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Abstract We study the spectral problem for the system of difference equa-
tions of a two-dimensional elliptic partial differential equation with nonlocal
conditions. A new form of two-point nonlocal conditions that involve interi-
or points is proposed. The matrix of the difference system is nonsymmetric
thus different types of eigenvalues occur. The conditions for the existence
of the eigenvalues and their corresponding eigenvectors are presented for the
one dimensional problem. Then, these relations are generalized to the two-
dimensional problem by the separation of variables technique.
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1. Introduction

An essential part of any mathematical model is the prescribed conditions. The
conditions complete the description of the nature of the considered phenomena.
They also affect the choice of the appropriate method to be utilized for solving
the mathematical model. The classical type of conditions is referred to as local
conditions when the values of the unknown function or its derivative are specified
only at the end points of the problem domain. Recently, new types of conditions
called nonlocal conditions are proposed where the values of the unknown function at
all or some points inside the problem domain take part in the condition formulation.

The problems with nonlocal boundary conditions were investigated in various
fields of mathematical physics, biology, biotechnology. Many papers appeared since
the work of Cannon [4] and Batten [3] in 1963. Models with nonlocal boundary
conditions include elliptic equations [13,28,31] hyperbolic equations [9,32], difference
equations [10,22], and parabolic equations [6, 12].

One of the important problems related to the nonlocal boundary conditions is
the eigenvalue problem. The analysis of eigenvalue problems of the difference op-
erator with nonlocal conditions permits us to investigate the stability of difference
schemes and check the conditions of convergence of iterative methods utilized to
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solve such problems [5,7,15,27]. The eigenvalue problems for differential operators
with nonlocal conditions, except of a few separate articles, has been systematically
investigated only over the past decade. Articles [1, 2, 12, 16, 17, 19] deal with the
eigenvalue problem subject to nonlocal condition including only boundary values
(Ionkin-Samarsky conditions). The eigenvalue problem for one and two-dimensional
differential operators subject to Bitsadze-Samarsky nonlocal condition are investi-
gated in [20,23,29], while articles [8,14,21,24,30] deal with the same problem subject
to integral nonlocal condition.

In this work, we consider the elliptic partial differential equation

∂2u

∂x2
+
∂2u

∂y2
= f(x, y), 0 < x < 1, 0 < y < 1, (1.1)

with the boundary conditions

u(x, 0) = u1(x), (1.2)

u(x, 1) = u2(x), (1.3)

u(0, y) = γ1u(1, y), (1.4)

u(ξ, y) = γ2u(1− ξ, y), (1.5)

where ξ, γ1 and γ2 are given constants such that 0 < ξ < 1− ξ < 1.
Nonlocal boundary condition (1.5) can be considered as a generalization for the

Bitsadze-Samarskii condition [20, 23, 29]. This type of nonlocal conditions relates
the value of the unknown function at one point on the boundary to its value at one
interior point whereas condition (1.5) relates the value of the unknown function at
two interior points. Also, condition (1.5) is formulated in the same periodic pattern
as condition (1.4).

We study the eigenvalue problem of the finite-difference operator corresponding
to problem (1.1-1.5). For this purpose, we introduce two uniform grids Ωh and Ωk

Ωh = {xi : xi = ih, i = 0, 1, . . . , N},
Ωk = {yj : yj = jk, j = 0, 1, . . . ,M},

with grid steps h and k defined by h = 1
N , k = 1

M , where N and M are positive
integers that define the dimensions of the grids. Then, the two-dimensional grid
Ωh×k is defined by

Ωh×k = Ωh × Ωk = {(xi, yj) : xi ∈ Ωh, yj ∈ Ωk}.

To incorporate condition (1.5) into the system of difference equations, we choose h
such that ξ, and 1− ξ are points on the grid Ωh, i.e. ξ = sh, and 1− ξ = (N − s)h
for a positive integer s.

First, we consider the eigenvalue problem for one-dimensional finite difference
operator with given nonlocal boundary conditions

ui−1 − 2ui + ui+1

h2
+ λui = 0, (1.6)

u0 = γ1uN , (1.7)

us = γ2uN−s. (1.8)
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Then, the results obtained from this problem are utilized to study the two-dimensional
difference eigenvalue problem of the form

uji+1 − 2uji + uji−1

h2
+
uj+1
i − 2uji + uj−1

i

k2
+ λuji = 0, (1.9)

u0
i = 0, (1.10)

uNi = 0, (1.11)

uj0 = γ1u
j
N , (1.12)

ujs = γ2u
j
N−s. (1.13)

The values of λ for which the one-dimensional problem (1.6-1.8) or the two-dimensional
problem (1.9-1.13) has non-trivial solutions are called eigenvalues, and the set of
all eigenvalues is called the spectrum of the problem. Since conditions (1.7-1.8)
and (1.12-1.13) are nonlocal, the corresponding finite-difference operators are non-
self-adjoint. Therefore, the analysis of the spectra of these problems leads to the
problems on the existence of both real and complex eigenvalues.

