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SOLVING NONLINEAR ORDINARY
DIFFERENTIAL EQUATIONS USING THE

NDM
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Abstract In this research paper, we examine a novel method called the
Natural Decomposition Method (NDM). We use the NDM to obtain exact
solutions for three different types of nonlinear ordinary differential equations
(NLODEs). The NDM is based on the Natural transform method (NTM) and
the Adomian decomposition method (ADM). By using the new method, we
successfully handle some class of nonlinear ordinary differential equations in
a simple and elegant way. The proposed method gives exact solutions in the
form of a rapid convergence series. Hence, the Natural Decomposition Method
(NDM) is an excellent mathematical tool for solving linear and nonlinear
differential equation. One can conclude that the NDM is efficient and easy to
use.
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1. Introduction

Nonlinear differential equations have received a considerable amount of interest due
to its broad applications. Nonlinear ordinary differential equations play an impor-
tant role in many branches of applied and pure mathematics and their applications
in engineering, applied mechanics, quantum physics, analytical chemistry, astron-
omy and biology. From last decade, researcher pay attentions towards analytical
and numerical solutions of nonlinear ordinary differential equations. Therefore,
it becomes increasingly important to be familiar with all traditional and recently
developed methods for solving linear and nonlinear ordinary differential equations.

We present a new integral transform method called the Natural Decomposition
Method (NDM) [29], and apply it to find exact solutions to nonlinear ODEs. There
are many integral transform methods [3, 13–19] exists in the literature to solve
ODEs. The most used one is the Laplace transformation [30]. Other methods used
recently to solve PDEs and ODEs, such as, the Sumudu transform [6], the Reduced
Differential Transform Method (RDTM) [25–28] and the Elzaki transform [14–19].
Fethi Belgacem and R. Silambarasan [11, 12], used the N–Transform to solve the
Maxwell’s equation, Bessel’s differential equation and linear and nonlinear Klein
Gordon Equations and more. Also, Zafar H. Khan and Waqar A. Khan [21], used
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the N–Transform to solve linear differential equations and they presented a table
with some properties of the N–Transform of different functions.

We present several applications in the fields of Physics and Engineering to show
the efficiency and the accuracy of the NDM. The Adomian decomposition method
(ADM) [1,2], proposed by George Adomian, has been applied to a wide class of linear
and nonlinear PDEs. For the nonlinear models, the NDM shows reliable results
in supplying exact solutions and analytical approximate solutions that converges
rapidly to the exact solutions.

Our aim in this paper is to develop an efficient algorithm for numerical compu-
tation by natural decomposition method for such problems. The natural decompo-
sition method provides solution as rapidly convergent series.

In this paper, we solve the following NLODEs:
First, consider the nonlinear second order differential equation of the form:

d2v

dt2
+

(
dv

dt

)2

+ v2(t) = 1− sin(t), (1.1)

subject to the initial conditions

v(0) = 0, v′(0) = 1. (1.2)

Second, the first order nonlinear ordinary differential equation of the form:

dv

dt
− 1 = v2(t), (1.3)

subject to the condition
v(0) = 0. (1.4)

Third, the nonlinear Riccati differential equation of the form:

dv

dt
= 1− t2 + v2(t), (1.5)

subject to the condition
v(0) = 0. (1.6)

The rest of this paper is organized as follows: In Section 2 and 3, we give some
background materials about the NDM. In section 4, we explain the methodology
of the NDM. In section 5, we apply the NDM to three test problems to show the
effectiveness of our method. Section 6 is for discussion and conclusion of this paper.

2. Basic Idea of The Natural Transform Method

In this section, we present some background about the nature of the Natural Trans-
form Method (NTM). Assume we have a function f(t), t ∈ (−∞,∞), and then the
general integral transform is defined as follows [11,12]:

ℑ [f(t)] (s) =

∫ ∞

−∞
K(s, t) f(t) dt, (2.1)

where K(s, t) represent the kernel of the transform, s is the real (complex) number
which is independent of t. Note that when K(s, t) is e−st, t Jn(st) and ts−1(st),
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then Eq. (2.1) gives, respectively, Laplace transform, Hankel transform and Mellin
transform.

