Journal of Applied Analysis and Computation Website:http://jaac-online.com/
Volume 5, Number 1, February 2015, 114-137 doi:10.11948/2015010

EXTINCTION FOR A QUASILINEAR
PARABOLIC EQUATION WITH A
NONLINEAR GRADIENT SOURCE AND
ABSORPTION*

Dengming Liu'f and Chunlai Mu?

Abstract We deal with the extinction, non-extinction and decay estimates
of the non-negative nontrivial weak solutions of the initial-boundary value
problem for the quasilinear parabolic equation with nonlinear gradient source
and absorption.

Keywords Extinction, non-extinction, quasilinear parabolic equation, non-
linear gradient source.

MSC(2000) 35K20, 35K55.

1. Introduction

This paper is devoted to the extinction phenomenon of the following parabolic
equation with nonlinear gradient source and absorption

uy = div (ua |Vau|" ! Vu) + M| Vu|? = 6u?, (2,t) € Q x (0, +00),
u(z,t) =0, (x,t) € 92 x (0,400), (1.1)

U((E,O):Uo(x), QCEQ,

where Q C RY is an open bounded domain with smooth boundary 952, m, A, ¢ and
0 are positive parameters, 0 < m+a < 1,0 < <1 and ug € L™ (Q)ﬂWOI"m's'1 (Q)
is a nonzero nonnegative function.

Problems like (1.1) arise from a variety of physical phenomena. For instance,
when a = 0, m = 1, the equation in problem (1.1) can be viewed as the viscosity
approximation of Hamilton-Jacobi type equation from stochastic control theory
(see [20]). In particular, when o = 0, m = 1 and ¢ = 2, the equation in problem
(1.1) appears in the physical theory of growth and roughening of surfaces, where it
is known as the Kardar-Parisi-Zhang equation (see [13]).

Since the equation in problem (1.1) is degenerate (or singular) at the points
where u = 0 or Vu = 0, and hence there is no classical solution in general. We first
introduce the definition of the weak for problem (1.1) as follows.
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Definition 1.1. A nonnegative measurable function wu (z,t) defined in Q x (0,7
is called a weak solution of problem (1.1) if u® [Vu|"™ ™" € L' (0, T; L (Q)), us €
L?(0,T;L? (), w € C(0,T;L> (Q)) N L (0, T; W7 (Q)), and the integral iden-
tity

/Qu(x,tz)g(x,tQ)dx+/:/Q [—u<t+ua|w|’"*1vu.v<} duwdt

t2 b (1.2)
:/ u(x,tl)((m,tl)dx+)\/ / |Vu|q(dxdt—6/ / uPCdrdt
Q t1 Q t1 Q
holds for any ¢ € C§° (€2 x (0,7)) and 0 < ¢; < t2 < T. Furthermore,
u(z,0) =ug (r) ae x €. (1.3)

Remark 1.1. The weak subsolution (resp. supersolution) of problem (1.1) can be
defined in the similar way except that “ =" in (1.2) and (1.3) is replaced by “ <”
(resp. “>7), and ¢ € C§° (2 x (0,T)) is taken to be nonnegative.

Remark 1.2. The local existence result of the weak solution for problem (1.1) fol-
lows, for example, from [25]. Furthermore, from Theorem 3.9 in [24] and Subsection
1.1 in [12], we know that comparison principle is granted for problem (1.1).

In the past few decades, many mathematicians have studied the extinction be-
haviors of various nonlinear parabolic problems (see [1,5,7,10,11,15,18-20,26,28,30,
32] and the references therein). For instance, many authors considered the following
problem

uy = div (|Vum|p_2 Vum> + Al — 0uP, (z,t) € Q x (0,400),
u(z,t) =0, (2,t) € 9Q x (0, +00), (1.4)
U(Z,O)ZUO(QJ‘), Z’eﬁa

where m, ¢ and § are positive constants, A and 0 are nonnegative constants, and
m(p—1) € (0,1). When m =1 and A = § = 0, Yuan et al. [31] showed that the
solution of problem (1.4) vanishes in finite time if and only if p € (1,2). When
m =1 and A = 0, Gu [9] pointed out that the necessary and sufficient condition
on the occurrence of extinction phenomenon is p € (1,2) or 8 € (0,1). When
m =1 and § = 0, Tian & Mu [27] proved that ¢ = p — 1 is the critical extinction
exponent of the solution of problem (1.4). When ¢ = 0, Jin et al. [14], Zhou &
Mu [33] concluded that the critical extinction exponent of the weak solution to
problem (1.4) is ¢ = m(p — 1). Recently, under the restrictive condition N > p,
Mu et al. [22] studied the extinction property of problem (1.4) with A, § # 0 and
B € (0,1]. It is worth to point out that the authors of [22] did not give the precise
decay estimates of the extinction solutions. Meanwhile, in the case 8 € (0,1),
the question is remained whether or not the solution of problem (1.4) possesses
extinction property if ¢ < m (p —1).

