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1. Introduction

This paper is devoted to the extinction phenomenon of the following parabolic
equation with nonlinear gradient source and absorption

ut = div
(
uα |∇u|m−1 ∇u

)
+ λ |∇u|q − δuβ , (x, t) ∈ Ω× (0,+∞) ,

u (x, t) = 0, (x, t) ∈ ∂Ω× (0,+∞) ,

u (x, 0) = u0 (x) , x ∈ Ω,

(1.1)

where Ω ⊂ RN is an open bounded domain with smooth boundary ∂Ω, m, λ, q and
δ are positive parameters, 0 < m+α < 1, 0 < β ≤ 1 and u0 ∈ L∞ (Ω)∩W 1,m+1

0 (Ω)
is a nonzero nonnegative function.

Problems like (1.1) arise from a variety of physical phenomena. For instance,
when α = 0, m = 1, the equation in problem (1.1) can be viewed as the viscosity
approximation of Hamilton-Jacobi type equation from stochastic control theory
(see [20]). In particular, when α = 0, m = 1 and q = 2, the equation in problem
(1.1) appears in the physical theory of growth and roughening of surfaces, where it
is known as the Kardar-Parisi-Zhang equation (see [13]).

Since the equation in problem (1.1) is degenerate (or singular) at the points
where u = 0 or ∇u = 0, and hence there is no classical solution in general. We first
introduce the definition of the weak for problem (1.1) as follows.
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Definition 1.1. A nonnegative measurable function u (x, t) defined in Ω × (0, T )

is called a weak solution of problem (1.1) if uα |∇u|m+1 ∈ L1
(
0, T ;L1 (Ω)

)
, ut ∈

L2
(
0, T ;L2 (Ω)

)
, u ∈ C (0, T ;L∞ (Ω)) ∩ Lq

(
0, T ;W 1,q (Ω)

)
, and the integral iden-

tity ∫
Ω

u (x, t2) ζ (x, t2) dx+

∫ t2

t1

∫
Ω

[
−uζt + uα |∇u|m−1 ∇u · ∇ζ

]
dxdt

=

∫
Ω

u (x, t1) ζ (x, t1) dx+ λ

∫ t2

t1

∫
Ω

|∇u|q ζdxdt− δ

∫ t2

t1

∫
Ω

uβζdxdt

(1.2)

holds for any ζ ∈ C∞
0 (Ω× (0, T )) and 0 < t1 < t2 < T . Furthermore,

u (x, 0) = u0 (x) a.e. x ∈ Ω. (1.3)

Remark 1.1. The weak subsolution (resp. supersolution) of problem (1.1) can be
defined in the similar way except that “ = ” in (1.2) and (1.3) is replaced by “ ≤ ”
(resp. “ ≥ ”), and ζ ∈ C∞

0 (Ω× (0, T )) is taken to be nonnegative.

Remark 1.2. The local existence result of the weak solution for problem (1.1) fol-
lows, for example, from [25]. Furthermore, from Theorem 3.9 in [24] and Subsection
1.1 in [12], we know that comparison principle is granted for problem (1.1).

In the past few decades, many mathematicians have studied the extinction be-
haviors of various nonlinear parabolic problems (see [1,5,7,10,11,15,18–20,26,28,30,
32] and the references therein). For instance, many authors considered the following
problem

ut = div
(
|∇um|p−2 ∇um

)
+ λuq − δuβ , (x, t) ∈ Ω× (0,+∞) ,

u (x, t) = 0, (x, t) ∈ ∂Ω× (0,+∞) ,

u (x, 0) = u0 (x) , x ∈ Ω,

(1.4)

where m, q and β are positive constants, λ and δ are nonnegative constants, and
m (p− 1) ∈ (0, 1). When m = 1 and λ = δ = 0, Yuan et al. [31] showed that the
solution of problem (1.4) vanishes in finite time if and only if p ∈ (1, 2). When
m = 1 and λ = 0, Gu [9] pointed out that the necessary and sufficient condition
on the occurrence of extinction phenomenon is p ∈ (1, 2) or β ∈ (0, 1). When
m = 1 and δ = 0, Tian & Mu [27] proved that q = p − 1 is the critical extinction
exponent of the solution of problem (1.4). When δ = 0, Jin et al. [14], Zhou &
Mu [33] concluded that the critical extinction exponent of the weak solution to
problem (1.4) is q = m (p− 1). Recently, under the restrictive condition N > p,
Mu et al. [22] studied the extinction property of problem (1.4) with λ, δ ̸= 0 and
β ∈ (0, 1]. It is worth to point out that the authors of [22] did not give the precise
decay estimates of the extinction solutions. Meanwhile, in the case β ∈ (0, 1),
the question is remained whether or not the solution of problem (1.4) possesses
extinction property if q < m (p− 1).

However, to our best knowledge, there is little literature on the study of the ex-
tinction and non-extinction properties for parabolic equations with nonlinear gradi-
ent terms. Benachour et al. discussed the following Cauchy problem with gradient
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absorption  ut = div
(
|∇u|p−2 ∇u

)
− |∇u|q , x ∈ RN , t > 0,

u (x, 0) = u0 (x) , x ∈ RN ,
(1.5)

where q > 0 and p ∈ (1, 2], and u0 (x) ∈ BC
(
RN

)
∩ L1

(
RN

)
is nonnegative, here

BC
(
RN

)
denotes the space of bounded and continuous functions in RN . For the

special case p = 2, Benachour et al. [2] showed that extinction phenomenon takes

place for any nonnegative and integrable solution to problem (1.5) if q ∈
(
0, N

N+1

)
,

and established some temporal decay estimates for the L∞−norm of the nonnegative
solutions in the case q ≥ N

N+1 . Later, Benachour et al. [3] investigated problem (1.5)
with p = 2 and q ∈ (0, 1), and pointed out that the occurrence of the extinction
phenomenon depends on the asymptotic behavior of u0 as |x| tends to infinity.
Roughly speaking, they proved that if the decay of initial data u0 (x) is faster than

that of |x|−
p

1−p as |x| → ∞, then extinction occurs. Otherwise, the solution of (1.5)
is strictly positive for any positive initial data. In addition, they also claimed that
the critical extinction exponent p = N

N+1 introduced in [2] is optimal. For p ∈ (1, 2),
based on comparison principle and gradient estimates of the solutions, Iagar &
Laurençot [12] classified the behavior of the solutions for large time, obtaining
either positivity as t → ∞ for q > p − N

N+1 , optimal decay estimates as t → ∞
for q ∈

[
p
2 , p−

N
N+1

]
, or extinction in finite time for q ∈

(
0, p2

)
. In addition, the

authors showed that how the diffusion prevents extinction in finite time in some
ranges of exponents where extinction occurs for the non-diffusive Hamilton-Jacobi
equation.

Recently, Mu et al. [17, 23] considered the following fast diffusion equation
ut = div

(
uα |∇u|m−1 ∇u

)
+ λ |∇u|q , (x, t) ∈ Ω× (0,+∞) ,

u (x, t) = 0, (x, t) ∈ ∂Ω× (0,+∞) ,

u (x, 0) = u0 (x) , x ∈ Ω,

(1.6)

where m, q and λ are positive parameters, 0 < m + α < 1. Under the restrictive
condition N ≥ m+ 1, they proved that the critical extinction exponent of problem
(1.6) is q = m + α. Xu & Fang [29] considered the special case α = 0 of problem
(1.1).

