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Abstract An integral equation with singularities is introduced to characterize
unsteady laminar boundary layer flows and some properties of solutions of this
integral equation are investigated. Utilizing these properties, a priori bounds
are obtained for the skin friction function and the similarity stream function
and the well-posedness of solutions is proved.
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1. Introduction

The following nonautonomous system

f ′′′ + (f − Aη

2
)f ′′ − (A+ f ′)f ′ = 0 on (0,∞), (1.1)

1

Pr
θ′′ + (f − Aη

2
)θ′ − (A+ f ′)θ = 0 on (0,∞) (1.2)

subject to the boundary conditions

f(0) = f0, f ′(0) = 1, f ′(∞) = 0 (1.3)

and
θ(0) = 1, θ(∞) = 0, (1.4)

has been used to study unsteady laminar boundary layer flows [5,9] and is reduced
from the governing unsteady two-dimensional Navier-Stokes equations and energy
equation via the similarity transformations [5, 18]
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subject to the boundary conditions

u = Uw, v = Vw, T = Tw at y = 0.

For more details, one may refer to [5, 18].
In the problem (1.1)-(1.4), f is the similarity stream function, f ′′ is the skin

friction function, A > 0 is the unsteady parameter, f0 > 0 (respectively, f0 < 0)
corresponds to suction (respectively, injection) of fluid at the surface, and Pr is
the Prandtl number. Ishak et al. [5] investigated the problem numerically and the
nature of the solutions as the physical parameters are varied. Recently, Paullet [9]
studied the existence and uniqueness of the solutions for some (but not all) values
of the parameters and obtained a priori bounds for the skin friction coefficient and
local Nusselt number.

This paper extends and strengthens the study [5, 9] in two aspects:

(i) A priori bounds are presented for the skin friction function f ′′ and the simi-
larity stream function f .

(ii) The solutions obtained in [9] are well-posed related to the parameters involved
in the system.

It is well-known that numerical and analytical study of similarity solutions is very
important in many fields and can provide a standard of comparison without in-
troducing the complication of non-similar solutions. Much attention is always fo-
cused on this subject. One may refer to some recent research achievements such
as boundary layer flows [3, 8], magnetohydrodynamic(MHD) [2, 4, 8], heat trans-
fer [5,6,9,11,18], manufacturing polymer sheets, processing paper products [5], de-
signing heat exchangers and chemical processing equipment [1] and the references
therein. Also, one may refer to the review and extension of similarity solution-
s [12,13].

This paper is organized as follows: in section 2, we establish the relation between
the BVP (1.1), (1.3) and an integral equation with singularities and study some
properties of solutions of this integral equation. Utilizing these properties, a priori
bounds are obtained. In section 3, the well-posedness of solutions is proved.

2. A priori bounds for the skin friction function
and the similarity stream function

Notation:

P = {f ∈ C3[0,∞) : f ′′ < 0 on [0,∞)},
Q = {z ∈ C[0, 1] : z(t) < 0 on (0, 1] and is strictly decreasing [0, 1]}.

In this section, we first establish the relation between the BVP (1.1), (1.3) and
an integral equation with singularities. Next, we study some properties of solutions
of this integral equation and present a priori bounds for the skin friction function
f ′′ and the similarity stream function f .

Lemma 2.1. Let f ∈ P satisfy the BVP (1.1), (1.3). Then f ′′ is strictly increasing
on [0,∞) and limη→∞ f ′′(η) = 0.
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Proof. From f ′′(η) < 0 on [0,∞) and (1.3), we know that

f ′ is strictly decreasing on (0,∞)

and
0 < f ′(η) < 1 on (0,∞).

By f ′(∞) = 0, we know

sup lim
η→∞

f ′′(η) = 0 (2.1)

and there exists {ηn} such that

ηn → ∞, f ′′(ηn) < 0 and f ′′(ηn) → 0.

We are going to prove that f ′′ is strictly increasing on [0,∞). In fact, if there
exist 0 ≤ η(1) < η(2) satisfying f ′′(η(1)) > f ′′(η(2)). Then, by f ′′(ηn) → 0, there
exists n0 such that

ηn0 > η(2) and f ′′(ηn0) > f ′′(η(2)).

Let η∗ ∈ (η(1), ηn0) satisfy

f ′′(η∗) = min{f ′′(η) : η ∈ [η(1), ηn0 ]} < 0.