However, to our best knowledge, there is little literature on the study of the ex-
tinction and non-extinction properties for parabolic equations with nonlinear gradi-
ent terms. Benachour et al. discussed the following Cauchy problem with gradient
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absorption

uy = div (|Vu|p_2 Vu) —|Vul?, xRN t>0,
(1.5)
u(x,0) =ug (x), r € RV,

where ¢ > 0 and p € (1,2], and g (z) € BC (RN) NnLt (RN) is nonnegative, here
BC (RN ) denotes the space of bounded and continuous functions in RY. For the
special case p = 2, Benachour et al. [2] showed that extinction phenomenon takes

place for any nonnegative and integrable solution to problem (1.5) if ¢ € (0, NLH),

and established some temporal decay estimates for the L°° —norm of the nonnegative
solutions in the case ¢ > NL_H Later, Benachour et al. [3] investigated problem (1.5)
with p = 2 and ¢ € (0,1), and pointed out that the occurrence of the extinction
phenomenon depends on the asymptotic behavior of ug as |z| tends to infinity.
Roughly speaking, they proved that if the decay of initial data ug (x) is faster than
that of \sr:|_ﬁ as |z| — oo, then extinction occurs. Otherwise, the solution of (1.5)
is strictly positive for any positive initial data. In addition, they also claimed that
the critical extinction exponent p = NLH introduced in [2] is optimal. For p € (1,2),
based on comparison principle and gradient estimates of the solutions, lagar &
Laurencot [12] classified the behavior of the solutions for large time, obtaining
either positivity as t — oo for ¢ > p — NLH, optimal decay estimates as t — oo

for g € [g,p — NLH], or extinction in finite time for g € (0, 723) In addition, the
authors showed that how the diffusion prevents extinction in finite time in some
ranges of exponents where extinction occurs for the non-diffusive Hamilton-Jacobi

equation.
Recently, Mu et al. [17,23] considered the following fast diffusion equation

uy = div (ua | V™ Vu) + A |Vul?, (z,t) € Q% (0,+00),
u(x,t) =0, (z,t) € O x (0, +00), (1.6)
u(x,0) =ug (x), T € Q,

where m, g and A are positive parameters, 0 < m + a < 1. Under the restrictive
condition N > m + 1, they proved that the critical extinction exponent of problem
(1.6) is ¢ = m 4+ o. Xu & Fang [29] considered the special case o = 0 of problem
(1.1).

Motivated by those works above, we consider the extinction property of the weak
solution for problem (1.1) by using energy estimates approach and constructing
suitable subsolution.

The rest of this paper is organized as follows. In Section 2, we state three useful
preliminary lemmas. Section 3 is mainly about the extinction property and decay
estimate of the solution to problem (1.1) in the case 8 = 1. Finally, we will discuss
the extinction behaviour and decay estimate of the weak solution for problem (1.1)
in the case 8 € (0,1) in Section 4.

2. Preliminary lemmas

In this section, as preliminaries, we state three well-known results, which play an
important role in the study of the extinction behavior and decay estimate of the



Extinction for a quasilinear parabolic equation 117

solution to problem (1.1).

Lemma 2.1 (see [4]). Let y (t) be a non-negative absolutely continuous function on
[To, +00) satisfying

d —~

oyt +py <o, 12T,

Y (TE) 20,

where «, B are positive constants, and k € (0, 1), then we have the decay estimate

y(t) < {<y1k (ﬁ) + g) e—ﬁ(k_l)(ﬁ—t) — g} o , ﬁ <t< TL

y(t) =0, Ty <t < 400,

where

—~ 1 o -
Tl_ﬁ(l_k)ln{l—&—ay (TO)}+TO.

Lemma 2.2 (see [21]). Let 0 <k <r <1, y(t) >0 be a solution of the differential
inequality

d
Tty <y 120,

y(0) = yo >0,
where a, >0, and 0 < < ozyé“_r, then there exists x > 3 such that
0<y(t) <yoe X forallt > 0.

The following lemma is about the Gagliardo-Nirenberg multiplicative embedding
inequality.

Lemma 2.3 (see Theorem 2.1 in Chapter I of [6]). Let v € Wy (), p > 1. For
every fived number v > 1, there exists a constant C depending only upon N, p and
r such that
0 1-0
[oll,..0 < C DV, o lIvllg (2.1)

where 6 € [0,1], p > 1, are linked by

SEHGEY e

and their admissible range is:

(i) if N =1, then p € [r,+o0], and 6 € [0, $} :
(i) if 1 <p <N, then 6 € [0,1], p € {r, NN—fp} forr < NN—fp and p € {NN—fp,r] for
= NL_’;,;

oy Np
(iii) if 1 < N < p, then p € [r,+00), and 6 € [O,m).
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3. The case =1

The main goal of this section is to discuss the extinction behavior of the weak
solution for problem (1.1) in the case § = 1. The first result of this section shows
that whether the extinction behavior occurs or not depending on the size of A when
qg=m+ .

Theorem 3.1. Assume that 0 <m+a <1, =1 and g=m+ a.

(i) If N > 2, then the nonnegative weak solution of problem (1.1) vanishes in
finite time for any nonnegative initial datum ug provided that A is sufficiently
small. Furthermore, we have

1
lullzmte < [(uollia® +Go) elmrabs — G| ™" 0 <t < T,

||UH 2mta = 0, TO S t < +OO

form(%—l)§a<l, and

ol vt < [(nuow—(:”;‘*a) +a)
m+1 m+1

l-m—a

X e(m+a—1)t5t o 6\1‘| , 0<t< Tl;

||U||N<1—77+n1—~> =0, T, <t<+o0

for —-m < a<m (% — 1), where Cy and Ty are given by (3.5), Ch

and Ty are given by (3.8).

(i) If N = 1, then the nonnegative weak solution of problem (1.1) vanishes in
finite time for any nonnegative initial datum ug provided that A is sufficiently
small, and we have

1

fullzmse < [(luoll 52 ® +Gp) elmrab® G| 7" 0 <t < T,
||UH 2mta = 0, T <t < 400,

where Cy and Ty are given by (8.11).

(iii) The nonnegative weak solution of problem (1.1) cannot vanish in finite time
provided that X\ is sufficiently large.