Motivated by those works above, we consider the extinction property of the weak
solution for problem (1.1) by using energy estimates approach and constructing
suitable subsolution.

The rest of this paper is organized as follows. In Section 2, we state three useful
preliminary lemmas. Section 3 is mainly about the extinction property and decay
estimate of the solution to problem (1.1) in the case β = 1. Finally, we will discuss
the extinction behaviour and decay estimate of the weak solution for problem (1.1)
in the case β ∈ (0, 1) in Section 4.

2. Preliminary lemmas

In this section, as preliminaries, we state three well-known results, which play an
important role in the study of the extinction behavior and decay estimate of the
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solution to problem (1.1).

Lemma 2.1 (see [4]). Let y (t) be a non-negative absolutely continuous function on

[T̂0,+∞) satisfying 
dy

dt
+ αyk + βy ≤ 0, t ≥ T̂0,

y
(
T̂0

)
≥ 0,

where α, β are positive constants, and k ∈ (0, 1), then we have the decay estimate y (t) ≤
[(
y1−k

(
T̂0

)
+
α

β

)
e−β(k−1)(T̂0−t) − α

β

] 1
1−k

, T̂0 ≤ t < T̂1,

y (t) ≡ 0, T̂1 ≤ t < +∞,

where

T̂1 =
1

β (1− k)
ln

[
1 +

β

α
y1−k

(
T̂0

)]
+ T̂0.

Lemma 2.2 (see [21]). Let 0 < k < r ≤ 1, y (t) ≥ 0 be a solution of the differential
inequality 

dy

dt
+ αyk + βy ≤ γyr, t ≥ 0,

y (0) = y0 > 0,

where α, β > 0, and 0 < γ < αyk−r0 , then there exists χ > β such that

0 ≤ y (t) ≤ y0e
−χt for all t ≥ 0.

The following lemma is about the Gagliardo-Nirenberg multiplicative embedding
inequality.

Lemma 2.3 (see Theorem 2.1 in Chapter I of [6]). Let v ∈ W 1,p
0 (Ω), p ≥ 1. For

every fixed number r ≥ 1, there exists a constant C depending only upon N , p and
r such that

∥v∥µ,Ω ≤ C ∥Dv∥θp,Ω ∥v∥1−θr,Ω , (2.1)

where θ ∈ [0, 1], µ ≥ 1, are linked by

θ =

(
1

r
− 1

µ

)(
1

N
− 1

p
+

1

r

)−1

, (2.2)

and their admissible range is:

(i) if N = 1, then µ ∈ [r,+∞], and θ ∈
[
0, p

p+r(p−1)

]
;

(ii) if 1 ≤ p < N , then θ ∈ [0, 1], µ ∈
[
r, Np
N−p

]
for r ≤ Np

N−p and µ ∈
[
Np
N−p , r

]
for

r ≥ Np
N−p ;

(iii) if 1 < N ≤ p, then µ ∈ [r,+∞), and θ ∈
[
0, Np

Np+r(p−N)

)
.
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3. The case β = 1

The main goal of this section is to discuss the extinction behavior of the weak
solution for problem (1.1) in the case β = 1. The first result of this section shows
that whether the extinction behavior occurs or not depending on the size of λ when
q = m+ α.

Theorem 3.1. Assume that 0 < m+ α < 1, β = 1 and q = m+ α.

(i) If N ≥ 2, then the nonnegative weak solution of problem (1.1) vanishes in
finite time for any nonnegative initial datum u0 provided that λ is sufficiently
small. Furthermore, we have ∥u∥ 2m+α

m
≤

[(
∥u0∥1−m−α

2m+α
m

+ Ĉ0

)
e(m+α−1)δt − Ĉ0

] 1
1−m−α

, 0 ≤ t < T0,

∥u∥ 2m+α
m

≡ 0, T0 ≤ t < +∞

for m
(

N−m−1
Nm+m+1 − 1

)
≤ α < 1, and



∥u∥N(1−m−α)
m+1

≤

[(
∥u0∥1−m−α

N(1−m−α)
m+1

+ Ĉ1

)

· e(m+α−1)δt − Ĉ1

] 1
1−m−α

, 0 ≤ t < T1,

∥u∥N(1−m−α)
m+1

≡ 0, T1 ≤ t < +∞

for −m < α < m
(

N−m−1
Nm+m+1 − 1

)
, where Ĉ0 and T0 are given by (3.5), Ĉ1

and T1 are given by (3.8).

(ii) If N = 1, then the nonnegative weak solution of problem (1.1) vanishes in
finite time for any nonnegative initial datum u0 provided that λ is sufficiently
small, and we have ∥u∥ 2m+α

m
≤

[(
∥u0∥1−m−α

2m+α
m

+ Ĉ2

)
e(m+α−1)δt − Ĉ2

] 1
1−m−α

, 0 ≤ t < T2,

∥u∥ 2m+α
m

≡ 0, T2 ≤ t < +∞,

where Ĉ2 and T2 are given by (3.11).

(iii) The nonnegative weak solution of problem (1.1) cannot vanish in finite time
provided that λ is sufficiently large.

Proof. (i). Multiplying the first equation in (1.1) by us with s > 0, and integrat-
ing over Ω by parts, one has

1

s+ 1

d

dt

∫
Ω

us+1dx+ s

(
m+ 1

m+ α+ s

)m+1 ∫
Ω

∣∣∣∇um+α+s
m+1

∣∣∣m+1

dx

=λ

(
m+ 1

m+ α+ s

)q ∫
Ω

u
s(m+1)−q(α+s−1)

m+1

∣∣∣∇um+α+s
m+1

∣∣∣q dx− δ

∫
Ω

us+1dx.

(3.1)
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Since q = m+ α < m+ 1, Young’s and Hölder’s inequalities can be used to obtain

1

s+ 1

d

dt

∫
Ω

us+1dx+ s

(
m+ 1

m+ α+ s

)m+1 ∫
Ω

∣∣∣∇um+α+s
m+1

∣∣∣m+1

dx

≤λC (ϵ1) |Ω|1−
s(m+1)−q(α+s−1)

(m+1−q)(s+1)

(
m+ 1

m+ α+ s

)q (∫
Ω

us+1dx

) s(m+1)−q(α+s−1)
(m+1−q)(s+1)

+ λϵ1

(
m+ 1

m+ α+ s

)q ∫
Ω

∣∣∣∇um+α+s
m+1

∣∣∣m+1

dx− δ

∫
Ω

us+1dx.

(3.2)

Case a. If m
[
N−(m+1)
Nm+m+1 − 1

]
≤ α < 1. For this case, we take s = m+α

m in (3.1).