The aim of this work is to study the effect of the proposed nonlocal boundary
conditions on the conditions for the existence of different types of eigenvalues and
to provide the analytical expressions for them. We use techniques and arguments
which are used, for example, in papers [18,23,25,26] to investigate similar problems
with other types of nonlocal conditions.

2. The difference eigenvalue problem in one dimen-
sion

Here, we consider the case where M = N. Then, equations (1.6-1.8) generate an
(N − 1)× (N − 1) linear system of equations. Define the square matrix A of order
(N − 1) in the block matrix form as

A =
1

h2

 B
C
D

 , (2.1)

where

B =



2 −1 0 0 · · · 0 0 0 0 0 · · · γ1

−1 2 −1 0 · · · 0 0 0 0 0 · · · 0
0 −1 2 −1 · · · 0 0 0 0 0 · · · 0
...

...
...

...
...

...
...

...
...

...
0 0 0 0 · · · −1 2 −1 0 0 · · · 0
0 0 0 0 · · · 0 −1 2 −1 0 · · · 0
0 0 0 0 · · · 0 0 −1 2 −1 · · · 0


,

C =

 0 · · · −1 2 0 0 · · · −γ2 0 · · · 0
0 · · · 0 −1 −1 0 · · · 2γ2 0 · · · 0
0 · · · 0 0 2 −1 · · · −γ2 0 · · · 0

 ,
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D =


0 · · · −1 2 −1 0 0 · · · 0 0 0 0
0 · · · 0 −1 2 −1 0 · · · 0 0 0 0
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 0 0 · · · −1 2 −1 0
0 0 0 0 0 0 0 · · · 0 −1 2 −1

 ,

where matrices B, C, and D are of dimension (s − 2) × (N − 1), 3 × (N − 1) and
(N − s− 2)× (N − 1), respectively. Then, the finite-difference eigenvalue problem
(1.6-1.8) is equivalent to the matrix eigenvalue problem

Au = λu. (2.2)

Matrix A of the difference system is nonsymmetric because of the nonlocal con-
ditions. As some of the points involved in the nonlocal condition are inside the
domain, the symmetry known for the matrix of the elliptic problem with classical
conditions is altered in some rows and columns inside the matrix. Thus, matrix A
can have zero, positive, negative or complex eigenvalues according to the parameters
h, ξ, γ1 and γ2 and these cases are examined in the following analysis.

Equation (1.6) can be rewritten in the form

ui−1 − 2(1− λh2

2
)ui + ui+1 = 0, (2.3)

which is useful in proving some of the following statements.

Lemma 2.1. The difference eigenvalue problem (1.6-1.8) has zero eigenvalues, pro-
vided that they exist, in one of the following cases:

(i) If γ1 = 1 and γ2 = 1. In this case, the corresponding difference eigenvector is
given by ui = c, where c is an arbitrary constant.

(ii) If γ1 6= 1 and γ2 = ξ+γ1(1−ξ)
γ1ξ+(1−ξ) , and the corresponding difference eigenvector is

given by ui = c(ih+ γ1
1−γ1 ).

Proof. If λ = 0, the difference eigenvalue problem (1.6) has a solution of the form
ui = c1 + c2ih, i = 0, 1, 2, · · · , N. Then, by applying condition (1.7) we have

(1− γ1)c1 − γ1c2 = 0. (2.4)

The second nonlocal boundary condition (1.8) yields

(1− γ2)c1 + (ξ − γ2(1− ξ))c2 = 0. (2.5)

We have two cases: the first case is when γ1 = 1 which yields c2 = 0. Then, to obtain
a nontrivial solution we get γ2 = 1 and ui = c. The second case if γ1 6= 1, by solving
the system of two equations (2.4-2.5), we get ξ + (1− ξ)γ1 + (−1 + ξ − ξγ1)γ2 = 0,
and the lemma is proved.