This implies that

f ′′′(η∗) = 0 and f (4)(η∗) ≥ 0. (2.2)

On the other hand, by (1.1), we have

f (4) = −(f − Aη

2
)f ′′′ + (f ′ +

3A

2
)f ′′. (2.3)

It follows from this and A > 0 that

f (4)(η∗) = (f ′(η∗) +
3A

2
)f ′′(η∗) < 0, (2.4)

then we have a contradiction between (2.2) and (2.4). Hence, f ′′ is increasing on
(0,∞).

If there exist 0 ≤ η(1) < η(2) satisfying f ′′(η(1)) = f ′′(η(2)), then

f ′′(η) = constant on (η(1), η(2)) and f ′′′(η) = 0 on (η(1), η(2)).

By (2.3), we see

f (4) = (f ′ +
3A

2
)f ′′ < 0 on (η(1), η(2)),

which is a contradiction. Hence, f ′′ is strictly increasing on (0,∞). This, together
with (2.1), implies limη→∞ f ′′(η) exists and limη→∞ f ′′(η) = 0.

Lemma 2.2. Let f ∈ P be a solution of the BVP (1.1), (1.3). Then the following
integral equation

z(t) = Az(t) + tBz(t)− f0t (2.5)
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has a solution z ∈ Q satisfying

z(t) = f ′′(η), −
∫ 1

f ′(η)

1

z(s)
ds = η and −

∫ 1

t

s

z(s)
ds+ f0 = f(η), (2.6)

where

Az(t) =

∫ t

0

(2s+ A
2 )s

z(s)
ds, Bz(t) =

∫ 1

t

s− A
2

z(s)
ds.

Proof. Let t = f ′(η). f ′′(η) < 0 on [0,∞) shows that f ′ is strictly decreasing on
[0,∞), we conclude therefore that the inverse function η = (f ′)−1(t) of f ′(η) exists,
(f ′)−1(0) = ∞ and (f ′)−1(1) = 0.

Let z(t) = f ′′(η) = f ′′[(f ′)−1(t)
]
. Then z(t) is continuous and z(t) < 0 on (0, 1].

It follows from Lemma 2.1 that z(t) is strictly decreasing on [0, 1] and

lim
t→0+

z(t) = lim
η→∞

f ′′(η) = f ′′(∞) = z(0) = 0,

that is, z(t) is the right continuous at 0 and z ∈ C[0, 1].
By t = f ′(η), we have

1 = f ′′(η)
dη

dt
,

dη

dt
=

1

f ′′(η)
=

1

z(t)
.

Integrating the last equality from t to 1, we have

η = −
∫ 1

t

1

z(s)
ds.

By setting s = f ′(σ), we obtain

f(η) =

∫ η

0

f ′(σ)dσ + f0 = −
∫ 1

f ′(η)

s

z(s)
ds+ f0 = −

∫ 1

t

s

z(s)
ds+ f0.

Since f ′′(η) = z(t), we see f ′′′(η) = z′(t) dt
dη = z′(t)z(t). Substituting η, f(η),

f ′(η), f ′′(η) and f ′′′(η) into (1.1) implies

z′(t) =
(A+ t)t

z(t)
+

∫ 1

t

s− A
2

z(s)
ds− f0 (2.7)

and z(0) = 0.
Integrating the previous equality from 0 to t, noticing that z(0) = 0 and∫ t

0

∫ 1

σ

s− A
2

z(s)
dsdσ =

∫ t

0

∫ s

0

s− A
2

z(s)
dσ ds+

∫ 1

t

∫ t

0

s− A
2

z(s)
dσ ds

=

∫ t

0

(s− A
2 )s

z(s)
ds+ t

∫ 1

t

s− A
2

z(s)
ds,

we have that z satisfies (2.5).
Since (2.5) contains the improper integrals Az(t) and Bz(t), the following results

provide some properties of z, which will be applied to prove the main results of this
paper.
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Lemma 2.3. Let z ∈ Q be a solution of (2.5). Then the following facts hold:

(P1) (i) z(0) = 0 and Az(t) converges for t ∈ [0, 1].

(ii)
∫ 1

0
1

z(s)ds = −∞.

(iii) limt→0+ Bz(t) = +∞ and limt→0+ tBz(t) = 0.

