) is

en = xn − yn. (2.21)

In order to design an adaptive synchronization controller for sine-function Julia sets,
the following lemma [11] is firstly introduced.

Lemma 2.2. Consider a liner equation

xn+2 − xn+1 + kxn = 0,

where xn is complex. If the real k satisfies 0 < k < 1, then the equation root is
stable as n→∞, that is, xn → 0.

Theorem 2.2. If the synchronous controller of system (2.20) is designed by

un = sin(x2
n)− sin(y2

n) , (2.22)

and if the parameter identifier is

cn+1 − cn = k3en, (2.23)

where the constant k3 satisfies 0 < k3 < 1, then drive system (2.19) and response
system (2.20) with arbitrary initial value can achieve global asymptotic synchroniza-
tion, and the parameters of the sine-function Julia set can be identified.

Proof. If systems (2.19) and (2.20) realize track synchronization with arbitrary
initial value, then the Julia sets of systems (2.19) and (2.20) realize global asymp-
totic synchronization. We only prove that systems (2.19) and (2.20) realize track
synchronization, that is, |xn−yn| → 0(n→∞). This is equivalent to that |en| → 0
(n→∞).

From (2.19)-(2.21), we obtain

en+1 = xn+1 − yn+1

= sin(x2
n) + c− sin(y2

n)− cn − un. (2.24)

Next, substituting (2.22) into (2.24), we have

en+1 = sin(x2
n) + c− sin(y2

n)− cn − sin(x2
n) + sin(y2

n).

That is,
en+1 = c− cn. (2.25)
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Hence,

en+1 − en = c− cn − (c− cn−1)

= cn−1 − cn
= −k3en−1. (2.26)

That is,

en+1 − en + k3en−1 = 0. (2.27)

If k3 satisfies 0 < k3 < 1 , then the equation root is stable as n → ∞
according to Lemma 2.2, that is, en → 0. So, the Julia sets of systems (2.19) and
(2.20) achieve global asymptotic synchronization with arbitrary initial value.

Example 2.2. Let c = −0.7 + 0.3i, c0 = 1, for drive system (2.19) and response
system (2.20). After n steps, the Julia set of drive system (2.19) and response
system (2.20) are shown in Figure 5, where k3 = 0.1.

(a) (b) (c)

(d) (e) (f)

Figure 5. The Julia sets of drive system (2.19) after (a) 100 steps; and the Julia sets of response system
(2.20) after (b) 5 steps, (c) 20 steps, (d) 50 steps, (e) 80 steps, (f) 100 steps; where k3 = 0.1.

The figures show that response system (2.20) synchronizes drive system (2.19)
after 100 steps. Besides, the identification process of cn of response system (2.20)
is shown in Figure 6. The changing process of the en between drive system (2.19)
and response system (2.20) is shown in Figure 7.

From the simulation results, the real and imaginary parts of the cn are stable
at -0.7 and 0.3 in the iterative process and the real and imaginary parts of error
en tend to zero. Hence, response system (2.20) and drive system (2.19) achieve
synchronization, where the unknown c of drive system (2.19) has also been identified.

As the value of k3 increase from 0 to 1, the changing process of cn and en are
shown in Figure 8 and Figure 9.

From the simulation results, we know that as the value of k3 increase from 0 to
0.5, the identification process of cn is getting better and en tends to 0 more quickly.
When the value of k3 continues to increase from 0.5 to 1, the identification process
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Figure 6. The (a) real and (b) imaginary parts of cn of system (2.20) changing with n, where k3 = 0.1.
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Figure 7. The (a) real and (b) imaginary parts of en between systems (2.19) and (2.20) changing with
n, where k3 = 0.1.
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Figure 8. Identification processes of (a) real and (b) imaginary parts of cn for different k3.

of cn is getting worse, and en tends to 0 slower. When the value of k3 is near 0.3
the identification effect of cn is the best, and the speed of en tending to 0 gets the
fastest. Thus, the speed of the response system and the drive system achieving
synchronization is the fastest.

However, if k3 = 1.1, the identification process of en between drive system (2.19)
and response system (2.20) is shown in Figure 10.

From Figure 10, we know that en between the two synchronous systems tends
to infinity gradually. Therefore, synchronization of the two systems can not be



Sine-function Julia sets 229

0 10 20 30 40 50 60 70 80 90
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

n

R
e
(e

n
)

 

 

k=0.1

k=0.3

k=0.5

k=0.7

k=0.9

0 10 20 30 40 50 60 70 80 90

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

n

Im
(e

n
)

 

 

k=0.1

k=0.3

k=0.5

k=0.7

k=0.9

(a) (b)

Figure 9. The (a) real and (b) imaginary parts of en between systems (2.19) and (2.20) changing with
n for different k3.
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Figure 10. The (a) real and (b) imaginary parts of en between systems (2.19) and (2.20) changing with
n, where k3 = 1.1.

achieved and the unknown c of drive system (2.19) can not be identified.

3. Conclusions

In this work, two new methods are put forward to realize the synchronization control
of a drive-response system and parameter identification of sine-function Julia sets.
The zero asymptotic property of the sliding variable of the discrete control system
and the stability theory in difference equations are applied to realize identification
and control of sine function Julia sets. Then, we successfully solved the problem of
synchronization control of the drive-response system and parameter identification,
in the case of the drive system having unknown parameters. Meanwhile, we designed
an adaptive synchronization controller and parameter identifier. These results are
significant to future important applications of Julia sets.
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