Using Hölder’s inequality and Sobolev embedding inequality, we can easily arrive
at the following estimate∫

Ω

u
2m+α

m dx ≤ |Ω|1−
2m+α
m+α ·N−(m+1)

N(m+1)

(∫
Ω

u
m+α
m · N(m+1)

N−(m+1) dx

) 2m+α
m+α ·N−(m+1)

N(m+1)

≤ κ1 |Ω|1−
2m+α
m+α ·N−(m+1)

N(m+1)

(∫
Ω

∣∣∣∇um+α
m

∣∣∣m+1

dx

) 2m+α
(m+1)(m+α)

,

(3.3)

where κ1 is the embedding constant, depending only on m, α and N . Let ϵ1 be a
sufficiently small constant such that (m+ α)

α − λϵ1m
α > 0. Moreover, for such a

fixed ϵ1, one can take λ small enough to ensure that

C11 = C12

(
m+ α

m

)α
− λ

[
ϵ1C12 + C (ϵ1) |Ω|

m(1−m−α)
2m+α

]
is greater than zero, where

C12 = κ
− (m+1)(m+α)

2m+α

1 |Ω|
N−(m+1)

N − (m+1)(m+α)
2m+α .

Then from (3.2) and (3.3), it follows that

d

dt

∫
Ω

u
2m+α

m dx+ C13

(∫
Ω

u
2m+α

m dx

) (m+1)(m+α)
2m+α

+ C14

∫
Ω

u
2m+α

m dx ≤ 0, (3.4)

where

C13 =
2m+ α

m

(
m

m+ α

)m+α

C11 and C14 =
δ (2m+ α)

m
.

Noticing that C13, C14 are positive constants and (m+1)(m+α)
2m+α ∈ (0, 1), then from

(3.4) and Lemma 2.1, one has ∥u∥ 2m+α
m

≤
[(

∥u0∥1−m−α
2m+α

m
+ Ĉ0

)
e(m+α−1)δt − Ĉ0

] 1
1−m−α

, 0 ≤ t < T0,

∥u∥ 2m+α
m

≡ 0, T0 ≤ t < +∞,

where

Ĉ0 = C13C
−1
14 and T0 =

1

δ (1−m− α)
ln
[
1 + Ĉ0

−1
∥u0∥1−m−α

2m+α
m

]
. (3.5)
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Case b. If −m < α < m
[
N−(m+1)
Nm+m+1 − 1

]
. For this case, we choose

s =
N [1− (m+ α)]−m− 1

m+ 1
>
m+ α

m

in (3.1). By the choice of s and Sobolev embedding inequality, we find(∫
Ω

us+1dx

) m+α+s
(m+1)(s+1)

=

(∫
Ω

u
N(α+m+s)
N−(m+1) dx

)N−(m+1)
N(m+1)

≤ κ2

(∫
Ω

∣∣∣∇uα+m+s
m+1

∣∣∣m+1

dx

) 1
m+1

,

(3.6)

where κ2 is the embedding constant, depending only on m, α and N . Choosing ϵ1
sufficiently small such that

s (m+ 1)
1−α − λϵ1 (m+ α+ s)

1−α

is a positive number. In addition, once ϵ1 is fixed, then one can select λ small
enough to guarantee that

C15 =
s

κm+1
2

(
m+ 1

m+ α+ s

)1−α

− λ

[
ϵ1

κm+1
2

+ C (ϵ1) |Ω|
1−m−α

s+1

]
> 0.

Then from (3.1) and (3.2) and (3.6), one gets

d

dt

∫
Ω

us+1dx+ C16

(∫
Ω

us+1dx

)m+α+s
s+1

+ C17

∫
Ω

us+1dx ≤ 0, (3.7)

where

C16 = (s+ 1)

(
m+ 1

m+ α+ s

)m+α

C15 and C17 = δ (s+ 1) .

Noticing that C16, C17 are positive constants and m+α+s
s+1 ∈ (0, 1), then (3.7) and

Lemma 2.1 tells us
∥u∥N(1−m−α)

m+1
≤

[(
∥u0∥1−m−α

N(1−m−α)
m+1

+ Ĉ1

)
· e(m+α−1)δt − Ĉ1

] 1
1−m−α

, 0 ≤ t < T1,

∥u∥N(1−m−α)
m+1

≡ 0, T1 ≤ t < +∞,

where

Ĉ1 = C16C
−1
17 and T1 =

1

δ (1−m− α)
ln

[
1 + Ĉ1

−1
∥u0∥1−m−α

N(1−m−α)
m+1

]
. (3.8)

(ii). For this part, we also take s = m+α
m in (3.1). From m > 0 and 0 < m+α <

1, it follows that m+1 < 2m+α
m+α . Making using of Sobolev embedding theorem, one

has∫
Ω

u
2m+α

m dx =

∫
Ω

u
m+α
m · 2m+α

m+α dx ≤ κ3

(∫
Ω

∣∣∣∇um+α
m

∣∣∣m+1

dx

) 2m+α
(m+1)(m+α)

. (3.9)
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where κ3 = κ3 (m,α). Let ϵ1 and λ be sufficiently small such that

C18 =

[(
m

m+ α

)1−α

− λϵ1

]
κ
− (m+1)(m+α)

2m+α

3 − λC (ϵ1) |Ω|
m(1−m−α)

2m+α > 0.

Combining now (3.2) with (3.9), we arrive at

d

dt

∫
Ω

u
2m+α

m dx+ C19

(∫
Ω

u
2m+α

m dx

) (m+1)(m+α)
2m+α

+ C14

∫
Ω

u
2m+α

m dx ≤ 0, (3.10)

where

C19 =
2m+ α

m

(
m

m+ α

)m+α

C18.

It follows from (3.10) and Lemma 2.1 that ∥u∥ 2m+α
m

≤
[(

∥u0∥1−m−α
2m+α

m
+ Ĉ2

)
e(m+α−1)δt − Ĉ2

] 1
1−m−α

, 0 ≤ t < T2,

∥u∥ 2m+α
m

≡ 0, T2 ≤ t < +∞,

where

Ĉ2 = C19C
−1
14 and T2 =

1

δ (1−m− α)
ln
[
1 + Ĉ2

−1
∥u0∥1−m−α

2m+α
m

]
. (3.11)

(iii). Let λ1 be the first eigenvalue and ψ (x) be the corresponding eigenfunction
of the following problem − div

(
Uα |∇U|m−1 ∇U

)
= µUα+1 |U|m−1

, x ∈ Ω,

U (x) = 0, x ∈ ∂Ω.
(3.12)

From Lemma 2.3 in [27] (or Lemmas 2.1 and 2.2 in [8]), we can claim that the first
eigenfunction ψ (x) is positive. In what follows, we assume that max

x∈Ω
ψ (x) = 1.

Define a function f1 (t) as follows

f1 (t) = d
1

m+α−1
(
1− e−ct

) 1
1−m−α ,

where d ∈ (1,+∞), and c ∈ (0, d (1−m− α)). Then it is easy to check that

f1 (0) = 0 and f1 (t) ∈ (0, 1) for t > 0. (3.13)

Furthermore, by a series of calculation, we can verify that

f ′1 (t) + df1 (t)− fm+α
1 (t) < 0. (3.14)

Let
V (x, t) = f1 (t)ψ (x) .