Lemma 2.2. The difference eigenvalue problem (1.6-1.8) has a unique negative
eigenvalue, provided that it exists, given by λ = −4

h2 sinh2(αh2 ), where α is the positive
parameter that satisfies the relation between γ1 and γ2 in one of the two following
cases:

(i) If γ1 = 1
cosh(α) and γ2 = cosh(ξα)

cosh((1−ξ)α) . The corresponding difference eigenvector

is given by ui = c cosh(iαh),
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(ii) If γ1 6= 1
cosh(α) and γ2 = sinh(ξα)+γ1 sinh((1−ξ)α)

γ1 sinh(ξα)+sinh((1−ξ)α) , and the corresponding differ-

ence eigenvector is given by ui = c(sinh(αih) + γ1 sinh(α)
1−γ1 cosh(α) cosh(αih)).

Proof. If λ < 0, we have

1− λh2

2
> 1.

Denote

cosh(αh) = 1− λh2

2
,

and rewrite the finite-difference equation (2.3) in the form

ui−1 − 2 cosh(αh)ui + ui+1 = 0.

The general solution of the latter equation is given by

ui = c1 cosh(αh i) + c2 sinh(αh i).

By substituting this solution into nonlocal conditions (1.7) and (1.8), we obtain the
following system of two linear algebraic equations with unknowns c1 and c2

c1(1− γ1(coshα))− c2γ1(sinhα) = 0, (2.6)

c1(cosh(ξα)− γ2 cosh((1− ξ)α)) + c2(sinh(ξα)− γ2 sinh((1− ξ)α)) = 0. (2.7)

We have two cases: the first case is when γ1 = 1
cosh(α) which yields c2 = 0. This

case yields a nontrivial solution only if

γ2 = g1(α; ξ) =
cosh(ξα)

cosh((1− ξ)α)
, (2.8)

and ui = c cosh(iαh). The second case is when γ1 6= 1
cosh(α) . By solving the system

of two equations (2.6-2.7), we get

γ2 = g2(α, γ1; ξ) =
sinh(ξα) + γ1 sinh((1− ξ)α)

sinh((1− ξ)α) + γ1 sinh(ξα)
, (2.9)

and the lemma is proved.

(a) ξ = 0.1 (b) ξ = 0.2

Figure 1. Effect of changing γ1 and α on the values of γ2 (a) ξ = 0.1 (b) ξ = 0.2 as described by
relation (2.9).
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Figure 1 illustrates the relation between the parameters γ2 and α as described
by equation (2.9) at different values for γ1 and for two different values of ξ. The
figure indicates that α assumes higher values as the value of γ2 asymptotically
approaches the value of γ1.

Lemma 2.3. The positive eigenvalues 0 < λ < 4
h2 for the difference eigenvalue

problem (1.6-1.8), provided that they exist, take the form λk = 4
h2 sin2(αk h

2 ), where
the parameters αk ∈ (0, πh ) satisfy the relation between γ1 and γ2 in one of the two
following cases:

(i) If γ1 = 1
cos(αk) and γ2 = cos(ξαk)

cos((1−ξ)αk) . The corresponding difference eigenvector

is given by ui = c cos(iαkh).

(ii) If γ1 6= 1
cos(αk) and γ2 = sin(ξαk)+γ1 sin((1−ξ)αk)

γ1 sin(ξαk)+sin((1−ξ)αk) , and the corresponding differ-

ence eigenvector is given by ui = c(sin(αkih) + γ1 sin(αk)
1−γ1 cos(αk) cos(αkih)).

Proof. If 0 < λ < 4
h2 , then we have

|1− λh2

2
| < 1.

Denote

cos(αh) = 1− λh2

2
,

and rewrite the finite-difference equation (2.3) in the form

ui−1 − 2 cos(αh)ui + ui+1 = 0.

By substituting the general solution of the latter equation which is given by

ui = c1 cos(αh i) + c2 sin(αh i),

into nonlocal conditions (1.7) and (1.8), the following system of equations is obtained

c1(1− γ1 cos(α))− c2γ1 sin(α) = 0, (2.10)

c1(cos(ξα)− γ2 cos((1− ξ)α)) + c2(sin(ξα)− γ2 sin((1− ξ)α)) = 0. (2.11)

When γ1 = 1
cos(α) , then c2 = 0. Then, to obtain a nontrivial solution we get

γ2 = cos(ξα)
cos((1−ξ)α) , and ui = c cos(iαh). But when γ1 6= 1

cos(α) , then by solving system

(2.10-2.11), we get

sin(ξα) + γ1 sin((1− ξ)α)− γ2(sin((1− ξ)α) + γ1 sin(ξα)) = 0, (2.12)

and the lemma is proved.
Figure 2 illustrates the relation between the parameters γ2 and α as described

by equation (2.12) at different values for γ1 and for two different values of ξ. The
periodic behavior of the graph indicates the fact that for given values for γ1 and γ2,
several values of α satisfy equation (2.12) and yields different positive eigenvalues.