Proof. (i). Multiplying the first equation in (1.1) by «® with s > 0, and integrat-
ing over ) by parts, one has

1 d 1 \™*! mtats [MA1
d ustHS(”H) /‘W ot de
S+1dt Q m+a+s Q (31)
. .
(L /us(m“)ﬁi(f’”_” Vo qu—5/ utda,
m-+aoa—+s Q Q
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Since ¢ = m + o < m + 1, Young’s and Hélder’s inequalities can be used to obtain

m+1
1 d / w s (ML / ‘Wm,ms
s+1dt Jq m+a+s Q
s(mt1)—g(ats—1)

s(m+1)—q(ats—1 q (m¥i—q)(s+D)
AC (1) | Q) =t <m+1 > (/ u8+1dx> e (3.2)
N m+a+s Q

1 m (3 S m+1
+ Aéey _mtl / ‘ u dx — 6/ wHde.
m+a—+s Q

% - 1} < a < 1. For this case, we take s = £ in (3.1).

Using Holder’s inequality and Sobolev embedding inequality, we can easily arrive
at the following estimate

m—41
dx

Case a. If m {

2m+a N—(m+41)

2mta N—(m+1)
2m+a 2mta N—(m+1) m+ta  N(m+1) mta  N(m+1)
™ dx< |Q| “mta TN(m+1) w m N=(m+D dg
0 @ (3.3)

2m+a
|_2mta N—(m+1 mta |MF1 (m+1)(m+a)
< K1 QT e NI ‘Vu ™ dx ,

where k1 is the embedding constant, depending only on m, o and N. Let ¢; be a
sufficiently small constant such that (m + a)® — Ae;m® > 0. Moreover, for such a
fixed €1, one can take A small enough to ensure that

m + «

m(l—m—a)
Cn = Cha ]

is greater than zero, where

_(mgl)(era) N—(m+1)  (m+1)(m+a)
Cia = Kq mta ‘Q| N Imta

Then from (3.2) and (3.3), it follows that

d (7nt)1)(+1n+a)
a u2wi:a (/ uzmmf“ dl‘) +Cl4/ u (34)
dt Jo Q Q
where N
2 mra 0 (2
Ciz = m+0‘< 5 ) Cnandcmzi(erO‘)'
m m 4+ « m

Noticing that Ci3, Cq4 are positive constants and W € (0,1), then from
(3.4) and Lemma 2.1, one has

1

e 2t [( o || 5™ + é;) e(mta—1)st _ (70] T 0<t < T,
0,

||’U/||2m7:a = To <t< +o00,

where

1

Co = 01301_41 and TO = 5(1 o —

—~—1 —m—
ke [14+Co lluollimt®] (3.5)
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N—(m+1) 1

Nl . For this case, we choose

Case b. If—m<o¢<m[

Nl-(m+a)]-m-1 S m+
m+1 m

S =

in (3.1). By the choice of s and Sobolev embedding inequality, we find

N—(m

m+tats +1)
41 (m+1)(s+1) N(at+m+s) N(m+1)
T dx = u N=mFD) (g
Q Q
1
a+t+m-4s erl m+1
< Ko ‘Vu mE1 dx ,
Q

where kg is the embedding constant, depending only on m, « and N. Choosing €;
sufficiently small such that

(3.6)

sm+1D" Y~ deg(m+a+s) ™
is a positive number. In addition, once ¢; is fixed, then one can select A small
enough to guarantee that

1 l-a 1-m—«
Cis = i ( mt ) —A|:721+C(€1)|Q| s+1 :| > 0.
K

KPP\ m4a+s ml

Then from (3.1) and (3.2) and (3.6), one gets

m+ta+ts

d s+1
—/ wTde + Cug (/ us+1dx> + 017/ wldr <0, (3.7)
dt Jo Q Q
where N
m+ 1 m+ta
016 = (S + 1) (7’7’[[-’—0(4—5) 015 and 017 =6 (S + ].) .

Noticing that Ci6, Cy7 are positive constants and ™4 € (0,1), then (3.7) and
Lemma 2.1 tells us

1

T—m—a
||U||N<1—7rl—m> < [ <||Uo|m + Cl) celmFa=1)dt _ o , 0<t<Ty,
m 77],+1
||u|| N(urlfa) =0, T <t<+oo,
where
C) = C16C and Ty = _ In 1+ 6'\1_1 [ (3.8)
B YT sl =-m—a) MO '

(ii). For this part, we also take s = 222 in (3.1). Fromm > 0 and 0 < m+a« <
1, it follows that m+1 < 21;?% Making using of Sobolev embedding theorem, one
has

2mta mta 2m+ta mta
/ u- m dxr = / u-m mta dx S K3 (/ ’VU m
Q Q Q

2m+4ao
m+1 (m+1)(m+a)
dx

(3.9)
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where k3 = k3 (m, ). Let €1 and A be sufficiently small such that

Cig =

m l1-a _ (m4D(m+a) m(l—m—a)
—Xer| kg T = AC(e) |9 T T > 0.
m 4+ «

Combining now (3.2) with (3.9), we arrive at

(m+41)(m+a)

d mta mta 2mta mta
— u2 o dx + Cig (/ u2 o dx) —|—C’14/ u2 o dr <0, (3.10)
dt Jo Q Q

where

m 4+ «

2m + « m mte
Cig = ( ) Cis.

It follows from (3.10) and Lemma 2.1 that

1

—m— - —~ | T-m—-a
Ll + Gy ) elmtaot _ G L 0<t<T,

m

el zsse < [ (lluo
0

||u||27n+a =0, T <t < 400,

where

1

~ 1 _
C2 = 019014 and Tg = 7{5 (1 e a)

—~—1
h’l |:]. + CQ ||U0

pa (3.11)

(iii). Let A1 be the first eigenvalue and ¢ (z) be the corresponding eigenfunction
of the following problem

—div (ua V™! vu) — U U,z e,
(3.12)
U (z) =0, z € 99

From Lemma 2.3 in [27] (or Lemmas 2.1 and 2.2 in [8]), we can claim that the first

eigenfunction ¢ (z) is positive. In what follows, we assume that maécz/J () = 1.
re

Define a function fi (t) as follows

1

fi(t) = dmra=t (1—ect)ytmm=—=,

where d € (1,400), and ¢ € (0,d (1 —m — @)). Then it is easy to check that
f1(0) =0and f; (¢t) € (0,1) for t > 0. (3.13)
Furthermore, by a series of calculation, we can verify that
FL () +dfy (1) = [ (1) < 0. (3.14)

Let
V(z,t) = fi ()¢ (z).