Our next goal is to show that V (x, t) is a weak subsolution of problem (1.1). By a s-
traightforward computation, for any nonnegative function ζ (x, t) ∈ C∞

0 (Ω× (0, T )),
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we have

I0 : =

∫ t

0

∫
Ω

[
Vs (x, s) ζ (x, s) + Vα (x, s) |∇V (x, s)|m−1 ∇V · ∇ζ (x, s)

]
dxds

+

∫ t

0

∫
Ω

[
δV (x, s) ζ (x, s)− λ |∇V (x, s)|m+α

ζ (x, s)
]
dxds

=

∫ t

0

∫
Ω

f1s (s)ψ (x) ζ (x, s) dxds+

∫ t

0

∫
Ω

δf1 (s)ψ (x) ζ (x, s) dxds

+

∫ t

0

∫
Ω

fα+m1 (s)ψα (x) |∇ψ (x)|m−1 ∇ψ (x) · ∇ζ (x, s) dxds

− λ

∫ t

0

∫
Ω

fm+α
1 (s) |∇ψ (x)|m+α

ζ (x, s) dxds

<

∫ t

0

∫
Ω

{[
fm+α
1 (s) + (δ − d) f1 (s)

]
ψ (x) ζ (x, s)

}
dxds

+

∫ t

0

∫
Ω

fα+m1 (s) ζ (x, s)
[
λ1ψ

m+α (x)− λ |∇ψ (x)|m+α
]
dxds.

Recalling that f1, ψ ∈ (0, 1), then 0 < m+ α < 1 tells us that

I0 <

∫ t

0

∫
Ω

fm+α
1 (s) ζ (x, s)

[
(1 + δ + λ1)ψ

m+α (x)− λ |∇ψ (x)|m+α
]
dxds.

(3.15)

If

λ >
(1 + δ + λ1) ∥ψ∥m+α

m+α

∥∇ψ∥m+α
m+α

,

then we can immediately claim that I0 < 0, which implies that V (x, t) is a weak
subsolution of problem (1.1). Then according to comparison principle, we see that
u (x, t) > V (x, t) > 0 holds for (x, t) ∈ Ω × (0,+∞), which implies that, for any
nonzero nonnegative initial data u0, the weak solution of problem (1.1) cannot
vanish in finite time provided that λ is sufficiently large. The proof of Theorem 3.1
is complete.

The following theorem shows that the extinction behavior will occur if m+α <
q < m+1

2−α , and the initial data is sufficiently small.

Theorem 3.2. Assume that 0 < m + α < 1, β = 1 and m + α < q < m+1
2−α , then

the nonnegative weak solution of problem (1.1) vanishes in finite time provided that
u0 is sufficiently small. Furthermore,

(i) if N ≥ 2, then we have

∥u∥ 2m+α
m

≤∥u0∥ 2m+α
m

e−
mχ1
2m+α t, 0 ≤ t < T3,

∥u∥ 2m+α
m

≤

[(
∥u (·, T3)∥1−m−α

2m+α
m

+ Ĉ3

)

· e(m+α−1)δ(t−T3) − Ĉ3

] 1
1−m−α

, T3 ≤ t < T4,

∥u∥ 2m+α
m

≡0, T4 ≤ t < +∞
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for m
(

N−m−1
Nm+m+1 − 1

)
≤ α < 1, and

∥u∥N[1−(m+α)]
m+1

≤∥u0∥N[1−(m+α)]
m+1

e−
(m+1)χ2

N[1−(m+α)]
t, 0 ≤ t < T5,

∥u∥N[1−(m+α)]
m+1

≤

[(
∥u (·, T5)∥1−m−α

N[1−(m+α)]
m+1

+ Ĉ4

)

· e(m+α−1)δ(t−T5) − Ĉ4

] 1
1−m−α

, T5 ≤ t < T6,

∥u∥N[1−(m+α)]
m+1

≡0, T6 ≤ t < +∞

for −m < α < m
(

N−m−1
Nm+m+1 − 1

)
, where χ1 and χ2 are suitable positive

constants, and Ĉ3 and T4 are given by (3.20), Ĉ4 and T6 are given by (3.25).

(ii) if N = 1, then we have

∥u∥ 2m+α
m

≤∥u0∥ 2m+α
m

e−
mχ3
2m+α t, 0 ≤ t < T7,

∥u∥ 2m+α
m

≤

[(
∥u (·, T7)∥1−m−α

2m+α
m

+ Ĉ5

)

· e(m+α−1)δ(t−T7) − Ĉ5

] 1
1−m−α

, T7 ≤ t < T8,

∥u∥ 2m+α
m

≡0, T8 ≤ t < +∞,

where χ3 is an appropriate positive constant, Ĉ5 and T8 are given by (3.30).

Proof. Notice that (3.2) still holds for q ∈
(
m+ α, m+1

2−α

)
.

(i). Case a. If m
[
N−(m+1)
Nm+m+1 − 1

]
≤ α < 1. Similar to the process of the

derivation of (3.4), we have

d

dt

∫
Ω

u
2m+α

m dx+ C20

(∫
Ω

u
2m+α

m dx

) (m+1)(m+α)
2m+α

+ C14

∫
Ω

u
2m+α

m dx

≤C21

(∫
Ω

u
2m+α

m dx

) (m+1)[m+α(1−q)]
(2m+α)(m+1−q)

,

(3.16)

where

C20 =
2m+ α

m

[(
m

m+ α

)m
− λϵ1

(
m

m+ α

)q]
C12,

and

C21 =
λC (ϵ1) (2m+ α)

m

(
m

m+ α

)q
|Ω|1−

(m+1)[m+α(1−q)]
(2m+α)(m+1−q) .

Let u0 (x) be sufficiently small to satisfy(∫
Ω

u
2m+α

m
0 dx

)m(m+1)[q−(m+α)]
(2m+α)(m+1−q)

≤ C20C
−1
21 ,
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then by virtue of (3.16) and Lemma 2.2, we know that there exists a constant
χ1 > C14 such that, for t ≥ 0,∫

Ω

u
2m+α

m dx ∈
[
0, e−χ1t

∫
Ω

u
2m+α

m
0 dx

]
. (3.17)

In addition, from (3.17), one can conclude that that there exists a positive number
T3 such that, for t ≥ T3,

C22 = C20 − C21

(∫
Ω

u
2m+α

m dx

)m(m+1)[q−(m+α)]
(2m+α)(m+1−q)

≥ C20 − C21

(
e−χ1T3

∫
Ω

u
2m+α

m
0 dx

)m(m+1)[q−(m+α)]
(2m+α)(m+1−q)

> 0.