Lemma 2.4. The eigenvalue λ = 4
h2 , for the eigenvalue problem (1.6-1.8), provided

it exists, occurs in one of the following cases:
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(a) ξ = 0.1 (b) ξ = 0.2

Figure 2. Effect of changing γ1 and α on the values of γ2 (a) ξ = 0.1 (b) ξ = 0.2 as described by
relation (2.12).

(i) If γ1 = (−1)N and γ2 = (−1)N , and the corresponding difference eigenvector
is given by ui = (−1)ic, where c is an arbitrary constant.

(ii) If γ1 6= (−1)N and γ2 = ξ+(−1)N (1−ξ)γ1
γ1ξ+(−1)N (1−ξ) , and the corresponding difference

eigenvector is given by ui = (−1)i c( i h+ (−1)Nγ1
1−(−1)Nγ1

).

Proof. If λ = 4
h2 , in this case the finite-difference equation (2.3) takes the form

ui+1 + 2ui + ui−1 = 0,

and the general solution for this equation is given by

ui = (−1)i (c1 + c2 (i h)).

Then, from nonlocal conditions (1.7) and (1.8), the system of two linear algebraic
equations that relates c1 and c2 takes the form

(1− (−1)Nγ1)c1 − c2(−1)Nγ1 = 0, (2.13)

c1((−1)s − γ2(−1)N−s) + c2((−1)sξ − γ2(−1)N−s(1− ξ)) = 0. (2.14)

If γ1 = (−1)N , we get c2 = 0. Then, to obtain a nontrivial solution we get γ2 =
(−1)N , and ui = (−1)ic.

If γ1 6= (−1)N , by solving the system of two equations (2.13-2.14), we get

ξ + (−1)N (1− ξ)γ1 − γ2((−1)(N)(1− ξ) + γ1ξ) = 0. (2.15)

Lemma 2.5. The positive eigenvalue λ > 4
h2 for the difference eigenvalue problem

(1.6-1.8), provided that it exists, takes the form λ = 4
h2 cosh2(αh2 ), where α is the

positive parameter that satisfies the relation between γ1 and γ2 in one of the two
following cases:

(i) If γ1 = (−1)N

cosh(α) and γ2 = (−1)N cosh(ξα)
cosh((1−ξ)α) , and the corresponding difference eigen-

vector is given by ui = (−1)ic cosh(iαh), where c is an arbitrary constant.

(ii) If γ1 6= (−1)N

cosh(α) and γ2 = sinh(ξα)+(−1)Nγ1 sinh((1−ξ)α)
(−1)N sinh((1−ξ)α)+γ1 sinh(ξα)

, and the corresponding d-

ifference eigenvector is given by ui = (−1)ic(sinh(αih)+ (−1)Nγ1 sinh(α)
1−(−1)Nγ1 cosh(α)

cosh(iαh)).
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Proof. If λ > 4
h2 , denote

1− λh2

2
= − cosh(αh ),

and rewrite the finite difference equation (2.3) in the form

ui−1 + 2 cosh(αh)ui + ui+1 = 0.

By substitution the general solution of the latter equation which is given by

ui = (−1)i(c1 cosh(αh i) + c2 sinh(αh i)),

into nonlocal conditions (1.7) and (1.8), we obtain the following system

c1(1− (−1)Nγ1 cosh(α))− c2(−1)Nγ1 sinh(α) = 0, (2.16)

c1(cosh(ξα)− γ2(−1)N cosh((1− ξ)α))

+ c2(sinh(ξα)− γ2 (−1)N sinh((1− ξ)α)) = 0. (2.17)

We have two cases: the first case is when γ1 = (−1)N

cosh(α) which yields c2 = 0. Then to

obtain a nontrivial solution we get γ2 = (−1)N cosh(ξα)
cosh((1−ξ)α) , and ui = (−1)ic cosh(iαh).