Now, for f(t), t ∈ (−∞,∞) consider the integral transforms defined by:

ℑ [f(t)] (u) =

∫ ∞

−∞
K(t) f(ut) dt, (2.2)

and

ℑ [f(t)] (s, u) =

∫ ∞

−∞
K(s, t) f(ut) dt. (2.3)

It is worth mentioning here when K(t) = e−t, Eq. (2.2) gives the integral Sumudu
transform, where the parameter s replaced by u. Moreover, for any value of n the
generalized Laplace and Sumudu transform are respectively defined by [11,12]:

ℓ [f(t)] = F (s) = sn
∫ ∞

0

e−sn+1t f(snt) dt, (2.4)

and

S [f(t)] = G(u) = un

∫ ∞

0

e−unt f(tun+1) dt. (2.5)

Note that when n = 0, Eq. (2.4) and Eq. (2.5) are the Laplace and Sumudu
transform, respectively.

3. Definitions and Properties of the N–Transform

The natural transform of the function f(t) for t ∈ (−∞,∞) is defined by [11,12]:

N [f(t)] = R(s, u) =

∫ ∞

−∞
e−st f(ut) dt; s, u ∈ (−∞,∞) , (3.1)

where N [f(t)] is the natural transformation of the time function f(t) and the vari-
ables s and u are the natural transform variables. Note that Eq. (3.1) can be
written in the form [4,5]:

N [f(t)] =

∫ ∞

−∞
e−st f(ut) dt; s, u ∈ (−∞,∞)

=
[ ∫ 0

−∞
e−st f(ut) dt; s, u ∈ (−∞, 0)

]
+

[ ∫ ∞

0

e−st f(ut) dt; s, u ∈ (0,∞)
]

= N− [f(t)] + N+ [f(t)]

= N [f(t)H(−t)] + N [f(t)H(t)]

= R−(s, u) +R+(s, u),

where H(.) is the Heaviside function.
It should be mentioned here, if the function f(t)H(t) is defined on the positive

real axis, with t ∈ R, then we define the Natural transform (N–Transform) on the
set

A =

{
f(t) :∃ M, τ1, τ2 > 0, such that |f(t)| < Me

|t|
τj ,

if t ∈ (−1)j × [0,∞) , j ∈ Z+

}
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as:

N [f(t)H(t)] = N+ [f(t)] = R+(s, u) =

∫ ∞

0

e−st f(ut) dt; s, u ∈ (0,∞) , (3.2)

where H(.) is the Heaviside function. Note if u = 1, then Eq. (3.2) can be reduced
to the Laplace transform and if s = 1, then Eq. (3.2) can be reduced to the Sumudu
transform. Now we give some of the N–Transforms and the conversion to Sumudu
and Laplace [11,12].

Table 1. Special N–Transforms and the conversion to Sumudu and Laplace

f(t) N [f(t)] S [f(t)] ℓ [f(t)]

1 1
s 1 1

s

t u
s2 u 1

s2

eat 1
s−au

1
1−au

1
s−a

tn−1

(n−1)! , n=1, 2, ... un−1

sn un−1 1
sn

sin(t) u
s2+u2

u
1+u2

1
1+s2

Remark 3.1. The reader can read more about the Natural transform in [11,12].

Now we give some important properties of the N–Transforms are given as follows
[11,12,20,21]:

Table 2. Properties of N–Transforms

Functional Form Natural Transform

y(t) Y (s, u)

y(at) 1
aY (s, u)

y′(t) s
uY (s, u)− y(0)

u

y′′(t) s2

u2Y (s, u)− s
u2 y(0)− y′(0)

u

γ y(t)± β v(t) γ Y (s, u)± β V (s, u)

4. The Natural Decomposition Method

In this section, we illustrate the applicability of the Natural Decomposition Method
to some nonlinear ordinary differential equations.