(3.18)

It follows from (3.16) and (3.18) that

d

dt

∫
Ω

u
2m+α

m dx+ C22

(∫
Ω

u
2m+α

m dx

) (m+1)(m+α)
2m+α

+ C14

∫
Ω

u
2m+α

m dx ≤ 0. (3.19)

Combining (3.19) with Lemma 2.1, we get

∥u∥ 2m+α
m

≤

[(
∥u (·, T3)∥1−m−α

2m+α
m

+ Ĉ3

)

· e(m+α−1)δ(t−T3) − Ĉ3

] 1
1−m−α

, T3 ≤ t < T4,

∥u∥ 2m+α
m

≡0, T4 ≤ t < +∞,

where

Ĉ3 = C22C
−1
14 and T4 =

1

δ (1−m− α)
ln
[
1 + Ĉ3

−1
∥u (·, T3)∥1−m−α

2m+α
m

]
+ T3. (3.20)

Case b. If −m < α < m
[
N−(m+1)
Nm+m+1 − 1

]
. By using the similar manners as the

derivation of (3.7), we have

d

dt

∫
Ω

us+1dx+ C23

(∫
Ω

us+1dx

)m+α+s
s+1

+ C17

∫
Ω

us+1dx

≤C24

(∫
Ω

us+1dx

) s(m+1)−q(α+s−1)
(s+1)(m+1−q)

,

(3.21)

where

C23 =
s+ 1

κm+1
2

[
s

(
m+ 1

m+ α+ s

)m+1

− λϵ1

(
m+ 1

m+ α+ s

)q]
,

and

C24 = λC (ϵ1) (s+ 1) |Ω|1−
s(m+1)−q(α+s−1)

(s+1)(m+1−q)

(
m+ 1

m+ α+ s

)q
.
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Choosing u0 small enough such that(∫
Ω

us+1
0 dx

) (m+1)[q−(m+α)]
(s+1)(m+1−q)

≤ C23C
−1
24 ,

then Lemma 2.2 tells us that there exists a constant χ2 > C17 such that∫
Ω

us+1dx ∈
[
0, e−χ2t

∫
Ω

us+1
0 dx

]
(3.22)

holds for all t ≥ 0. Furthermore, from (3.22), we see that there exists a positive
number T5 such that, for t ≥ T5,

C25 = C23 − C24

(∫
Ω

us+1dx

) (m+1)[q−(m+α)]
(s+1)(m+1−q)

≥ C23 − C24

(
e−χ2T5

∫
Ω

us+1
0 dx

) (m+1)[q−(m+α)]
(s+1)(m+1−q)

> 0.

(3.23)

It follows from (3.21) and (3.23) that

d

dt

∫
Ω

us+1dx+ C25

(∫
Ω

us+1dx

)m+α+s
s+1

+ C17

∫
Ω

us+1dx ≤ 0. (3.24)

Lemma 2.1 and (3.24) leads to

∥u∥N[1−(m+α)]
m+1

≤

[(
∥u (·, T5)∥1−m−α

N[1−(m+α)]
m+1

+ Ĉ4

)

· e(m+α−1)δ(t−T5) − Ĉ4

] 1
1−m−α

, T5 ≤ t < T6,

∥u∥N[1−(m+α)]
m+1

≡0, T6 ≤ t < +∞,

where

Ĉ4 = C25C
−1
17 and T6 =

1

δ (1−m− α)
ln
[
1 + Ĉ4

−1
∥u (·, T5)∥1−m−α

2m+α
m

]
+ T5. (3.25)

(ii). For this part, in view of (3.2) (with s = m+α
m ) and (3.9), one has

d

dt

∫
Ω

u
2m+α

m dx+ C26

(∫
Ω

u
2m+α

m dx

) (m+1)(m+α)
2m+α

+ C14

∫
Ω

u
2m+α

m dx

≤C21

(∫
Ω

u
2m+α

m dx

) (m+1)[m+α(1−q)]
(2m+α)(m+1−q)

,

(3.26)

where

C26 =
2m+ α

m
κ
− (m+1)(m+α)

2m+α

3

[(
m

m+ α

)m
− λϵ1

(
m

m+ α

)q]
.
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From Lemma 2.2, we see that, for any t ≥ 0, there exists a constant χ3 > C14 such
that ∫

Ω

u
2m+α

m dx ∈
[
0, e−χ3t

∫
Ω

u
2m+α

m
0 dx

]
(3.27)

provided that (∫
Ω

u
2m+α

m
0 dx

)m(m+1)[q−(m+α)]
(2m+α)(m+1−q)

≤ C26C
−1
21 .

Moreover, from (3.27), one can claim that there exists a positive number T7 such
that, for t ≥ T7,

C27 = C26 − C21

(∫
Ω

u
2m+α

m dx

)m(m+1)[q−(m+α)]
(2m+α)(m+1−q)

≥ C26 − C21

(
e−χ3T7

∫
Ω

u
2m+α

m
0 dx

)m(m+1)[q−(m+α)]
(2m+α)(m+1−q)

> 0.

(3.28)

It follows from (3.27) and (3.28) that

d

dt

∫
Ω

u
2m+α

m dx+ C27

(∫
Ω

u
2m+α

m dx

) (m+1)(m+α)
2m+α

+ C14

∫
Ω

u
2m+α

m dx ≤ 0. (3.29)

Combining (3.29) with Lemma 2.1, we deduce that

∥u∥ 2m+α
m

≤

[(
∥u (·, T7)∥1−m−α

2m+α
m

+ Ĉ5

)

· e(m+α−1)δ(t−T7) − Ĉ5

] 1
1−m−α

, T7 ≤ t < T8,

∥u∥ 2m+α
m

≡0, T8 ≤ t < +∞,

where

Ĉ5 = C27C
−1
14 and T8 =

1

δ (1−m− α)
ln
[
1 + Ĉ5

−1
∥u (·, T7)∥1−m−α

2m+α
m

]
+ T7. (3.30)

The proof of Theorem 3.2 is complete.
The next theorem is about the non-extinction result for the case q < m+ α.

Theorem 3.3. Assume that 0 < m + α < 1, β = 1 and q < m + α, then for any
nonzero nonnegative initial datum u0, the nonnegative weak solution u of problem
(1.1) cannot possess extinction phenomenon provided that λ is sufficiently large.

Proof. The proof is similar to that of part (iii) of Theorem 3.1, so we sketch it
briefly here. Define a function f2 (t) as follows

f2 (t) = d
1

q−m−α
(
1− e−ct

) 1
1−q ,

where d ∈ (max {1, 2δ} ,+∞), and c > 0. It is obvious that f2 (t) satisfies (3.13).

Moreover, by fixing c ∈
(
0, (m+ α− q) d

1−q
m+α−q

)
, then direct computation and the

inequality
(1− x)

a
+ ax < 1 for x, a ∈ (0, 1) ,
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yield that

f ′2 (t) +
d

2

[
f2 (t) + fm+α

2 (t)
]
− fq2 (t) < 0. (3.31)

Put
W (x, t) = f2 (t)ψ (x) ,

where ψ (x) is the same as that in the proof of Theorem 3.1. If

λ >
(1 + λ1) ∥ψ∥m+α

m+α

∥∇ψ∥qq
,

then we can immediately show that W (x, t) is a weak subsolution of problem (1.1).
Consequently, from comparison principle, it follows that u (x, t) > W (x, t) > 0 for
all (x, t) ∈ Ω× (0,+∞), which means that, for any nonzero nonnegative initial data
u0, extinction phenomenon in finite time cannot occur for sufficiently large λ. The
proof of theorem 3.3 is complete.

Remark 3.1. From Theorems 3.1, 3.2 and 3.3, we know that q = m + α is the
critical extinction exponent of the weak solution of problem (1.1) with β = 1 and
m+ α ∈ (0, 1).

4. The case β ∈ (0, 1)

The main purpose of this section is to investigate the extinction behavior of the
weak solution for problem (1.1) in the case β ∈ (0, 1).

Theorem 4.1. Assume that 0 < m+ α < 1, 0 < β < 1 and q = m+ α.