The second case if γ1 6= (−1)N

cosh(α) , by solving the system of two equations (2.16-2.17),
we get

sinh(ξα) + γ1((−1)N sinh((1− ξ)α))− γ2((−1)N sinh((1− ξ)α) + sinh(ξα)) = 0,
(2.18)

and the lemma is proved.
The eigenvalues λ = 4

h2 in Lemma 2.4 and λ > 4
h2 in Lemma 2.5 are typical

only for difference operators, but not for differential operators. The matter is that
corresponding eigenvector has not analogue for differential operator.

Lemma 2.6. The complex eigenvalues for the difference eigenvalue problem (1.6-
1.8), provided that they exist, take the form λk = 4

h2 sin2( qk h2 ), where qk are the
nontrivial complex numbers that satisfy

γ2 =
sin(qξ) + sin(q − qξ)γ1

γ1 sin(qξ) + sin(q − qξ)
. (2.19)

The corresponding eigenvector is ui = c((1−γ1 cos(qξ)+ιγ1 sin(qξ)) sin(i q h)
(1−γ1 cos(qξ)−ιγ1 sin(qξ) , where c is

an arbitrary constant and ι =
√
−1.

Proof. Let q = α + ιβ, where ι =
√
−1. We assume that α 6= 0, β 6= 0. If

α = 0, β 6= 0 or α 6= 0, β = 0 then this case coincides with lemma (2.3) or lemma
(2.2), respectively. However, when, α = β = 0, a situation is the same as in lemma
(2.1).

Denote the notation cos(q h) = 1− λh2

2 . Now, the finite-difference equation (2.3)
takes the form

ui−1 − 2 cos(q h)ui + ui+1 = 0.
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By substituting the general solution of the latter equation which is given by

ui = c1e
ιq h i + c2e

−ιq h i,

into nonlocal conditions (1.7) and (1.8), we obtain the following system of two linear
algebraic equations with unknowns c1 and c2

c1(1− γ1e
ιq ) + c2(1− γ1e

−ιq ) = 0, (2.20)

c1(eιξq − γ2e
ι(1−ξ)q ) + c2(e−ιξq − γ2e

−ι(1−ξ)q ) = 0. (2.21)

This system has a non-trivial solution when its determinant is equal to zero which
yields condition (2.19). The values of α and β can be obtained from the two
equations that result from equating the real and imaginary parts of the determinant
to zero.

3. The difference eigenvalue problem in two dimen-
sions

Let us consider the two-dimensional finite-difference eigenvalue problem (1.9-1.13).
By separating variables, i.e., by representing the solution of problem (1.9-1.13) in
the form

uij = vi z j , i, j = 0, 1, 2, · · · , N,

we obtain two one-dimensional eigenvalue problems

vi−1 − 2vi + vi+1

h2
+ µivi = 0, v0 = γ1vN , vs2 = γ2vN−s2 , (3.1)

and
zj−1 − 2zj + zj+1

h2
+ ωjzj = 0, z0 = 0, zN = 0, (3.2)

where λ = λk,` = µk + ω`. The eigenvalues of (3.2) are real, positive and can be
computed by the formula [23]

ω` =
4

h2
sin2(

` π h

2
), ` = 1, 2, · · · , N − 1, (3.3)

and the corresponding eigenvectors are given by

z` = sin(
` π h

2
), ` = 1, 2, · · · , N − 1.

The value of the eigenvalue λk,` is conditioned by the value of µk. In the following
statements, we illustrate the cases for positive, zero, and negative eigenvalues for
problem (1.9-1.13).

Corollary 3.1. The positive eigenvalues 0 < λk,` <
8
h2 of the problem (1.9-1.13),

can be computed by the formula

λk,` =
4

h2
(sin2(

αk h

2
) + sin2(

` π h

2
)), k = 1, 2, · · · , N − 1.
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The corresponding eigenvectors in case γ1 = 1
cos(αk) and γ2 = cos(ξαk)

cos((1−ξ)αk) are given

by

(uk,`)ij = c cos(iαkh) sin(
` π h j

2
),

whereas in the case γ1 6= 1
cos(αk) and γ2 = sin(ξαk)+γ1 sin((1−ξ)αk)

sin((1−ξ)αk)+γ1 sin(ξαk) are given by

(uk,`)ij = c(sin(αkih) +
γ1 sinαk

1− γ1 cosαk
cos(αkih)) sin(

` π h j

2
),

where αk are the roots of equation (2.12) and the indices i, j, ` and k are from 1
to N − 1.

