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TOPOLOGICAL HORSESHOE IN A
FRACTIONAL-ORDER QI FOUR-WING

CHAOTIC SYSTEM∗
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Abstract A fractional-order Qi four-wing chaotic system is present based
on the Grünwald-Letnikov definition. The existence of topological horseshoe
in a fractional chaotic system is analyzed by utilizing topological horseshoe
theory. A Poincaré section is properly chosen to obtain the Poincaré map
which is proved to be semi-conjugate to a 2-shift map, implying that the
fractional-order Qi four-wing chaotic system exhibits chaos.
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1. Introduction

Since the chaotic Lorenz system was discovered in 1963 [9], chaotic systems have
been a focal subject of renewed interest in the past few decades. Many chaotic sys-
tems have been proposed such as Chua circuits [3], Chen system [4], Lü system [10]
and Qi system [15, 16]. Fractional calculus has been known since the early seven-
teenth century [2, 5, 13]. Although it has a long history, applications of fractional
calculus to physics and engineering are just a recent focus of interest. At present,
the number of applications of fractional calculus rapidly grows. These mathemati-
cal phenomena allow us to describe and model a real object more accurately than
the classical integer methods. Recently, by utilizing fractional calculus techniques,
many investigations have been devoted to the chaotic behaviours and chaos control
of dynamical systems involved fractional derivatives, called fractional-order chaotic
systems [1, 11,12].

In the mathematics of chaos theory, a horseshoe map is a member of a class
of chaotic maps of the square into itself. It is a core example in the study of
dynamical systems. The map was introduced by Smale while studying the behaviour
of the orbits of the van der Pol oscillator [17]. The action of the map is defined
geometrically by squishing the square, then stretching the result into a long strip,
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and finally folding the strip into the shape of a horseshoe. Historically, the most
basic results about horseshoe theory are perhaps the Smale horseshoe first studied
by Smale [18]. After then, great efforts have been made to find sufficient conditions
for the existence of a horseshoe. The topological horseshoe is well recognized as
one of the most rigorous approaches to study chaos with computer. Many chaotic
systems have been proved to contain a horseshoe [6, 7, 18,20–23].

In this paper, a fractional-order Qi system is studied. It comes from the Qi four-
wing chaotic system proposed by Qi et al. [16]. Based on the Grünwald-Letnikov
definition, the numerical solution of fractional-order Qi four-wing chaotic system
is presented. Some phase portraits of the system is given to verify the chaotic
dynamics of the fractional-order Qi system. Based on the topological horseshoe
theory, the existence of horseshoe in this system is proved with a computer assisted
method. A suitable Poincaré section is selected to get the corresponding Poincaré
map, which is semi-conjugate to a 2-shift map, proving that the system is chaotic
from the fact that it has the topological horseshoe.

2. The fractional Qi system description

Qi et al. proposed a new three-dimensional continuous quadratic autonomous chaot-
ic system [16], which is different from the Lorenz system family. The system is
described as follows:

ẋ = a(y − x) + eyz,

ẏ = cx+ dy − xz,

ż = −bz + xy.

(2.1)

Here, a, b, d, e ∈ R+ and c ∈ R are constant parameters of the system. In Ref. [16],
it has been reported that the model is simple and produces a four-wing attractor
for a = 14, b = 43, c = −1, d = 16 and e = 4.

For getting the fractional-order Qi four-wing chaotic system, the fractional def-
inition must be given. The fractional order derivatives have many definitions; one
of them is the Grünwald-Letnikov definition [13] which is given by

Dα
t f(t) = lim

h→0

1

hα

∞∑
j=0

(−1)j
(
α
j

)
f(t− jh), (2.2)

where (
α
j

)
=

α!

j!(α− j)!
=

Γ(α+ 1)

Γ(j + 1)Γ(α− j + 1)
, (2.3)

f(t) is a continuous function, α is α-th derivative 0 < α < 1, Γ(n) is Euler’s Gamma
function: Γ(n) = (n− 1)!.

Then the corresponding fractional-order Qi system can be written in the form

dαx

dtα
= a(y − x) + eyz,

dαy

dtα
= cx+ dy − xz,

dαx

dtα
= −bz + xy.

(2.4)
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The relation to the explicit numerical approximation of α-th derivative at the points
kh, (k = 1, 2, · · · ) has the following form [14].