(i) If N ≥ 2, then the nonnegative weak solution of problem (1.1) vanishes in
finite time for any nonnegative initial datum u0 provided that λ is sufficiently
small. Furthermore, we have ∥u∥ 2m+α

m
≤ ∥u0∥ 2m+α

m

[
1− Ĉ6 ∥u0∥

mΓ1−2m−α
m

2m+α
m

t

] m
2m+α−mΓ1

, 0 ≤ t < T9,

∥u∥ 2m+α
m

≡ 0, T9 ≤ T < +∞

for m
(

N−m−1
Nm+m+1 − 1

)
≤ α < 1, and

 ∥u∥s+1 ≤ ∥u0∥s+1

[
1− Ĉ7 ∥u0∥Γ2−s−1

s+1 t
] 1

s+1−Γ2
, 0 ≤ t < T10,

∥u∥s+1 ≡ 0, T10 ≤ T < +∞

for −m < α < m
(

N−m−1
Nm+m+1 − 1

)
, where s > N [1−(m+α)]−m−1

m+1 , and Γ1, T9,

Ĉ6, Γ2, T10 and Ĉ7 are given by (4.4), (4.10), (4.11), (4.12), (4.17) and
(4.18), respectively.

(ii) If N ≥ 1 and 0 < q = m+ α ≤ β < 1, then the nonnegative weak solution of
problem (1.1) cannot vanish in finite time provided that λ is sufficiently large.
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Proof. (i). Multiplying the first equation in (1.1) by us with s > 0, and integrat-
ing over Ω by parts, one has

1

s+ 1

d

dt

∫
Ω

us+1dx+ s

(
m+ 1

m+ α+ s

)m+1 ∫
Ω

∣∣∣∇um+α+s
m+1

∣∣∣m+1

dx

=λ

(
m+ 1

m+ α+ s

)q ∫
Ω

u
s(m+1)−q(α+s−1)

m+1

∣∣∣∇um+α+s
m+1

∣∣∣q dx− δ

∫
Ω

us+βdx.

(4.1)

Since q = m+ α < m+ 1, Young’s and Hölder’s inequalities yield that

1

s+ 1

d

dt

∫
Ω

us+1dx+ C28

∫
Ω

∣∣∣∇um+α+s
m+1

∣∣∣m+1

dx

≤C29

(∫
Ω

us+1dx

)m+α+s
s+1

− δ

∫
Ω

us+βdx,

(4.2)

where

C28 = s

(
m+ 1

m+ α+ s

)m+1

− λϵ2

(
m+ 1

m+ α+ s

)m+α

,

and

C29 = λC (ϵ2) |Ω|
1−m−α

s+1

(
m+ 1

m+ α+ s

)m+α

.

It is easy to verify that C28 is a positive constant provided that ϵ2 is sufficiently
small.

Case a. If m
[
N−(m+1)
Nm+m+1 − 1

]
≤ α < 1. For this case, by taking s = m+α

m in

(4.2), we arrive at

m

2m+ α

d

dt

∫
Ω

u
2m+α

m dx+ C28

∫
Ω

∣∣∣∇um+α
m

∣∣∣m+1

dx

≤C29

(∫
Ω

u
2m+α

m dx

) (m+1)(m+α)
2m+α

− δ

∫
Ω

u
α+m(1+β)

m dx,

(4.3)

For the sake of simplicity, we denote

ρ1 =
Nm (m+ 1) (m+ α) (1− β)

(2m+ α) [(m+ 1) (α+m (β + 1)) +mN (m+ α− β)]
,

and

Γ1 =
(m+ 1) (m+ α) [α+m (β + 1)]

m (m+ 1) (m+ α) (1− ρ1) +mρ1 [α+m (β + 1)]
. (4.4)

Recalling that β ∈ (0, 1) and m
[
N−(m+1)
Nm+m+1 − 1

]
≤ α < 1, we can verify that ρ1 ∈

(0, 1), and

Γ1 <
α+m (β + 1)

m (1− ρ1)
,

mρ1Γ1

(m+ 1) (m+ α)
· 1

1− m(1−ρ1)Γ1

α+m(1+β)

= 1. (4.5)

Now, using Lemma 2.3 with v = u
m+α
m , µ = 2m+α

m+α , p = m + 1 and r = α+m(1+β)
m+α ,

we deduce that(∫
Ω

u
2m+α

m dx

) m+α
2m+α

≤ κ4

(∫
Ω

∣∣∣∇um+α
m

∣∣∣m+1

dx

) ρ1
m+1

(∫
Ω

u
α+m(1+β)

m dx

) (m+α)(1−ρ1)

α+m(1+β)

,
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where κ4 = κ4 (N,m,α, β). Furthermore, we have(∫
Ω

u
2m+α

m dx

) m+α
2m+α · mΓ1

m+α

≤κ
mΓ1
m+α

4

(∫
Ω

∣∣∣∇um+α
m

∣∣∣m+1

dx

) ρ1
m+1 ·

mΓ1
m+α

×
(∫

Ω

u
α+m(1+β)

m dx

) (m+α)(1−ρ1)

α+m(1+β)
· mΓ1
m+α

.

Noticing that (4.5), and making use of Young’s inequality, we obtain(∫
Ω

u
2m+α

m dx

) mΓ1
2m+α

≤ κ
mΓ1
m+α

4

(∫
Ω

∣∣∣∇um+α
m

∣∣∣m+1

dx

) mρ1Γ1
(m+1)(m+α)

×
(∫

Ω

u
α+m(1+β)

m dx

)m(1−ρ1)Γ1
α+m(1+β)

≤ κ
mΓ1
m+α

4

(
ϵ3

∫
Ω

∣∣∣∇um+α
m

∣∣∣m+1

dx+ C (ϵ3)

∫
Ω

u
α+m(1+β)

m dx

)
,

(4.6)

which implies that∫
Ω

u
α+m(1+β)

m dx ≥ 1

κ
mΓ1
m+α

4 C (ϵ3)

(∫
Ω

u
2m+α

m dx

) mΓ1
2m+α

− ϵ3
C (ϵ3)

∫
Ω

∣∣∣∇um+α
m

∣∣∣m+1

dx.

(4.7)
Combining now (3.3), (4.3) and (4.7), one has

d

dt

∫
Ω

u
2m+α

m dx+ C30

∫
Ω

∣∣∣∇um+α
m

∣∣∣m+1

dx+ C31

(∫
Ω

u
2m+α

m dx

) mΓ1
2m+α

≤ 0, (4.8)

where

C30 =
2m+ α

m

[
C28 −

δϵ3
C (ϵ3)

− C29

C12

]
and C31 =

C14

κ
mΓ1
m+α

4 C (ϵ3)

.

Noticing that if λ is suitable small, then we have that C28− C29

C12
is a positive number.