(P2) z is a solution of (2.5) if and only if

(i) z(0) = 0 and

z′(t) =
(A+ t)t

z(t)
+

∫ 1

t

s− A
2

z(s)
ds− f0, 0 < t ≤ 1. (2.8)

(ii) z(0) = 0, z′(1) =
A+ 1

z(1)
− f0 and

z′′(t) = − (A+ t)tz′(t)

z2(t)
+

3A+ 2t

2z(t)
, 0 < t ≤ 1. (2.9)

(P3)

c(f0, A) ≤ z(1) ≤ d(f0, A), (2.10)

where

c(f0, A) =


−
√
A+

4

3
if f0 < 0,

−f0 −
√

f2
0 +A+

4

3
if f0 ≥ 0.

d(f0, A) =
−f0 −

√
f2
0 + 8+3A

3

2
.

(P4) z(t) ≤ σ(f0, A)(t) on [0, 1], where σ(f0, A)(t) = d(f0, A)t
3
2 .

Proof. (P1) (i) If z(0) ̸= 0, then

z(t) > 0 for t ∈ [0, 1].

Since both integrands in the right hand in (2.5) are continuous in [0, 1]. This implies

z(0) = 0,

so we have a contradiction.

Since z(1) = Az(1) − f0 and
(2s+ A

2 )s

z(s)
< 0 for s ∈ (0, 1), we know that the

Lebesgue integral Az(1) converges and Az(t) exists and is finite for t ∈ [0, 1]. Hence,
(i) holds.

(ii) Let γ =
∫∞
0

1
z(s)ds. If the conclusion is false, then −∞ < γ < 0.

Since
(2s+ A

2 )s

z(s)
≥

(2s+ A
2 )t

z(s)
≥

(2 + A
2 )t

z(s)
for 0 ≤ s ≤ t ≤ 1
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and
s

z(s)
≥ 1

z(s)
for 0 ≤ s ≤ 1,

we see∫ t

0

(2s+ A
2 )s

z(s)
ds ≥ (2 +

A

2
)t

∫ t

0

1

z(s)
ds ≥ (2 +

A

2
)t

∫ ∞

0

1

z(s)
ds = (2 +

A

2
)tγ

and ∫ 1

t

s

z(s)
ds ≥

∫ 1

t

1

z(s)
ds ≥

∫ ∞

0

1

z(s)
ds = γ.

Hence

0 > z(t) ≥
∫ t

0

(2s+ A
2 )s

z(s)
ds+ t

∫ 1

t

s

z(s)
ds− f0t

≥ (2 +
A

2
)tγ + tγ − f0t

= (3γ +
A

2
γ − f0)t := Kt,

where K = 3γ + A
2 γ − f0 < 0. From this, we obtain∫ 1

0

1

z(s)
ds ≤

∫ 1

0

1

Ks
ds =

1

K

∫ 1

0

1

s
ds = −∞,

which contradicts γ > −∞. Hence, (ii) holds.

(iii) Since Az(1) converges, we know that
∫ 1

0
s

z(s)ds converges. This, together

with (ii) and Bz(t) =
∫ 1

t
s

z(s)ds−
A
2

∫ 1

t
1

z(s)ds for t ∈ (0, 1], implies limt→0+ Bz(t) =

+∞. z(0) = 0 and A(0) = 0 imply limt→0+ tBz(t) = 0.

(P2) Let z be a solution of (2.5). Then z(0) = 0 by (P1) (i).

(i) Differentiating (2.5) with respect to t, we know (2.8) holds. Conversely,
integrating (2.8) from 0 to t and utilizing z(0) = 0, we have that (2.5) holds.

(ii) Differentiating (2.5) with respect to t twice, we know that (2.9) holds and
z′(1) = A+1

z(1) − f0 by (2.8). Conversely, integrating (2.9) from t to 1 and utilizing

z′(1) = A+1
z(1) − f0, we obtain that (2.8) holds and z satisfies (2.5) by (i).

(P3) Since z(t) is strictly decreasing [0, 1], we know 0 > z(t) ≥ z(1) for t ∈ (0, 1].
Notice that 2s2 + A

2 ≥ 0 for s ∈ [0, 1], we see

z(1) =

∫ 1

0

(2s+ A
2 )s

z(s)
ds− f0 ≤ 1

z(1)

∫ 1

0

(2s+
A

2
)sds− f0

and z2(1) + f0z(1)− (
2

3
+

A

4
) ≥ 0. This implies that the right side of (2.10) holds.