(k−Lm/h)D
α
t f(t) ≈ h−α

k∑
j=0

(−1)j
(
α
j

)
f(tk−j), (2.5)

where Lm is is the “memory length”, tk = kh, h is time step of calculation and

(−1)j
(
α
j

)
are binomial coefficients c

(α)
j (j = 0, 1, · · · ). It is the following expression

[14].

c
(α)
0 = 1, c

(α)
j = (1 +

1 + α

j
)c

(α)
j−1. (2.6)

Then, general numerical solution of the fractional differential equation

aD
α
t x(t) = f(x(t), t)

can be expressed as

x(tk) = f(x(tk), tk)h
α −

k∑
j=v

c
(α)
j x(tk−j). (2.7)

For simulation purposes, a numerical solution of fractional-order Qi system (2.4)
is obtained by using the relationship (2.7) derived from the Grünwald-Letnikov
definition which leads to equations in the form (2.8):

x(tk) = fxh
α1 −

k∑
j=v

c
(α1)
j x(tk−j),

y(tk) = fyh
α2 −

k∑
j=v

c
(α2)
j y(tk−j),

z(tk) = fzh
α3 −

k∑
j=v

c
(α3)
j z(tk−j),

(2.8)

where
fx = a[y(tk−1)− x(tk−1)] + ey(tk−1)z(tk−1),

fy = cx(tk) + dy(tk−1)− x(tk)z(tk−1),

fz = −bz(tk−1) + x(tk)y(tk).

When α1 = α2 = α3 = α = 0.99 and (a, b, c, d, e) = (14, 43,−1.1, 16, 4), system
(2.4) has the four-wing chaotic attractor shown in Fig.1.

3. Smale horseshoe theorem

3.1. Symbolic Dynamics

In order to making the Smale horseshoe be understood easily, Some aspects of
symbolic dynamics are recalled [19].
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(a) 3D view on the y − z − x plane.
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(b) Projection on the x− y plane.
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(c) Projection on the x− z plane.
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(d) Projection on the y − z plane.

Figure 1. Chaotic attractor of the fractional order Qi system with α = 0.99 and a = 14, b = 43, c =
−1.1, d = 16, e = 4.

Let S = {0, 1, · · · , N}, N ≥ 2 be the set of non-negative successive integer. Let
Σ be the collection of all bi-infinite sequences with their elements of S, i.e. every
element s of Σ implies

s = {. . . , s−n, . . . , s−1, s0, s1, . . . , sn, . . .}, si ∈ S.

Now consider another sequence s ∈ Σ

s = {. . . , s−n, . . . , s−1, s0, s1, . . . , sn, . . .}, si ∈ S.

The distance between s and s defined as

d(s, s) =
∞∑
−∞

1

2i
|si − si|

1 + |si − si|
. (3.1)

With the distance defined as (3.1), Σ is a metric space, and there is a well known
theorem [8,19,24].

Theorem 3.1. the space Σ is
i) compact; ii) totally disconnected; iii) perfect.

A set having the three properties in the above proposition is often defined as
a Cantor set, such a Cantor set frequently appears in characterization of complex
structure of invariant set in a chaotic dynamical system [8,19,24].
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3.2. m-shift map

Now define a m-shift map σ : Σ → Σ follows:

σ(si) = si+1. (3.2)

Then there are the following results:

(a) σ(Σ) = Σ and σ is continuous,

(b) the shift map σ as a dynamical system defined on Σ has the following prop-
erties:

i) σ has a countable infinity of periodic orbits consisting of orbits of all
periods,

ii) σ has an uncountable infinity of nonperiodic orbits and,

iii) σ has a dense orbit.

A consequence of statement (b) is that the dynamics generated by the shift map
σ display sensitive dependence on initial conditions on a closed invariant set, and
thus are chaotic(see ref. [19] for a proof of the above statements).

3.3. The horseshoe theorem

Let X be a metric space, D is a compact subset of X, f : D → X is a map satisfying
the assumption that there exist m mutually disjoint subsets D1, D2, . . . , Dm of D.
the restriction of f to each Di, i.e., f |Di is continuous [19].

Definition 3.1 ( [8, 19, 24]). Let γ be a compact subset of D, such that for each
1 ≤ i ≤ m, γi = γ ∩ Di is nonempty and compact, then γ is called a connection
with respect to D1, D2, . . . , Dm. Let F be a family of connections γs with respect
to D1, D2, . . . , Dm satisfying the following property:

γ ∈ F =⇒ f(γi) ∈ F,

then F is said to be a f -connected family with respect to D1, D2, . . . , Dm.

Theorem 3.2 ( [8, 19]). Suppose that there exists a f -connected family F with
respect to D1, D2, . . . , Dm. Then there exists a compact invariant set K ⊂ D, such
that f |D is semi-conjugate to m-shift.