Our next goal is to show that V (z, t) is a weak subsolution of problem (1.1). By a s-
traightforward computation, for any nonnegative function ¢ (z,t) € C5° (2 x (0,7)),
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we have

Iozz/ot/ﬂ (Ve (.)€ (.8) 4 V° (2,5) |9V ()" WV V¢ (2, )] divds
:/t/fls(S)w(m)C(w,S)dxds—k/ot/Q(Sfl(8)¢(x)c(x,8)dxd8
//f%m () [V ()™ Vb () - V¢ (2, 5) dads

[ R o) s
/ /{ [0 () + (5~ d) o ()] 0 (2) € (2, 8) } dads

/ / fOter s) [)\Mpm+a (SL‘) Y |Vw (x)|m+a:| dds.
Recalling that fi, ¢ € (0,1), then 0 <m + a <1 tells us that
Iy < / / fm+o¢ ) [(1 +0+ /\1) d,m—f—a (.’L‘) Y |V’(/J (x)|m+a} deds.
(3.15)
If .
(L4064 M) 9], 1o
IVollnie

then we can immediately claim that Iy < 0, which implies that V (z,t) is a weak
subsolution of problem (1.1). Then according to comparison principle, we see that
w(x,t) > V(z,t) > 0 holds for (z,t) € Q x (0,400), which implies that, for any
nonzero nonnegative initial data wug, the weak solution of problem (1.1) cannot
vanish in finite time provided that X is sufficiently large. The proof of Theorem 3.1
is complete. O

The following theorem shows that the extinction behavior will occur if m 4+ o <
q < m+1 , and the initial data is sufficiently small.

Theorem 3.2. Assume that 0 < m+a <1, f=1andm+a <q< %, then
the nonnegative weak solution of problem (1.1) vanishes in finite time provided that
ug s sufficiently small. Furthermore,

(i) if N > 2, then we have

_ _mxy
2mta € 2m’+(’t, 0<t < Ts,
m

||u 2mta < ||U0|
m

] 20 g[(||u<-,T3>||£m?a“+cs)

I-m—a

. e(m+o¢—1)5(t—T3) _ 6’\3 R T3 <t< T4,

||u||21n+a =0, Ty <t< 4+
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form<m—1)§a<l, and

(m+1)xo

l[ul| wa—imray < |[tol N-niay e~ FE-are’ 0 <t < T,
m+1 m+1

m

HWM1mwng[@uunn%ﬁamn+aQ
mt1 1

1

1-m—a
e(mta—1)5(=T5) _ & T <t<T
[ull x1—em e =0, Ts <t < +00
for —-m < a < m (A],\Zn%% — 1), where x1 and x2 are suitable positive

constants, and 6‘\3 and Ty are given by (3.20), a and T are given by (3.25).
(i) if N =1, then we have

[l 2msa < ||uol 2mia e~ Zmiat, 0<t<Ty
= =

vmﬁﬁs[(u«ﬂmz$ﬂ+@)

T—-m—a

m+a—1)6(t—T7) 61; , T7 S t < Tg,

o

Hu| 2mta =0, Tg <t < 400,

where x3 1S an appropriate positive constant, 6’; and Ty are given by (3.30).

Proof. Notice that (3.2) still holds for ¢ € (m + a, %)

(i). Case a. If m [% — 1] < a < 1. Similar to the process of the

derivation of (3.4), we have

(m+1)(m+a)

d m (] m (23 ZWL+Q . (e
- u27:— dx + Cqg </ u2 ot dx) _1,_014/“2 oE dx
dt Jo Q Q

(3.16)

(m+D[m+a(l—q)]

— Emtamti=g)
<Con u m dx ;
Q

where m .
2m + « m m
Co = - A _— Cio,
w=200 | (G) e () o

AC (e1) (2m + ) ( m )q ‘Q|1_<m+1>[m+a(1—q>1

and

Co =

Gmta)(m+i-a) |
m m—+ «
Let ug (z) be sufficiently small to satisfy

m(m+1)[g—(m+a)]

2m+4o (2m+a)(m+1—gq) _1
UO m d:E S 020021 5
Q



124 D.M. Liu & C.L. Mu

then by virtue of (3.16) and Lemma 2.2, we know that there exists a constant
x1 > C14 such that, for ¢t > 0,

m+ta 2mta
/u2 nda € |:07€_X1t/ ug ™ dm]. (3.17)
Q Q

In addition, from (3.17), one can conclude that that there exists a positive number
T3 such that, for t > T,

m(m+1)[g—(m+a)]

@m+a)(m+1-q)
2m+ta
0222020—021 (/’LL m d!)ﬁ)

Q

m(m41)[g—(m+a)]

T 2mta Gmta) (a0 (3.18)
>Co —Cyy |75 [ uy ™ dx
Q

> 0.