Since z(t) < 0 for t ∈ (0, 1] and A > 0, we obtain therefore by (2.7)

z′(t) =
(A+ t)t

z(t)
+

∫ 1

t

s− A
2

z(s)
ds− f0 ≥ (A+ t)t

z(t)
+

∫ 1

t

s

z(s)
ds− f0
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and

z′(t) ≥ (A+ t)t

z(t)
+

1

z(t)

∫ 1

t

sds− f0.

From this, we see

z(t)z′(t) ≤ (A+ t)t+
1− t2

2
− f0z(t) = At+

1 + t2

2
− f0z(t).

Integrating this inequality from 0 to 1 and utilizing z(0) = 0, we have

z2(1) ≤ 3A+ 4

3
− 2f0

∫ 1

0

z(s)ds.

If f0 < 0, by
∫ 1

0
z(s)ds < 0, we obtain

z2(1) ≤ 3A+ 4

3

and

z(1) ≥ −
√

3A+ 4

3
.

If f0 ≥ 0, by 0 >
∫ 1

0
z(s)ds ≥

∫ 1

0
z(1)ds = z(1), we have

z2(1) ≤ 3A+ 4

3
− 2f0z(1),

and
z(1) ≥ c(f0, A).

Hence, the left side of (2.10) holds.

(P4) We proceed by contradiction. If there exists t ∈ [0, 1] such that z(t) >
σ(f0, A)(t), then t ∈ (0, 1) by z(0) = 0 = σ(f0, A)(0) and z(1) ≤ d(f0, A) =
σ(f0, A)(1).

Let φ(t) = z(t)− σ(f0, A)(t). Then φ(0) = 0, φ(1) ≤ 0. Let ξ ∈ (0, 1) satisfy

φ(ξ) = max{φ(t), t ∈ [0, 1]} > 0.

Then z(ξ) > σ(f0, A)(ξ), φ′(ξ) = 0 and φ′′(ξ) ≤ 0. This implies z′(ξ) =
3

2
d(f0, A)ξ

1
2

and z′′(ξ) ≤ σ′′(f0, A)(ξ) =
3

4
d(f0, A)ξ−

1
2 < 0. On the other hand, by (2.9), we see

z′′(ξ) = − (A+ ξ)ξz′(ξ)

z2(ξ)
+

3A+ 2ξ

2z(ξ)

=
(3A+ 2ξ)z(ξ)− 2(A+ ξ)ξz′(ξ)

2z2(ξ)
:=

M(ξ)

z2(ξ)
,

where M(t) = (3A+ 2t)z(t)− 2(A+ t)tz′(t).
It follows from z(ξ) > σ(f0, A)(ξ) that

M(ξ) = (3A+ 2ξ)z(ξ)− 2(A+ ξ)ξz′(ξ)

> (3A+ 2ξ)σ(f0, A)(ξ)− 3(A+ ξ)ξd(f0, A)ξ
1
2 = −d(f0, A)ξ

5
2 > 0,
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which contradicts z′′(ξ) ≤ 0.
Lemma 2.2 shows that if the BVP (1.1), (1.3) has a solution f ∈ P , then (2.5)

has a solution z ∈ Q. Conversely, we may construct a solution f ∈ P of the BVP
(1.1), (1.3) via a solution z ∈ Q of (2.5).

Lemma 2.4. Let z ∈ Q be a solution of (2.5). Then the BVP (1.1), (1.3) has a
solution f ∈ P satisfying

η = −
∫ 1

f ′(η)

1

z(s)
ds, f(η) = −

∫ 1

t

s

z(s)
ds+ f0 (2.11)

and

|f ′′(η)| ≤ |c(A, f0)|, |f(η)| ≤ 2

|d(A, f0)|
+ |f0| on [0,∞). (2.12)

Proof. Let

η = η(t) = −
∫ 1

t

1

z(s)
ds on (0, 1]. (2.13)

Then η(t) is continuous and strictly increasing on (0, 1]. By Lemma 2.3 (P1) (ii),
we have η(0) = ∞ and η(1) = 0.