Methodology of the NDM:
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Consider the general nonlinear ordinary differential equation of the form:

Lv +R(v) + F (v) = g(t), (4.1)

subject to the initial condition
v(0) = h(t), (4.2)

where L is an operator of the highest derivative, R is the remainder of the differential
operator, g(t) is the nonhomogeneous term and F (v) is the nonlinear term.

Suppose L is a differential operator of the first order, then by taking the N–
Transform of Eq. (4.1), we have:

sV (s, u)

u
− V (0)

u
+ N+ [R(v)] + N+ [F (v)] = N+ [g(t)] . (4.3)

By substituting Eq. (4.2) into Eq. (4.3), we obtain:

V (s, u) =
h(t)

s
+

u

s
N+ [g(t)]− u

s
N+ [R(v) + F (v)] . (4.4)

Taking the inverse of the N–Transform of Eq. (4.4), we have:

v(t) = G(t)− N−1
[u
s
N+ [R(v) + F (v)]

]
, (4.5)

where G(t) is the source term.
We now assume an infinite series solution of the unknown function v(t) of the

form:

v(t) =

∞∑
n=0

vn(t). (4.6)

Then by using Eq. (4.6), we can re-write Eq. (4.5) in the form:

∞∑
n=0

vn(t) = G(t)− N−1

[
u

s
N+

[
R

∞∑
n=0

vn(t) +
∞∑

n=0

An(t)

]]
, (4.7)

where An(t) is an Adomian polynomial which represent the nonlinear term.
Comparing both sides of Eq. (4.7), we can easily build the recursive relation as

follows:

v0(t) = G(t),

v1(t) = −N−1
[u
s
N+ [Rv0(t) +A0(t)]

]
,

v2(t) = −N−1
[u
s
N+ [Rv1(t) +A1(t)]

]
,

v3(t) = −N−1
[u
s
N+ [Rv2(t) +A2(t)]

]
.

Eventually, we have the general recursive relation as follows:

vn+1(t) = −N−1
[u
s
N+ [Rvn(t) +An(t)]

]
, n ≥ 0. (4.8)

Hence, the exact or approximate solution is given by:

v(t) =

∞∑
n=0

vn(t). (4.9)
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5. Worked Examples

In this section, we employ the NDM to three physical applications and then compare
our solutions to existing exact solutions.

Example 5.1. Consider the first order nonlinear differential equation of the form:

d2v

dt2
+

(
dv

dt

)2

+ v2(t) = 1− sin(t), (5.1)

subject to the initial condition

v(0) = 0, v′(0) = 1. (5.2)

We begin by taking the N–transform to both sides of Eq. (5.1), we obtain:

s2V (s, u)

u2
− sV (0)

u2
− v′(0)

u
+ N+

[(
dv

dt

)2
]
+ N+

[
v2(t)

]
=

1

s
− u

s2 + u2
. (5.3)

By substituting Eq. (5.2) into Eq. (5.3) we obtain:

V (s, u) =
u2

s3
+

u

s2 + u2
− u2

s2
N+

[(
dv

dt

)2

+ v2(t)

]
. (5.4)

Then by taking the inverse N–Transform of Eq. (5.4), we have:

v(t) =
t2

2!
+ sin(t)− N−1

[
u2

s2
N+

[(
dv

dt

)2

+ v2(t)

]]
. (5.5)

We now assume an infinite series solution of the unknown function v(t) of the form:

v(t) =

∞∑
n=0

vn(t). (5.6)

By using Eq. (5.6), we can re-write Eq. (5.5) as follows:

∞∑
n=0

vn(t) =
t2

2!
+ sin(t)− N−1

[
u2

s2
N+

[ ∞∑
n=0

An +
∞∑

n=0

Bn

]]
, (5.7)

where An and Bn are the Adomian polynomials of the nonlinear terms
(
dv
dt

)2
and

v2(t) respectively.
Then by comparing both sides of Eq. (5.7), we can drive the general recursive

relation as follows:

v0(t) =
t2

2!
+ sin(t),

v1(t) = −N−1

[
u2

s2
N+ [A0 +B0]

]
,

v2(t) = −N−1

[
u2

s2
N+ [A1 +B1]

]
,

v3(t) = −N−1

[
u2

s2
N+ [A2 +B2]

]
.
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Therefore, the general recursive relation is given by:

vn+1(t) = −N−1

[
u2

s2
N+ [An +Bn]

]
, n ≥ 0. (5.8)

Then by using the recursive relation derived in Eq. (5.8), we can easily compute
the remaining components of the unknown function v(t) as follows:

v1(t) = −N−1

[
u2

s2
N+ [A0 +B0]

]
= −N−1

[
u2

s2
N+

[
(v′0)

2
+ v20

]]
= −N−1

[
u2

s2
N+

[
(v′0)

2
+ v20

]]
= −N−1

[
u2

s2
N+ [1]

]
+ · · ·

= −N−1

[
u2

s3

]
+ · · ·

= − t2

2!
+ · · · .

Hence, by canceling the noise terms that appears between v0(t) and v1(t), one can
see that the non-canceled term of v0(t) still satisfies the given differential equation
which lead to an exact solution of the form:

v(t) = sin(t).

The exact solution is in closed agreement with the result obtained by (ADM) [31].

Example 5.2. Consider the first order nonlinear ordinary differential equation of
the form [31]:

dv

dt
− 1 = v2(t), (5.9)

subject to the initial condition

v(0) = 0. (5.10)

Taking the Natural transform to both sides of Eq. (5.9), we obtain:

s

u
V (s, u)− 1

u
V (s, u)− 1

s
= N+

[
v2(t)

]
. (5.11)

Substituting Eq. (5.10), we obtain:

V (s, u) =
u

s2
+

u

s

[
N+

[
v2(t)

]]
. (5.12)

Taking the inverse Natural transform of Eq. (5.12), we obtain:

v(t) = t+ N−1
[u
s

[
N+

[
v2(t)

]]]
. (5.13)



84 M. Rawashdeh & S. Maitama

We now assume an infinite solution of the unknown function v(t) of the form:

v(t) =

∞∑
n=0

vn(t). (5.14)

Using Eq. (5.14), we can re-write Eq. (5.13) in the form:

∞∑
n=0

vn(t) = t+ N−1

[
u

s

[
N+

[ ∞∑
n=0

An(t)

]]]
, (5.15)

where An(t) is the Adomian polynomial representing the nonlinear term v2(t).
Then from Eq. (5.15), we can generate the recursive relation as follows:

v0(t) = t,

v1(t) = N−1
[u
s

[
N+ [A0(t)]

]]
,

v2(t) = N−1
[u
s

[
N+ [A1(t)]

]]
,

v3(t) = N−1
[u
s

[
N+ [A2(t)]

]]
.

Thus, the general recursive relation is given by:

vn+1(t) = N−1
[u
s

[
N+ [An(t)]

]]
, n ≥ 0. (5.16)

Using Eq. (5.16), we can easily compute the remaining components of the unknown
function v(t) as follows:

v1(t) = N−1
[u
s

[
N+ [A0(t)]

]]
= N−1

[u
s

[
N+

[
v20(t)

]]]
= N−1

[u
s

[
N+

[
t2
]]]

= N−1

[
2u3

s4

]
=

1

3
t3,

v2(t) = N−1
[u
s

[
N+ [A1(t)]

]]
= N−1

[u
s

[
N+ [2v0(t)v1(t)]

]]
= N−1

[
u

s

[
N+

[
2t4

3

]]]
= N−1

[
48u5

3s6

]
=

2t5

15
,

v3(t) = N−1
[u
s

[
N+ [A2(t)]

]]
= N−1

[u
s

[
N+

[
2v0(t)v2(t) + v21(t)

]]]
= N−1

[
u

s

[
N+

[
17t6

45

]]]
= N−1

[
12240u7

45s8

]
=

17t7

315
.