Furthermore, for such a fixed λ, one can choose ϵ3 small enough to ensure that C30

is positive. Then (4.8) tells us

d

dt

∫
Ω

u
2m+α

m dx+ C31

(∫
Ω

u
2m+α

m dx

) mΓ1
2m+α

≤ 0. (4.9)

Integrating (4.9), we deduce that

∥u∥ 2m+α
m

≤ ∥u0∥ 2m+α
m

[
1− Ĉ6 ∥u0∥

mΓ1−2m−α
m

2m+α
m

t

] m
2m+α−mΓ1

+

,

which implies that u (x, t) vanishes in finite time

T9 = Ĉ6

−1
∥u0∥2m+α−mΓ1

2m+α
m

, (4.10)
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where

Ĉ6 =
C31 (2m+ α)

2m+ α−mΓ1
. (4.11)

Case b. If −m < α < m
[
N−(m+1)
Nm+m+1 − 1

]
. For this case, in (4.2), we choose

s >
N [1− (m+ α)]−m− 1

m+ 1
>
m+ α

m
.

Denote

ρ2 =
N (1− β) (m+ α+ s)

(s+ 1) [(m+ 1) (s+ β)−N (β −m− α)]
,

and

Γ2 =
(s+ 1) [(m+ 1) (s+ β)−N (β −m− α)]

(m+ 1) (1 + β)−N (β −m− α)
. (4.12)

By the choice of s and recalling that β ∈ (0, 1) and −m < α < m
[
N−(m+1)
Nm+m+1 − 1

]
,

we can prove that ρ2 ∈ (0, 1) and Γ2 ∈ (s, s+ 1). Now, using Gagliardo-Nirenberg
multiplicative embedding inequality and Young’s inequality, and by the similar ar-
guments of the processes of the derivation of (4.6), we obtain(∫

Ω

us+1dx

) Γ2
s+1

≤ κ5

(∫
Ω

∣∣∣∇um+α+s
m+1

∣∣∣m+1

dx

) ρ2Γ2
m+α+s

(∫
Ω

us+βdx

)Γ2(1−ρ2)
s+β

≤ κ5

(
ϵ4

∫
Ω

∣∣∣∇um+α+s
m+1

∣∣∣m+1

dx+ C (ϵ4)

∫
Ω

us+βdx

)
,

(4.13)

where κ5 = κ5 (N,m,α, β, s). (4.13) means that∫
Ω

us+βdx ≥ 1

κ5C (ϵ4)

(∫
Ω

us+1dx

) Γ2
s+1

− ϵ4
C (ϵ4)

∫
Ω

∣∣∣∇um+α+s
m+1

∣∣∣m+1

dx. (4.14)

It follows from (3.6), (4.2) and (4.14) that

d

dt

∫
Ω

us+1dx+ C32

∫
Ω

∣∣∣∇um+α+s
m+1

∣∣∣m+1

dx+ C33

(∫
Ω

us+1dx

) Γ2
s+1

≤ 0, (4.15)

where

C32 = (s+ 1)

[
C28 −

ϵ4δ

C (ϵ4)
− C29κ

m+1
2

]
and C33 =

C17

κ5C (ϵ4)
.

Let λ be small enough such that C29 is sufficiently small, then we have C32 > 0 by
choosing ϵ4 small enough, and hence, (4.15) implies that

d

dt

∫
Ω

us+1dx+ C33

(∫
Ω

us+1dx

) Γ2
s+1

≤ 0. (4.16)

Integrating (4.16) from 0 to t, we deduce that

∥u∥s+1 ≤ ∥u0∥s+1

[
1− Ĉ7 ∥u0∥Γ2−s−1

s+1 t
] 1

s+1−Γ2

+
,
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which means that u (x, t) vanishes in finite time

T10 = Ĉ7

−1
∥u0∥s+1−Γ2

s+1 , (4.17)

where

Ĉ7 =
C33 (s+ 1)

s+ 1− Γ2
. (4.18)

(ii). The proof is similar to that of part (iii) of Theorem 3.1, so we sketch it
briefly here. Define a function f3 (t) as follows

f3 (t) =

 d
1

m+α−β
(
1− e−ct

) 1
1−m−α , q = m+ α < β,

[(1−m− α) t]
1

1−m−α , q = m+ α = β,

where d ∈ (1,+∞), and c ∈
(
0, (β −m− α) d

1−m−α
β−m−α

)
. Then it is easy to check that

f3 (t) satisfies

f3 (0) = 0 and f3 (t) ∈ (0, 1) for t > 0,

and {
f ′3 (t) + dfβ3 (t)− fm+α

3 (t) < 0, q = m+ α < β,

f ′3 (t) = fm+α
3 (t) , q = m+ α = β.

Let

X (x, t) = f3 (t)ψ (x) ,

where ψ (x) is the same as that in the proof of Theorem 3.1. By a straightforward
computation, we can claim that X (x, t) is a weak subsolution of problem (1.1)
provided that

λ >
(1 + δ + λ1) ∥ψ∥m+α

m+α

∥∇ψ∥m+α
m+α

.

Then by comparison principle, we know that, for sufficiently large λ, the weak
solution of problem (1.1) cannot vanish in finite time. The proof of Theorem 4.1 is
complete.

Theorem 4.2. Assume that 0 < m+ α < 1, 0 < β < 1, and N ≥ 2.

(i) If m
(

N−m−1
Nm+m+1 − 1

)
≤ α < 1 and (m+1)[m(Γ1−1)−α]

mΓ1−α(m+1) < q < m+1
2−α , then the

nonnegative weak solution of problem (1.1) vanishes in finite time provided
that u0 is sufficiently small. Furthermore, we have ∥u∥ 2m+α

m
≤ ∥u0∥ 2m+α

m

[
1− Ĉ8 ∥u0∥

mΓ1−2m−α
m

2m+α
m

t

] m
2m+α−mΓ1

, 0 ≤ t < T11,

∥u∥ 2m+α
m

≡ 0, T11 ≤ t < +∞,

where Γ1, T11 and Ĉ8 are appropriate positive constants, given by (4.4), (4.22)
and (4.23), respectively.
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(ii) If −m < α < m
[
N−(m+1)
Nm+m+1 − 1

]
and (m+1)(Γ2−s)

Γ2+1−α−s < q < m+1
2−α , then the non-

negative weak solution of problem (1.1) vanishes in finite time provided that
u0 is sufficiently small. Furthermore, we have ∥u∥s+1 ≤ ∥u0∥s+1

[
1− Ĉ9 ∥u0∥Γ2−s−1

s+1 t
] 1

s+1−Γ2
, 0 ≤ t < T12,

∥u∥s+1 ≡ 0, T12 ≤ t < +∞,

where s > N [1−(m+α)]−m−1
m+1 , and Γ2, T12 and Ĉ9 are suitable positive con-

stants, given by (4.12), (4.27) and (4.28), respectively.

Proof. (i). For m
(

N−m−1
Nm+m+1 − 1

)
≤ α < 1 and (m+1)[m(Γ1−1)−α]

mΓ1−α(m+1) < q < m+1
2−α .