Let t = h(η) be the inverse function of η = η(t). Then h(0) = 1 and h(∞) = 0.
We define a function

f(η) =

∫ η

0

h(s)ds+ f0.

Then

f(0) = f0, f ′(η) = h(η) = t, f ′(0) = h(0) = 1 and f ′(∞) = h(∞) = 0.

Differentiating (2.13) with respect to t, we have
dη

dt
=

1

z(t)
and by s = f ′(σ)

f(η)− f(0) =

∫ η

0

f ′(σ)dσ =

∫ t

1

s

z(s)
ds.

Hence

η = −
∫ 1

f ′(η)

1

z(s)
ds

and

f(η) =

∫ η

0

f ′(σ)dσ + f0 = −
∫ 1

t

s

z(s)
ds+ f0.

By the differentiation of f ′(η) = t with respect to η, we have

f ′′(η) =
dt

dη
= z(t), f ′′′(η) =

dt

dη
= z′(t)

dt

dη
= z′(t)z(t).

Substituting η, f(η), f ′(η), f ′′(η), f ′′′(η) into (1.1) and utilizing (2.8), we obtain

f ′′′ + (f − Aη

2
)f ′′ − (A+ f ′)f ′

=z′(t)z(t) +
[
−
∫ 1

t

s

z(s)
ds+ f0 +

A

2

∫ 1

t

1

z(s)
ds
]
z(t)− (A+ t)t

=z(t)
[
z′(t)− (A+ t)t

z(t)
−

∫ 1

t

s− A
2

z(s)
ds+ f0

]
= 0.
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It follows from Lemma 2.3 (P3) and the decrease in z that z(1) ≤ z(t) ≤ 0 on [0, 1].
This implies |f ′′(η)| = |z(t)| ≤ |z(1)| ≤ |c(f0, A)| for η ∈ [0,∞).

By Lemma 2.3 (P4),

|f(η)| ≤
∫ 1

0

s

|z(s)|
ds+ |f0| ≤

∫ 1

0

s

|σ(f0, A)(s)|
ds+ |f0|

and

|f(η)| ≤
∫ 1

0

1

|d(f0, A)s
1
2 |
ds+ |f0| =

2

|d(A, f0)|
+ |f0|.

Hence, (2.12) holds.

By Lemmas 2.2 and 2.4, we establish the relation between the BVP (1.1), (1.3)
and (2.5) as follows.

Theorem 2.1. (i) If the BVP (1.1), (1.3) has a solution f ∈ P , then (2.5) has
a solution z ∈ Q satisfying (2.6).

(ii) If (2.5) has a solution z ∈ Q, then the BVP (1.1), (1.3) has a solution f ∈ P
satisfying (2.11) and (2.12).

Remark 2.1. By Theorem 2.1, for f ∈ P satisfying the BVP (1.1), (1.3), we obtain
a priori bounds (2.12) for the skin friction function f ′′ and the stream function f .
Hence, Theorem 2.1 extends the study on f and f ′′ in [5, 9].

3. The well-posedness of the system (1.1)-(1.4)

Notation:

Θ = {θ ∈ C2[0,∞) : θ′ < 0 and θ′′ ≥ 0 on [0,∞)}.

The following Lemma can be found in [9](see, Theorems 1, 2 and 5).

Lemma 3.1. For any A > 0, −∞ < f0 < ∞ and Pr > 0, the problem (1.1)-(1.4)
has a unique solution (f, θ) ∈ P ×Θ.

In order to prove the well-posedness, we need to prove that the solutions in
P ×Θ of (1.1)-(1.4) depend on parameters A, f0 and Pr continuously. For this, we
need the following Helly selection principle (see [10, Corollary 3.2]), where BV [a, b]
is the space of all the bounded variation functions defined on [a, b] and Vu is the
total variation of u ∈ BV [a, b].

Lemma 3.2. Let {un(t)} ⊂ BV [a, b] be an infinite sequence. Assume that {Vun} is
bounded and there exists K > 0 such that |un(t)| ≤ K for t ∈ [a, b] and n ∈ N. Then
there exist a subsequence {unk

} of {un} and u ∈ BV [a, b] such that unk
(t) → u(t)

for each t ∈ [a, b].