It follows from (3.16) and (3.18) that

(m+1)(m+a)

d 2mto 2mto 2m+o 2mta
R dx 4 Cog </ u dx) + 014/ wm S dr <0. (3.19)
dt Jo Q Q

Combining (3.19) with Lemma 2.1, we get

Y [ (Ju (Tl i + Ga)
1,%
. e(m+a71)5(t7T3) _ 61; , T3 S t < T47
||u||72’”+‘)‘ EO) T4 S t< +OO7
where
~ — 1 -1 l1-m—«
Cg = 0220141 and T4 = m In |:1 + Cj HU (7T3)| 27y:n+a +T3 (320)

N—(m+1) 1

Case b. Iffm<04<m[1\,m_~_m_~_1

] . By using the similar manners as the
derivation of (3.7), we have

m+ta+s

d S+1
—/ uwtlde + Cos (/ u5+1dx> +C17/ u e
dt Jo Q Q

s(m+1)—q(a+ts—1)

T GFDmFI—a)
<Cyy (/ Ustfﬂ) )
Q
(i) e ()
S — X | ———
m+a—+s m+a—+s

_ s(m+1)—qlats—1) 1 a
Cas = AC (1) (s + 1) Q' GFDtm+1-0 (m_) .

(3.21)

where

s+1
m—+1
Ko

Coz =

b

and

m+a—+s
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Choosing ug small enough such that

(m+1)[g—(m+a)]

s11 (s+1)(m+1-q) 1
’U,O dZL' S C23C24 5
Q

then Lemma 2.2 tells us that there exists a constant x2 > Cj7 such that

/ustx € |:0,€X2t/ ué“dz] (3.22)
Q Q

holds for all ¢ > 0. Furthermore, from (3.22), we see that there exists a positive
number T such that, for ¢ > T5,

(m+1)[g—(m+a)]

+1 TGED(mFT=q)
025 = 023 — 024 T dx
Q

(m+1)[g=(m+a)]
T 11 (s+1)(qm+lfq) (323)
2 023 — 024 e X245 U(SJ dzx
Q

> 0.

It follows from (3.21) and (3.23) that

m4a+s
d s+1
— [ wtldz + Cos / wHde + 017/ wHdz <0. (3.24)
dt Jo Q Q

Lemma 2.1 and (3.24) leads to

U|| N1-—(m+a)] S ul-, T 5 lNi[l,angQ)] + C/z
m+1 m1

1-m—a
: e(m+a71)5(t7T5) - 6?1 ) T5 <t< T67
| s s =0, Te <t < 400,
where
-~ — 1 =1 l-m—«
C4 = 0250171 and T6 = m In |:1 + 04 Hu (7T5)|| Zij—a :| +T5 (325)

(ii). For this part, in view of (3.2) (with s = ™£2) and (3.9), one has
(m+1)(m-+a)

d m [e3 m [e3 2'7YL+OL m [e]3
S wF S dr + Oy </ u dm) -1-6'14/U2*er dzx
dt Q Q Q

(3.26)

(m+1)[m+a(l—q)]

@mta)(m+i—q)

2m+ta

<Co (/u m dm) ,
Q

where m .
2 _ (m+1)(m+a)
Cog = m+ ali3 Fmte [( mn ) — Xey ( m > ] .
m m+ « m—+ «
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From Lemma 2.2, we see that, for any ¢ > 0, there exists a constant y3 > C14 such
that
amta vt 2mta
/ u m dr € {O, e X3 / uy ™ d:z:] (3.27)
Q Q

m(m+1)[g—(m+a)]

2m+ta (m+a)(m+1—-q) 1
Ug ™ dx < 026021 .
Q

Moreover, from (3.27), one can claim that there exists a positive number 77 such
that, for t > T+,

provided that

m(m+1)[g—(m+a)]

2mta Zmta)(m+i—q)
027 = 026 — Cgl u m dx
Q

m(m41)[g—(m+a)]

- 2mta “@mte)(mii—q) (3.28)
> Oy —Cop | 777 [ uy ™ do
Q

> 0.
It follows from (3.27) and (3.28) that

(m+1)(m+a)

d 2mto 2mto 2m+o 2mta
R A + Co7 </ u dx) + 014/ wm S dr <0. (3.29)
dt Jo Q Q

Combining (3.29) with Lemma 2.1, we deduce that

lufl e < [ (e () " + G5 )
(e
. e(m+a71)5(t7T7) o 05 ; T7 S t < T87
||u|| 2mta =0, Ty <t < o0,
where
= — 1 1 1-m—«
05 = 0270141 and TS = m In |:]. + 05 Hu (7T7)|| 2rr::ro< +T7 (330)
The proof of Theorem 3.2 is complete. O

The next theorem is about the non-extinction result for the case ¢ < m + a.

Theorem 3.3. Assume that 0 < m+a <1, =1 and ¢ < m + «, then for any
nonzero nonnegative initial datum ug, the nonnegative weak solution u of problem
(1.1) cannot possess extinction phenomenon provided that X\ is sufficiently large.

Proof. The proof is similar to that of part (iii) of Theorem 3.1, so we sketch it
briefly here. Define a function fs (t) as follows
_1
f2 (t) = dq—#lr—a (1 — eiCt) 1—gq ,
where d € (max{1,2§},+00), and ¢ > 0. It is obvious that fo (t) satisfies (3.13).
Moreover, by fixing ¢ € (O, (m+a-gq) diasg ), then direct computation and the

inequality
(1—2)"+ax < 1for x,a € (0,1),
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yield that

f5(t) + g [fo (t) + f3 ()] — f1(t) <O. (3.31)

Put
W(xvt) = f2 (ﬂﬁ’(@a
where ¢ (z) is the same as that in the proof of Theorem 3.1. If

(1+A0) [9lmie

m-ta

A> :
IVl

then we can immediately show that W (z,t) is a weak subsolution of problem (1.1).
Consequently, from comparison principle, it follows that u (z,t) > W (z,t) > 0 for
all (z,t) € Qx (0,4+00), which means that, for any nonzero nonnegative initial data
ug, extinction phenomenon in finite time cannot occur for sufficiently large A\. The
proof of theorem 3.3 is complete. O

Remark 3.1. From Theorems 3.1, 3.2 and 3.3, we know that ¢ = m + « is the
critical extinction exponent of the weak solution of problem (1.1) with 8 = 1 and
m+a € (0,1).