Then the approximate solution of the unknown function v(t) is given by:

v(t) =
∞∑

n=0

vn(t)

= v0(t) + v1(t) + v2(t) + v3(t) + · · ·

= t+
1

3
t3 +

2t5

15
+

17t7

315
+ · · ·

Hence, the exact solution of Eq. (5.9) is given by:

v(t) = tan(t).

The exact solution is in closed agreement with the result obtained by (ADM) [31].
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Example 5.3. Consider the Riccati differential equation of the form [31]:

dv

dt
= 1− t2 + v2(t), (5.17)

subject to the initial condition

v(0) = 0. (5.18)

Taking the N–Transform to both sides of Eq. (5.17), we obtain:

sV (s, u)

u
− v(0)

u
=

1

s
− 2u2

s3
+ N+

[
v2(t)

]
. (5.19)

By substituting Eq. (5.18) into Eq. (5.19), we obtain:

v(s, u) =
u

s2
− 2u3

s4
+

u

s
N+

[
v2(t)

]
. (5.20)

Taking the inverse N–Transform of Eq. (5.20), we have:

v(t) = t− t3

3
+ N−1

[u
s
N+

[
v2(t)

]]
. (5.21)

We now assume an infinite series solution of the unknown function v(t) of the form:

v(t) =

∞∑
n=0

vn(t). (5.22)

Then by using Eq. (5.22), we can re-write Eq. (5.21) in the form:

∞∑
n=0

vn(t) = t− t3

3
+ N−1

[
u

s
N+

[ ∞∑
n=0

An(t)

]]
, (5.23)

where An is the Adomian polynomial which represent the nonlinear term v2(t).

By comparing both sides of Eq. (5.23), we can easily build the general recursive
relation as follows:

v0(t) = t− t3

3
,

v1(t) = N−1
[u
s
N+ [A0(t)]

]
,

v2(t) = N−1
[u
s
N+ [A1(t)]

]
,

v3(t) = N−1
[u
s
N+ [A2(t)]

]
.

Then the general recursive relation is given by:

vn+1(t) = N−1
[u
s
N+ [An(t)]

]
. (5.24)
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By using Eq. (5.24), we can easily compute the remaining components of the
unknown function v(t) as follows:

v1(t) = N−1
[u
s
N+ [A0(t)]

]
= N−1

[u
s
N+

[
v20(t)

]]
= N−1

[
u

s
N+

[(
t− t3

3

)2
]]

= N−1
[u
s
N+

[
t2
]]

− 2

3
N−1

[u
s
N+

[
t4
]]

+
1

9
N−1

[u
s
N+

[
t6
]]

= N−1

[
2u3

s4

]
− 2

3
N−1

[
4!u5

s6

]
+

1

9
N−1

[
6!u7

s8

]
=

t3

3
− 2t5

15
+

t7

63
.

From v1(t) it is obvious that one noise term appear in the components v0(t). Then
by canceling the noise term from v0(t), the remaining non-canceled term of v0(t)
provide us with the exact solution. This can easily be verified by substitution.

Therefore, the exact solution of the given problem is given by:

v(t) = t. (5.25)

The exact solution is in closed agreement with the result obtained by (ADM) [31].

6. Conclusion

In this paper, the Natural Decomposition Method (NDM) was proposed for solving
the Riccati differential equation and two nonlinear ordinary differential equations.
We successfully found exact solutions to all three applications. The NDM introduces
a significant improvement in the fields over existing techniques. Our goal in the
future is to apply the NDM to other linear nonlinear differential equations (PDEs,
ODEs) that arise in other areas of science and engineering.
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