Let An > 0, An → A > 0, f
(n)
0 → f0, P

(n)
r > 0, P

(n)
r → Pr > 0, (fn, θn) ∈ P ×Θ

denote the solutions of (1.1)-(1.4) when A = An, f0 = f
(n)
0 and Pr = P

(n)
r , and

(f, θ) ∈ P ×Θ denote the solutions of (1.1)-(1.4). We prove the following theorem.

Theorem 3.1. (i) ∥fn − f∥ → 0 and (ii) ∥θn − θ∥ → 0 (n → ∞), where ∥f∥ =
sup{|f(η)| : η ∈ [0,∞)}.
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Proof. It follows from Theorem 2.1 (i) that there exists zn ∈ Q which is a solution
of (2.5) satisfying (2.6), that is,

η = −
∫ 1

f ′
n(η)

1

zn(s)
ds, fn(η) = −

∫ 1

f ′
n(η)

s

zn(s)
ds+ f

(n)
0 , f ′′

n (η) = zn(t).

By Lemma 2.3 (P3), there exist constants a > 0, c < d < 0 and N > 0 such that

c ≤ c(An, f
(n)
0 ) < d(An, f

(n)
0 ) ≤ d, a < An < 2a for n ≥ N .

We first prove the following fact:

(P ) if lim
n→∞

f ′
n(η) = f ′(η) for η ∈ [0,∞), then ∥f ′

n − f ′∥ → 0(n → ∞).

If it is false, then there exist ε > 0 and {ηnk
} such that

|f ′
nk
(ηnk

)− f ′(ηnk
)| ≥ ε for all k.

Lemma 2.3 (P3), together with the decrease in z, implies that

|f ′′(η)| = |z(t)| ≤ |z(1)| ≤ |c| for n ≥ N,

that is, {f ′′(η)} is bounded on [0,∞). This shows that

{f ′
n(η)} is compact set on [0, η̃] for each fixed η̃ ∈ [0,∞)

and
|f ′

nk
(η)− f ′(η)| → 0 uniformly on [0, η̃].

From this, we obtain ηnk
→ ∞(nk → ∞).

Without loss of generality, we may assume f ′
nk
(ηnk

)− f ′(ηnk
) ≥ ε for all k. By

the decrease in f ′
nk
, we know when ηnk

≥ η

f ′
nk
(η) ≥ f ′

nk
(ηnk

) ≥ f ′(ηnk
) + ε ≥ ε.

Taking limit when k → ∞, we have f ′(η) ≥ ε.
Letting η → ∞, we obtain 0 = f ′(∞) ≥ ε, which is a contradiction. Hence, (P )

holds.
Next, we start to prove the well-posedness.
(i) If ∥fn − f∥ → 0 is false, then there exist ε0 > 0 and ηnk

∈ (0,∞) such
that |fnk

(ηnk
)− f(ηnk

)| ≥ ε0. Without loss of generality, we may assume |fn(ηn)−
f(ηn)| ≥ ε0.

By Lemmas 3.2 and 2.3 (P4), there exist a subsequence {zni} of {zn} and z ∈
BV [0, 1] such that

lim
ni→∞

zni(t) = z(t) for t ∈ [0, 1],

zni(t) ≤ dt
3
2 on [0, 1] for ni ≥ N

and
z(t) ≤ dt

3
2 on [0, 1].

Noticing that
1

|zni(s)|
≤ 1

|d|s 3
2

on (0, 1], then for ni ≥ N and s > 0

∣∣∣ (2s+ Ani

2 )s

zni(s)

∣∣∣ ≤ 2s+ a

|d|s 1
2

,
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t
∣∣∣s− Ani

2

zni(s)

∣∣∣ ≤ t
∣∣∣s+ Ani

2

zni(s)

∣∣∣ ≤ s
∣∣∣ (s+ Ani

2 )

zni(s)

∣∣∣ ≤ |s+ a|
|d|s 1

2

for t ≤ s,

the Lebesgue’s Dominated Convergence Theorem with the dominated function F (s) =
2 + a

|d|s 1
2

for s ∈ [0, 1] implies

lim
i→∞

Azni(t) = Az(t) and lim
i→∞

tBzni(t) = tBz(t) for t ∈ [0, 1].

Hence z is a solution of (2.5) and z ∈ Q.

By Theorem 2.1 (ii), the BVP (1.1), (1.3) has a solution f̃ in P and

η = −
∫ 1

f̃ ′(η)

1

z(s)
ds, f̃(η) = −

∫ 1

f̃ ′(η)

s

z(s)
ds+ f̃0.