Corollary 3.2. The positive eigenvalues of the problem (1.9-1.13) of the form

λ̃` =
4

h2
(1 + sin2(

π`h

2
)), ` = 1, 2, · · · , N − 1,

if they exist at all, occur in two cases: case γ1 = (−1)Nand γ2 = (−1)N and the
corresponding eigenvectors are given by

˜(u`)ij = c(−1)i sin(
` π h j

2
),

whereas in the case γ1 6= (−1)Nand γ2 = ξ+((−1)N (1−ξ)γ1)
(−1)N (1−ξ)+γ1ξ , the corresponding eigen-

vectors are given by

˜(u`)ij = (−1)i c( i h+
(−1)Nγ1

1− (−1)Nγ1
) sin(

` π h j

2
),

where the indices i, j and l are from 1 to N − 1.

Corollary 3.3. The positive eigenvalues of the problem (1.9-1.13) of the form

λ̄` =
4

h2
(cosh2(

αh

2
) + sin2(

π`h

2
)), ` = 1, 2, · · · , N − 1,

if they exist at all, occur in two cases: case γ1 = (−1)N

cosh(α) and γ2 = (−1)N cosh(ξα)
cosh((1−ξ)α)

and the corresponding eigenvectors are given by

¯(u`)ij = (−1)ic cosh(iαh) sin(
` π h j

2
),

whereas in the case γ1 6= (−1)N

cosh(α)and γ2 = sinh(ξα)+(−1)Nγ1 sinh((1−ξ)α)
(−1)N sinh((1−ξ)α)+γ1 sinh(ξα)

, the corre-

sponding eigenvectors are given by

¯(u`)ij = ((−1)ic(sinh(αih) +
(−1)Nγ1 sinh(α)

1− (−1)Nγ1 cosh(α)
cosh(iαh)) sin(

` π h j

2
),

where α are the roots of equation (2.18) and the indices i, j and l are from 1 to
N − 1.

Let us investigate the existence of zero and negative eigenvalues of problem (1.9-
1.13). We know that there exists a unique negative eigenvalue of the problem (3.1)
with the form

µ = − 4

h2
sinh2(

αh

2
),
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where α is the positive root of equation (2.9). Then, since the numbers

α∗
` =

2

h
log(sin(

π`h

2
) +

√
sin2(

π`h

2
) + 1), ` = 1, 2, · · · , N − 1,

are the positive roots of the equations

sinh2(
αh

2
) = sin2(

π`h

2
), ` = 1, 2, · · · , N − 1,

the following statement is valid.

Corollary 3.4. Problem (1.9-1.13) has an algebraically simple zero eigenvalue
λk,` = 0 in one of the two following cases

(i) If γ1 = 1
cosh(α∗

` ) and γ2 = g1(α∗
` ; ξ) =

cosh(ξα∗
` )

cosh((1−ξ)α∗
` ) , and the corresponding

difference eigenvector is given by (u`)ij = c cosh(iα∗
`h) sin( ` π h j2 ), where c is

an arbitrary constant.

(ii) If γ1 6= 1
cosh(α∗

` ) and γ2 = g2(α∗
` ; γ1; ξ) =

sinh(ξα∗
` )+γ1 sinh((1−ξ)α∗

` )
sinh((1−ξ)α∗

` )+γ1 sinh(ξα∗
` ) , and the

corresponding difference eigenvector are given by (u`)ij = c(sinh(α∗
` ih) +

γ1 sinh(α∗
` )

1−γ1 cosh(α∗
` ) cosh(α∗

` ih)) sin( ` π h j2 ).

If either of conditions (i) or (ii) is satisfied with α∗
p for a positive integer p, 1 ≤

p ≤ N − 1, then problem (1.9-1.13) has p− 1 negative eigenvalues

λp,` = − 4

h2
(sinh2(

α∗h

2
)− sin2(

π`h

2
)), ` = 1, 2, · · · , p− 1,

and an algebraically simple eigenvalue λp,p = 0.

4. Conclusion

We studied the eigenvalue problem of an elliptic partial differential equation with
nonlocal boundary conditions that involve points interior to the problem domain.
The two nonlocal boundary conditions change the classical form for the matrix of the
system of difference equations as they change the first row and cause a shift in the
tridiagonal elements. The position of the points and the coefficients of the nonlocal
conditions affect the type and the value of the eigenvalue, hence the corresponding
eigenvector. Finally, by using the separation of variables technique, the properties
and relations of one-dimensional problems can be combined together to obtain the
corresponding ones of the two-dimensional case.
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