Theorem 3.3 ( [8,19,24]). There are two dynamical systems (X, f) and (Y, g). If
(X, f) is semi-conjugate to (Y, g), then the topological entropy of f is not less than
that of g, i.e.

ent(f) ≥ ent(g). (3.3)

If g is a m-shift map, i.e. g = σ, then

ent(f) ≥ ent(g) = logm. (3.4)

The topological entropy is a nonnegative real number. Thus, if system topolog-
ical entropy ent(f) is not zero, it is a chaotic system. That is to say, if m > 1, the
system is a chaotic system.
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4. Horseshoe in Fractional-order Qi four-wing chaot-
ic system

In this section, a computer assisted verification of chaos in system (2.4) is given by
utilizing the above topological horseshoe theorem.

Consider Poincaré section Γ = {(x, y, z)|0 ≤ x ≤ 100, 5 ≤ z ≤ 60, y = 0 and ẏ <
0} as shown in Fig. 2. The Poincaré map H is chosen as follow: for each point
(x, y, z) ∈ Γ,H(x, y, z) is taken to be the first return point in Γ under the flow of
system (4) with the initial condition (x, y, z). In this plane Γ, after a great deal of
computer simulations, the quadrangle K with four vertices is selected as:

A = [50, 0, 12.2], B = [53, 0, 10.3],

C = [47, 0, 8.6], D = [46.1, 0, 10.1].
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Figure 2. The attractor of system (2.4) and the Poincaré section

Under the first return Poincaré map H, the image of block K1 is like a very
thin hook wholly across the quadrangle regions of K as shown in Fig. 3, in which

A′ = H(A), B′ = H(B), C ′ = H(C), D′ = H(D).

According to the topological theory, two disjointed subsets L1 and L2 of K1 need
be found. After many trial attempts, two mutually disjoint quadrangles are found
as shown in Fig. 4. The first one is block1 |ABC1D1| with four vertices being:

A = [50, 0, 12.2], B = [53, 0, 10.3],

C1 = [52.7, 0, 10.215], D = [49.805, 0, 12.094].

The second one is block2 |A1B1CD| with four vertices being:

A1 = [49.21, 0, 11.77], B = [51.8, 0, 9.96],

C = [47, 0, 8.6], D = [46.1, 0, 10.1].

Under the first return Poincaré map H, for the first subset, the image of
|A′

1B
′
1C

′D′| = H(|A1B1CD|) is shown in Fig.5.
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Figure 3. The quadrangle K1 and its image
under the first return Poincaré map H.
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Figure 4. Two disjointed compact subsets
|ABC1D1| and |A1B1CD|.
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Figure 5. The compact subset |A1B1CD|
with A′

1 = H(A1), B
′
1 = H(B1), C

′ =
H(C), D′ = H(D).
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Figure 6. he compact subset |ABC1D1| with

A′ = H(A), B′
1 = H(B), C′

1 = H(C1), D
′
1 =

H(D1).

Then the image A′
1B

′
1 = H(A1B1) is on the left side of the edge CD and the

image C ′D′ = H(CD) is on the right side of edge AB.

For the second subset, the image of |A′B′C ′
1D

′
1| = H(|ABC1D1|) is shown in

Fig. 6. AB and C1D1 are mapped to A′B′ and C ′
1D

′
1, respectively. Similarly, A′B′

is on the right side of the edge AB, and C1D1 is on the left side of the edge CD.

Upon the above simulation results, it follows that for every connection γ lying in
|ABCD| with respect to |A1B1CD| and |ABC1D1|, the images H(γ ∩ |A1B1CD|)
and H(γ ∩ |ABC1D1|) lie wholly across the quadrangle |ABCD|, that is to say, if
γ ∈ F,H(γ∩|A1B1CD|) ∈ F andH(γ∩|ABC1D1| ∈ F , thus F is called a connected
family with respect |A1B1CD| and |ABC1D1| based on Definition 3.1. According
to Theorem 3.1 and Theorem 3.2, there exists a H-connected family, which means
that the Poincar— map H is semi-conjugate to the 2-shift map. These facts prove
that the topological entropy of the fractional-order Qi system is no less than log 2,
and hence it is chaotic.
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5. Conclusion

In this paper, the dynamics of fractional-order Qi four-wing chaotic system was
studied. The existence of a topological horseshoe in the system was proved based
on the first return Poincar— map. The first return Poincare map defined for the
system was proved to be semi-conjugate to 2-shift map, so it has the entropy no
less than log 2, which obviously shows the system has chaotic dynamics.
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