It follows from Lemma 3.1 that f̃ = f , we get therefore that

η = −
∫ 1

f ′(η)

1

z(s)
ds and f(η) = −

∫ 1

f ′(η)

s

z(s)
ds+ f0.

Since

−
∫ 1

f ′(η)

1

z(s)
ds = η = −

∫ 1

f ′
ni

(η)

1

zni
(s)

ds = −
∫ 1

f ′(η)

1

zni
(s)

ds−
∫ f ′(η)

f ′
ni

(η)

1

zni
(s)

ds

and

lim
i→∞

∫ 1

f ′(η)

1

zni(s)
ds =

∫ 1

f ′(η)

1

z(s)
ds for η ∈ [0,∞),

we have limi→∞
∫ f ′(η)

f ′
ni

(η)
1

zni
(s)ds = 0 for η ∈ [0,∞).

By

1

|c|
|f ′(η)− f ′

ni
(η)| =

∣∣ ∫ f ′(η)

f ′
ni

(η)

1

c
ds
∣∣ ≤ ∣∣ ∫ f ′(η)

f ′
ni

(η)

1

zn(s)
ds
∣∣,

we obtain f ′
ni
(η) → f ′(η)(i → ∞) and ∥f ′

ni
− f ′∥ → 0(i → ∞) by (P ).

Noticing that
s

|zni(s)|
≤ 1

|d|s 1
2

:= F0(s)(ni ≥ N) and
∫ 1

0
F0(s)ds < ∞, the

absolutely continuity of the Lebesgue integral implies there exists δ > 0 such that

|
∫ t2
t1

F0(s)ds| <
ε0
6

when |t2 − t1| < δ. The Lebesgue’s Dominated Convergence

Theorem with the dominated function F0(s) implies limni→∞
∫ 1

0

∣∣ s
zni

(s) −
s

z(s)

∣∣ds =
0. We choose N0 ≥ N such that when ni ≥ N0

|f (ni)
0 − f0| <

ε0
6
, |f ′

ni
(η)− f ′(η)| ≤ ∥f ′

ni
− f ′∥ < δ and

∫ 1

0

∣∣∣ s

zni(s)
− s

z(s)

∣∣∣ds < ε0
6
.

By

fni(η) = −
∫ 1

f ′
ni

(η)

s

zni(s)
ds+ f

(ni)
0 = −

∫ 1

0

s

zni(s)
ds+

∫ f ′
ni

(η)

0

s

zni(s)
ds+ f

(ni)
0 ,

f(η) = −
∫ 1

f ′(η)

s

z(s)
ds+ f0 = −

∫ 1

0

s

z(s)
ds+

∫ f ′(η)

0

s

z(s)
ds+ f0,
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we have for ni ≥ N0

|fni(η)− f(η)|

≤
∣∣ ∫ 1

0

(
s

zni(s)
− s

z(s)
)ds

∣∣+ ∣∣ ∫ f ′
ni

(η)

0

s

zni(s)
ds−

∫ f ′(η)

0

s

z(s)
ds
∣∣+ |f (ni)

0 − f0|

=
∣∣ ∫ 1

0

(
s

zni(s)
− s

z(s)
)ds

∣∣+ ∣∣ ∫ f ′(η)

0

(
s

zni(s)
− s

z(s)
)ds+

∫ f ′
ni

(η)

f ′(η)

s

zni(s)
ds
∣∣

+ |f (ni)
0 − f0|

≤
∫ 1

0

∣∣ s

zni(s)
− s

z(s)

∣∣ds+ ∫ f ′(η)

0

∣∣ s

zni(s)
− s

z(s)

∣∣ds+ ∣∣ ∫ f ′
ni

(η)

f ′(η)

s

zni(s)
ds
∣∣

+ |f (ni)
0 − f0|

≤2

∫ 1

0

∣∣ s

zni(s)
− s

z(s)

∣∣ds+ ∫ f ′
ni

(η)

f ′(η)

s

|zni(s)|
ds+ |f (ni)

0 − f0|

≤2

∫ 1

0

∣∣ s

zni(s)
− s

z(s)

∣∣ds+ ∣∣ ∫ f ′
ni

(η)

f ′(η)

F0(s)ds
∣∣+ |f (ni)

0 − f0|

<
ε0
3

+
ε0
6

+
ε0
6

=
2ε0
3

< ε0,

which contradicts |fn(ηn)− f(ηn)| ≥ ε0. Hence, (i) holds.