4. The case (5 € (0,1)

The main purpose of this section is to investigate the extinction behavior of the
weak solution for problem (1.1) in the case 8 € (0, 1).

Theorem 4.1. Assume that 0 <m+a<1,0< <1 andqg=m+ a.

(i) If N > 2, then the nonnegative weak solution of problem (1.1) vanishes in
finite time for any nonnegative initial datum ug provided that A is sufficiently
small. Furthermore, we have

e Ml —2m—a | Zm¥a—mEy
[lu]| 2mra < |luo|| 2ms [1 — Cs ||ug]| zmsc™ t} , 0<t< Ty,
||| zm+a = 0, Ty <T < 400

form(%fl) <a<l, and

1
— To—s—1,] 5F1-T3
Jull g1 < lolly g [1 = Cr o 52777 ¢] 7% 0 <t < Tho,

lulls1q =0, Tio <T < 40

Nm-+m-+1 m+1
Ce T2, Tig and Cr are given by (4.4), (4.10), (4.11), (4.12). (4.17) and
(4.18), respectively.

(ii) If N >1and 0 < g=m+ «a < B < 1, then the nonnegative weak solution of
problem (1.1) cannot vanish in finite time provided that \ is sufficiently large.

for —-m < a < m(M - 1), where s > NA=(mtal=m=1 " p g1 Ty,
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Proof. (i). Multiplying the first equation in (1.1) by u*® with s > 0, and integrat-
ing over ) by parts, one has

1 d I mtats M1
f/ utde + s _mE / ’Vu mrets T
s+1dt Jq m+a+s (4.1)
. .
=A _mAl / uS(mHZﬁHSiU Vum;:ilﬂ dx — (5/ wPdz.
m+a—+s Q Q
Since ¢ = m 4+ a < m + 1, Young’s and Holder’s inequalities yield that
1 d mtadts |Mm+1
——— [ wtide + ng/ ‘Vu Ca dx
S —|— 1 dt Q Q

mtats (4.2)

s+1
<Cyg (/ u”ld:v) 75/ u”’Bd:c,
Q Q
1 m—+1 1 m—+ta
Con — s (m+> e (m+> ,
m-+aoa—+s m-+aoa—+s

S+1_a m+1 m-+a
m+a+s '

It is easy to verify that Chyg is a positive constant provided that e, is sufficiently
small.

Case a. If m [% - 1] < o < 1. For this case, by taking s = 2% in
m+1

m d 2m+a 7n+u
_m 4 S+ C ‘Vu d
2m + a dt / + 0 /
(m+1)(m+a) (4.3)

2m+ta 2mato atm((1+48)
<Cy9 (/ U m dx) - 6/ u— ™  dx,
Q Q

For the sake of simplicity, we denote

Nm(m+1)(m+a)(1-0)
@2m+a)[(m+1) (a+m(8+ 1)) +mN (m+a—pB)

where

and

ng = )\C (62)

(4.2), we arrive at

P =

)

and
(m+1)(m+a)a+m(8+1)]

N A D mra) (A= p) T mpr e+ m B+ D]

(4.4)

Recalling that g € (0,1) and m % — 1} < a < 1, we can verify that p; €
(0,1), and

a+m(8+1) mp1 'y 1
B - 0 WAVt oz b (49
m p1 m m+a) 1- 2Copli
Now, using Lemma 2.3 with v = u™%", y = 2;;?5, p=m+1andr= %ﬁjﬁ),
we deduce that
1 (mte)(1-py)

277L+a m—+1 m—41 a+m(1+8)

2m4o mta a+m(1+8)

</ u-om dm) < Ky (/ ‘Vu m dx) (/ u-m dx) ,
Q Q
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where ky = kg (N, m, , 8). Furthermore, we have

b
O
2m+a 2mta mita mly
u- ™ dx <k,
Q

m+C¥ </ ‘ vu 7”’;:.1
Q

p1_ mly
m+1 m+1 mta
dx

(mta)(1—p1)  mDy
at+m(14+8) at+m(1+8) mto
X u- m dr .
Q

Noticing that (4.5), and making use of Young’s inequality, we obtain

~mIy
2m+ mID
(/ wwe daj) o m+i (/ ‘
Q

nz+a

mI'y

m+a
m+zv (63/ ’VU m

+

which implies that

mIy
atm(148) 1 2m+ta 2mta
/U m d,ZEZ Twmry </U m dx)
Q mto Q
ki C (es)

Combining now (3.3), (4.3) and (4.7), one has

d mta
e d:c+030/’V“ &

% m

where

m—+1
dx + 031 </
Q

Cag

Noticing that if A is suitable small, then we have that Cg —
is positive. Then (4.8) tells us

d

€3 ’ m+a
—_— ——— vu m
C (e3) /Q

— —| and C3; =
C(Eg) 012:| 31

mpiTy
m+1 tmT)(mta)
dzx
m(1—p1)Ty
atm(1+p) atm(1+h8)
X u m dx

dz+C(63)/ ua+mésll+ﬁ)d:1:>,
Q

m—+1

2m—+a

2mta
dx) <0, (4.8)

Cia

ml|

KO ()

is a positive number

Cao
Ci2
Furthermore, for such a fixed A\, one can choose €3 small enough to ensure that Csq