Taking s = m+α
m in (4.1), and applying Young’s inequality and Hölder’s inequality,

we arrive at

d

dt

∫
Ω

u
2m+α

m dx+ C14

∫
Ω

u
α+m(β+1)

m dx+ C34

∫
Ω

∣∣∣∇um+α
m

∣∣∣m+1

dx

≤C35

(∫
Ω

u
2m+α

m dx

) (m+1)[m+α(1−q)]
(2m+α)(m+1−q)

,

(4.19)

where

C34 =
2m+ α

m

[(
m

m+ α

)m
− λϵ5

(
m

m+ α

)q]
,

C35 =
λC (ϵ5) (2m+ α)

m

(
m

m+ α

)q
|Ω|1−

(m+1)[m+α(1−q)]
(2m+α)(m+1−q) ,

and ϵ5 is a sufficiently small positive number such that C34 > 0. Using (4.6) and
(4.19), we get

d

dt

∫
Ω

u
2m+α

m dx+ C36

(∫
Ω

u
2m+α

m dx

) mΓ1
2m+α

+ C37

∫
Ω

∣∣∣∇um+α
m

∣∣∣m+1

dx

≤C35

(∫
Ω

u
2m+α

m dx

) (m+1)[m+α(1−q)]
(2m+α)(m+1−q)

,

(4.20)

where
C36 = C14 [κ4C (ϵ3)]

−1
, C37 = C34 − ϵ3C14 [C (ϵ3)]

−1
,

and ϵ3 is small enough such that C37 > 0. If

q >
(m+ 1) [m (Γ1 − 1)− α]

mΓ1 − α (m+ 1)
,

and ∫
Ω

u
2m+α

m
0 dx ≤

(
C−1

35 C36

) (2m+α)(m+1−q)
(m+1)[m+α(1−q)]−mΓ1(m+1−q) ,

then (4.20) leads to

d

dt

∫
Ω

u
2m+α

m dx+ C38

(∫
Ω

u
2m+α

m dx

) mΓ1
2m+α

≤ 0, (4.21)
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where

C38 = C36 − C35

(∫
Ω

u
2m+α

m
0 dx

) (m+1)[m+α(1−q)]−mΓ1(m+1−q)

(2m+α)(m+1−q)

.

Integrating (4.21), we obtain

∥u∥ 2m+α
m

≤ ∥u0∥ 2m+α
m

[
1− Ĉ8 ∥u0∥

mΓ1−2m−α
m

2m+α
m

t

] m
2m+α−mΓ1

+

,

which tells us that u (x, t) vanishes in finite time

T11 = Ĉ8

−1
∥u0∥

2m+α−mΓ1
m

2m+α
m

, (4.22)

and

Ĉ8 =
(2m+ α)C38

2m+ α−mΓ1
. (4.23)

(ii). For −m < α < m
[
N−(m+1)
Nm+m+1 − 1

]
and (m+1)(Γ2−s)

Γ2+1−α−s < q < m+1
2−α . Using (4.1)

with

s >
N [1− (m+ α)]−m− 1

m+ 1
>
m+ α

m
,

and applying Young’s inequality and Hölder’s inequality, one has

d

dt

∫
Ω

us+1dx+ C17

∫
Ω

us+βdx+ C39

∫
Ω

∣∣∣∇um+α+s
m+1

∣∣∣m+1

dx

≤C40

(∫
Ω

us+1dx

) s(m+1)−q(α+s−1)
(s+1)(m+1−q)

,

(4.24)

where

C39 = (s+ 1)

[
s

(
m+ 1

m+ α+ s

)m+1

− λϵ6

(
m+ 1

m+ α+ s

)q]
,

C40 = λC (ϵ6) (s+ 1) |Ω|1−
s(m+1)−q(α+s−1)

(s+1)(m+1−q)

(
m+ 1

m+ α+ s

)q
,

and ϵ6 is a sufficiently small positive number such that C39 > 0. Using (4.13) and
(4.24), we get

d

dt

∫
Ω

us+1dx+ C41

∫
Ω

∣∣∣∇um+α+s
m+1

∣∣∣m+1

dx+ C42

(∫
Ω

us+1dx

) Γ2
s+1

≤C40

(∫
Ω

us+1dx

) s(m+1)−q(α+s−1)
(s+1)(m+1−q)

,

(4.25)

where
C41 = C39 − ϵ4C17 [C (ϵ4)]

−1
, C42 = C17 [κ5C (ϵ4)]

−1
,

and ϵ4 is small enough such that C41 > 0. If

q >
(m+ 1) (Γ2 − s)

Γ2 + 1− α− s
,
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and ∫
Ω

us+1
0 dx ≤

(
C−1

40 C42

) (s+1)(m+1−q)
q(Γ2+1−α−s)−(m+1)(Γ2−s) ,

then from (4.25), it follows that

d

dt

∫
Ω

us+1dx+ C43

(∫
Ω

us+1dx

) Γ2
s+1

≤ 0, (4.26)

where

C43 = C42 − C40

(∫
Ω

us+1
0 dx

) q(Γ2+1−α−s)−(m+1)(Γ2−s)

(s+1)(m+1−q)

.

Integrating (4.26) over (0, t), we find that

∥u∥s+1 ≤ ∥u0∥s+1

[
1− Ĉ9 ∥u0∥Γ2−s−1

s+1 t
] 1

s+1−Γ2

+
,

which means that u (x, t) vanishes in finite time

T12 = Ĉ9

−1
∥u0∥s+1−Γ2

s+1 , (4.27)

and

Ĉ9 =
(s+ 1)C43

s+ 1− Γ2
. (4.28)

The proof of Theorem 4.2 is complete.
The final theorem is about the non-extinction result for the case q < m+α and

q ≤ β < 1.

Theorem 4.3. Assume that 0 < m+α < 1, q < m+α,and q ≤ β < 1, then for any
nonzero nonnegative initial datum u0, the nonnegative weak solution u of problem
(1.1) cannot possess extinction phenomenon provided that λ is sufficiently large.

Proof. The proof is similar to that of part (iii) of Theorem 3.1, so we sketch it
briefly here. Define a function f4 (t) as follows

f4 (t) =

 d
1

q−m−α (1− e−c1t)
1

1−q , q = β < m+ α or q < β = m+ α,

d
1

q−β (1− e−c2t)
1

1−q , q < β < m+ α,

where d ∈ (1,+∞), c1 ∈
(
0, (m+ α− q) d

1−q
m+α−q

)
and c2 ∈

(
0, (β − q) d

1−q
β−q

)
. Then

it is easy to check that f4 (t) satisfies

f4 (0) = 0 and f4 (t) ∈ (0, 1) for t > 0,

and f ′4 (t) + dfm+α
4 (t)− fq4 (t) < 0, q = β < m+ α or q < β = m+ α,

f ′4 (t) +
d
2

[
fm+α
4 + fβ4

]
− fq4 (t) < 0, q < β < m+ α.

Let
Y (x, t) = f4 (t)ψ (x) ,
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where ψ (x) is the same as that in the proof of Theorem 3.1. By a straightforward
computation, we can claim that Y (x, t) is a weak subsolution of problem (1.1)
provided that

λ >


(1+δ+λ1)∥ψ∥m+α

m+α

∥∇ψ∥q
q

, q = β < m+ α or q < β = m+ α,

(1+δ+λ1)∥ψ∥β
β

∥∇ψ∥q
q

, q < β < m+ α.

Consequently, by comparison principle, we know that, for sufficiently large λ, the
weak solution of problem (1.1) cannot vanish in finite time. The proof of Theorem
4.3 is complete.

Remark 4.1. In the case of 0 < β < q ≤ m+α < 1, we can not prove that the non-
negative weak solution u of problem (1.1) does not possess extinction phenomenon
provided that λ is sufficiently large.
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