(ii) If ∥θn − θ∥ → 0 is false, then there exist ε0 > 0 and ηnk
∈ (0,∞) such that

|θnk
(ηnk

)−θ(ηnk
)| ≥ ε0.Without loss of generality, we may assume θn(ηn)−θ(ηn) ≥

ε0.
It follows from θ′′ ≥ 0 that θ′ is increasing on [0,∞). This implies that θ′(∞)

exists and θ′(∞) = 0 by θ(∞) = 0.
Since

0 ≤ 1

Pr
θ′′ = −fθ′ +

Aη

2
θ′ + (A+ f ′)θ,

and the boundedness of f(see (2.12)), we have limη→∞
Aη

2
θ′ ≥ 0, i.e.,

limη→∞ηθ′ ≥ 0.

On the other hand, θ′ ≤ 0 on [0,∞) implies ηθ′ ≤ 0 for η ≥ 0. Then

limη→∞ηθ′ ≤ 0.

Hence, limη→∞ ηθ′ = 0. From this and (1.2), we know that ηθ′ and θ′′ are bounded
on [0,∞). This, together with the boundedness of f , θ, θ′ and (i), implies that
there exists N > 0 such that when n ≥ N∣∣[(f − fn) +

An −A

2
η]θ′ + [(An −A) + (f ′

n − f ′)]θ
∣∣ < Aε0

6
for η ≥ 0 (3.1)

and ∣∣ 1

P
(n)
r

− 1

Pr

∣∣θ′′ < Aε0
6

for η ≥ 0, An >
A

2
> 0. (3.2)
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Let θ̃n = θn − θ. Then

(
1

P
(n)
r

− 1

Pr
)θ′′n +

1

Pr
θ̃′′n =

1

P
(n)
r

θ′′n − 1

Pr
θ′′

=−
[
(fn − Anη

2
)θ′n − (An + f ′

n)θn
]
+

[
(f − Aη

2
)θ′ − (A+ f ′)θ

]
=− (fn − Anη

2
)θ̃′n + (An + f ′

n)θ̃n

+
[
(f − fn) +

An −A

2
η
]
θ′ +

[
(An −A) + (f ′

n − f)
]
θ. (3.3)

By θ̃n(0) = 0 and θ̃n(∞) = 0, we know that there exists η̃n > ηn such that
θn(η̃n) < ε0.

Let ξn ∈ (0, η̃n) such that

θ̃n(ξn) = max{θ̃n(η), η ∈ [0, η̃n]}.

Then θ̃n(ξn) ≥ θ̃n(ηn) ≥ ε0, θ̃
′
n(ξn) = 0 and θ̃′′n(ξn) ≤ 0.

On the other hand, by (3.1), (3.2), (3.3), f ′
n(ξn) > 0 and θ′n(ξn) = 0, we have

n ≥ N

(
1

P
(n)
r

− 1

Pr
)θ′′n(ξn) +

1

Pr
θ̃′′n(ξn) ≥ [An + f ′

n(ξn)]θ̃n(ξn)−
Aε0
6

> Anθ̃n(ξn)−
Aε0
6

.

Since θ̃′′n(ξn) ≤ 0, we know 0 ≤ θ′′n(ξn) ≤ θ′′(ξn). Then by (3.2)

1

Pr
θ̃′′n(ξn) >

Aε0
2

− Aε0
6

− (
1

P
(n)
r

− 1

Pr
)θ′′n(ξn)

≥ Aε0
3

−
∣∣ 1

P
(n)
r

− 1

Pr

∣∣θ′′(ξn)
>

Aε0
3

− Aε0
6

=
Aε0
6

> 0,

which contradicts θ̃′′n(ξn) ≤ 0.

Remark 3.1. Theorem 3.1 shows the solutions of the problem (1.1)-(1.4) obtained
in [9] are well-posed related to the parameters involved in the system. Hence,
Theorem 3.1 strengthens the results obtained in [9].

In this paper, utilizing integral methods, we treat some nonautonomous bound-
ary layer problems analytically. Integral methods are used to treat autonomous
boundary layer problems, one may refer to [7, 14–17].
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