2m+a

dz + C. / e
dt €T 31 o U
Integrating (4.9), we deduce that

mIl

| 2t < [ftg]| 2ot {
m m

+
which implies that u (x,t) vanishes in finite time

—1
To=Cs |luo|smis—mm

Tmia
dz) <O0.

mly—2m—a ] ImFa—mly
1= Gollwoll st t}

(4.9)

(4.10)

129
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where o (2 )
—~ + «
Cp= 2LEmTa) 411

2m + o — ml'y ( )

N—(m+1)

Nmtmi1 — |- For this case, in (4.2), we choose

Case b. If—m<a<m[

Nl-(m+a)—-m-1 >m+a'

§= m+1 m
Denote
py = NA-8)(m+a+s)
(s+1D)[m+1)(s+8)-N(@B-m-a)]
and

(s+1)[(m~+1)(s+B)—N(B—-m-—a)
(m+1)(1+8)—N(B—-—m-—aq)

Iy = (4.12)

By the choice of s and recalling that 5 € (0,1) and —m < a < m [w — },

Nm+m+1
we can prove that ps € (0,1) and T's € (s, s+ 1). Now, using Gagliardo-Nirenberg
multiplicative embedding inequality and Young’s inequality, and by the similar ar-
guments of the processes of the derivation of (4.6), we obtain

Ly(1—p2)

e +1 et 3
s+1 mtats m m+ta+s s+
(/ us+1d:c> < ks (/ ‘Vu e d:c) (/ us+6dac>
Q Q Q

mtats [MF1
< ks <64/ ‘Vu sy dz + C(64)/ us+’6dm) ,
Q Q
where k5 = k5 (N, m, @, 3, ). (4.13) means that

T2
1 s+1 €4 m+a+s
wWHPde > ———— (/ u5+1dx) — 7/ ‘Vu m+1
/Q ~ k50 (1) \Jo C (e4) Jo

It follows from (3.6), (4.2) and (4.14) that

(4.13)

1}
d mtats M1 sT1
— 'U;S+1d$+c32/ ‘Vu T dx + Cs3 (/ us+1dx> <0, (4.15)
dt Jo Q Q
where
646 1 017
Cap = (5+1) | Cos — =2 — Copr ™| and Oz = — .
32 = (s+ )[ 28 Clen) 29K } and Cs3 75C (1)

Let A be small enough such that Csg is sufficiently small, then we have C35 > 0 by
choosing ¢4 small enough, and hence, (4.15) implies that

T2
s+1
— [ vtz + Css (/ u8+1dz> <0. (4.16)

Integrating (4.16) from 0 to ¢, we deduce that

b

1
SFi-To
s+1 }

e~ To—s—1
ol < Nuolly [L = G lluoll 3"
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which means that u (x,t) vanishes in finite time

—~—1 el
Tio=Cr  uoll2t17"2, (4.17)

where
= Cs3 (8 + 1)

— . 4.1
Cr s+1—T, (4.18)

(ii). The proof is similar to that of part (iii) of Theorem 3.1, so we sketch it
briefly here. Define a function f5 (¢) as follows

1
f (t) B di”m,+(11—[3 (1 _ efct) T—m—a , q= m4+a< B’
(1) —
(l—m—a))===,  g=m+a=04

where d € (1,400), and ¢ € (O, (B—m—a) dflf:nﬁ) Then it is easy to check that
f3 (t) satisfies
f3(0)=0and f3(t) € (0,1) for ¢ > 0,

and

{fé(t)+df§(t>— Tt <0, g=m+a<p,
Fi(t) = fre (e, g=m+a=p.

Let
X (z,t) = f3() ¢ (2),

where 1 (z) is the same as that in the proof of Theorem 3.1. By a straightforward
computation, we can claim that X (z,t¢) is a weak subsolution of problem (1.1)
provided that

(L+3+ M) wlmte
IV mte

m+ta

Then by comparison principle, we know that, for sufficiently large A, the weak
solution of problem (1.1) cannot vanish in finite time. The proof of Theorem 4.1 is
complete. O

Theorem 4.2. Assume that0 <m+a<1,0<8<1, and N > 2.

(i) If m (% - 1) <a<1and (mzllp)l[ibg(;;li)_a] < q < 2Ll then the

nonnegative weak solution of problem (1.1) vanishes in finite time provided
that ug s sufficiently small. Furthermore, we have

m
ml] —2m—a Zmta—mb]

2m4a t , 0<t< Ty,

m

el zmse < ] s [1 ~ G lluo
m

[[ul| 2msa =0, T <t < +oo,

where Ty, Ty1 and Cy are appropriate positive constants, given by (4.4), (4.22)
and (4.283), respectively.
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I'o4+1—a—s
negative weak solution of problem (1.1) vanishes in ﬁmte tzme provided that
ug s sufficiently small. Furthermore, we have

(i) If —-m < a < m {ﬁ — 1] and (D T2=s) ) o mtl then the non-

1
r 1,] 5% T2
ol < toll gy [1 = o lluolzy™ ] ™

||u||s+1 =0, Tis <t< +00,

) 0§t<T127

where s > M, and Ts, Tho and Cy are suitable positive con-

stants, given by (4 12) (4.27) and (4.28), respectively.

Proof. (i). For m(%—l) < a <1 and % <gq< 94

Taking s = mTM in (4.1), and applying Young’s inequality and Holder’s inequality,
we arrive at

d m+ta a+m(B+1) +a

il w5 d:z:+014/ ey 034/ ’vu
Q

(m+1)[mta(i-q)] (4.19)

Emt o) (mt1—q)

2m+tao

<Css (/U m dl‘) ;
Q

where ” .
2
m m 4+ « m 4+ «

/\0(65)(2m—|—a)( m )q|Ql_(m+1)[m+a<1q>1

m+1
dx

C3s = CmramiTa)
m m+ «

and €5 is a sufficiently small positive number such that Cs4 > 0. Using (4.6) and
(4.19), we get

mI'y
d 2m+ta 2m+a 27n+o< m+ta
— [ um - u- m dx + Cs7 ‘Vu m
dt Q Q

(m+1)[mta(l—q)]

@mta)(m+i—q)

2m+ta

<Css (/u m dw) ,
Q

where

m—+1

dxr

(4.20)

Cas = C1a[kaC (€3)] ", Car = Caa — 3014 [C (e3)] ",
and €3 is small enough such that Cs7 > 0. If

(m+1)[m ([ —1)—qa]
¢ mly —a(m+1)

and
(2m+a)(m+1—gq)

2mta
(m+1)[m+a(l—q)]-mTy(m+1— (1)
/Quo ™ dx < (035 036) 1

then (4.20) leads to

mI

d m4 o m (3 2m+o¢
f/ 5 da + Cg (/ = dw) <0, (4.21)
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where
(m+1)[m+a(l—q)]—mlq(m+1—gq)

2m+to (2m+a)(m+1—q)
(38 = C3 — C35 Uy ™ dx
Q

Integrating (4.21), we obtain

- Ml —2m—a | ZmFa—mET
lul] 2mia < |luo 2mta {1 — Cs ||uoll zmea” t}
m m m +

which tells us that w (z,t) vanishes in finite time

2m+a—mIq

1
T =Cs  |uollamea" (4.22)

and
6\ N (2m + a) 038

= . 4.23
87 om +a—mly ( )

N—(m+1) _ 1| and (m+1)(T2—s)

(ii). For —-m <a <m < q < 2L Using (4.1)

Nm+m+1 I'o4+1—a—s 2—«
with
Nl—-(m+a)]-m—-1_m+a«
s > > s
m+1 m
and applying Young’s inequality and Hoélder’s inequality, one has
d mtats M+l
—/ wTlde + C17/ wBdx + C’gg/ ‘Vu TEsy dx
dt Jg Q Q
s(m+1)—q(ats—1) (4.24)

S Ces e
<Ciyp (/ us+1d$> ;
Q

S| ————— —Xeg | ———
m-+aoa—+s m-+a—+s

_ s(mtD—q(ats—1) 1 1
Cio = AC (eg) (s + 1) |Q' ™~ Fntm+i-0 ("H'> 7

where

ng = (S+1)

)

m-+a—+ s

and eg is a sufficiently small positive number such that Csg > 0. Using (4.13) and
(4.24), we get

s

m—+1 s+1
dx + Cyo (/ uSde)
Q

L]
at Jo

m+ta+s

utdr + 041/ ‘VuW
Q

s(m+1)—q(ats—1)

1 (s+1)(m+1-q)
§C4O us-i— dx )
Q

where

(4.25)

Ci1 = Csg — e4C17 [C(e2)] ™", Cug = Cir[15C ()] ",

and €4 is small enough such that Cy; > 0. If

(m+1)(F2—s)
Ile+1—a—s'’
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and

1 1 _ (s+1)(m+1-q) _
uSJr dx < (Céﬁ) 042) q(Tatl—a—s)—(m+1)(Ig—s) ,
Q

then from (4.25), it follows that

H
i/ u*dr + Cy3 (/ u5+1dx) <0, (4.26)

g(Tpt1—a—s)—(m+1)(I'y—s)

1 (s+1)(m+1—q)
043 = 042 — 040 ug dx
Q

Integrating (4.26) over (0,t), we find that

where

1
— To_s—1,|5F1-T3
lell s < loll sy [1 = G ol ¢ 777

which means that v (x,t) vanishes in finite time

s+1—-1I'9

—~—1
T12 = Cg HUOHS-‘,J 5 (427)
and ( e
= s+ 43
Cyg=—-——-. 4.28
P (4.28)
The proof of Theorem 4.2 is complete. O

The final theorem is about the non-extinction result for the case ¢ < m + « and
g<p <1l

Theorem 4.3. Assume that0 < m+a <1, g < m+a,and ¢ < < 1, then for any
nonzero nonnegative initial datum ug, the nonnegative weak solution u of problem
(1.1) cannot possess extinction phenomenon provided that X\ is sufficiently large.

Proof. The proof is similar to that of part (iii) of Theorem 3.1, so we sketch it
briefly here. Define a function fy (t) as follows

dq—mé—a(1—6_0”)1%‘17 g=B8<m+aorg<f=m+a,
fa(t) =

dﬁ(l—e%zt)ﬁ7 g<B<m+a,

whered € (1,4+00), ¢; € (O, (m+a—q) d""1+;q*<1> and ¢y € (O, (8—q) d7=4 ) Then
it is easy to check that fy (f) satisfies

£1(0)=0and fy (t) € (0,1) for t >0,
and
Li®)+dfe () - () <0, q=B<m+aorg<f=m+a,
f+ g ] -0 <0, g<B<mta

Let
V(x,t) = fa(t)¢ (),
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where 9 (x) is the same as that in the proof of Theorem 3.1. By a straightforward
computation, we can claim that ) (z,t) is a weak subsolution of problem (1.1)
provided that

(A+o+A) 1%l 1a

m+ o — J—
Vol , g=fB<m+taorg<f=m+a,

(164209115
INZF

A >
g< pB<m+a.

Consequently, by comparison principle, we know that, for sufficiently large A, the
weak solution of problem (1.1) cannot vanish in finite time. The proof of Theorem
4.3 is complete. O

Remark 4.1. In the case of 0 < 8 < g < m+a« < 1, we can not prove that the non-
negative weak solution u of problem (1.1) does not possess extinction phenomenon
provided that A is sufficiently large.
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