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Abstract In this paper, a numerical method for fourth-order time-fractional
partial differential equations with variable coefficients is proposed. Our method
consists of Laplace transform, the homotopy perturbation method and Ste-
hfest’s numerical inversion algorithm. We show the validity and efficiency of
the proposed method (so called LHPM) by applying it to some examples and
comparing the results obtained by this method with the ones found by Ado-
mian decomposition method (ADM) and He’s variational iteration method
(HVIM).
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1. Introduction

The topic of numerical study of fractional differential equations has attracted the at-
tention of many researchers. Li and He [24] proposed an application of the fraction-
al complex transform to fractional differential equation. In [7], different numerical
methods were used to solve singularly perturbed Able Volterra integral equation
associated with a fractional differential equation. Esmaeili et al. [8] developed a
computational technique based on the collocation method and Muntz polynomials
for the solution of fractional differential equations. In [25], the Riemann-Liouville
fractional integral for repeated fractional integration was expanded in block pulse
functions to yield the block pulse operational matrices for the fractional order in-
tegration. Lin and Xu [26] proposed numerical resolution for a time-fractional
diffusion equation. In [16], a finite element approach was applied to solve the
fractional advection-dispersion equation. Kexue and Jigen [19] used the Laplace
transform method for solving fractional differential equations with constant coef-
ficients. Merrikh-Bayat [31] developed a low-cost numerical algorithm to find the
series solution for nonlinear fractional differential equations with delay.

Homotopy perturbation method [10, 11] is an important and effective mathe-
matical tool for solving a variety of problems. It has been successfully applied
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to study limit cycle and bifurcation for nonlinear problems [12], nonlinear wave
equations [13], boundary value problems [14], chemical kinetics system [1], oscilla-
tors with discontinuities [15], Riccati equation with fractional orders [20], neutron
transport equation [29], nonlinear singular fourth order four-point boundary value
problems [27], systems of partial differential equations [3], nonlinear ill-posed op-
erator equations [4], stiff systems of ordinary differential equations [2], multi-order
fractional differential equations [17], etc.

Laplace transform method ia a well-known technique for solving integer-order
or relatively simple fractional-order differential equations [33, 35, 42]. In [28], a
Laplace homotopy perturbation method was employed for solving one dimensional
non-homogeneous partial differential equations with variable coefficients. Sheng et
al. [34] proposed numerical inverse Laplace transform algorithms for solving com-
plicated fractional order differential equations. Weeks [44] discussed numerical in-
version of Laplace transform algorithm in terms of the Laguerre expansion and
bilinear transformations [40]. For more examples and details of numerical inversion
of Laplace transform method, see [30, 36–38,41,43] and the references therein.

A combination of Laplace transform and homotopy perturbation method (LH-
PM) presents an accurate methodology for solving nonhomogeneous partial differ-
ential equations with variable coefficients. The method is applied in the Laplace
transform domain together with an inversion technique to retrieve the time-domain
solution. In [5], the authors developed a numerical algorithm for inverting a Laplace
transform when Laguerre polynomial series expansion for the inverse function is
available. Stehfest’s algorithm [39] has also been applied successfully for numerical
inversion of Laplace transform method. In [18], the authors solved second-order
time-fractional partial differential equations by applying a numerical method based
on numerical Laplace inversion technique.

In this paper, we discuss a numerical method for solving fourth-order time-
fractional partial differential equations with variable coefficients. Our method is
based on Laplace transform, the homotopy perturbation method and Stehfest’s
algorithm. Using temporal Laplace transform, the problem is converted into a
partial differential equation in time transform domain and is solved by means of
the homotopy perturbation method. The solution in time domain is obtained via
Stehfest’s numerical inversion algorithm.

2. Preliminaries

This section is devoted to the background material for fractional calculus [6,22,23,
32], Laplace transform and homotopy perturbation method.

Definition 2.1. A function h : R → R+ is said to be in the space Cµ, µ ∈ R if it
can be expressed as h(x) = xσh1(x) with σ > µ, h1(x) ∈ C[0,∞) and it is said to
be in the space Cm

µ if h(m) ∈ Cµ for m ∈ N
∪
{0}.

Definition 2.2. The Riemann-Liouville fractional integral of order α > 0 for a
function h ∈ Cµ with µ ≥ −1 is defined as

Iαh(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1h(τ)dτ, α > 0, t > 0,

I0h(t) = h(t).

(2.1)
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Definition 2.3. The Caputo fractional derivative of order α > 0 for a function
h ∈ Cm

−1 with m ∈ N
∪
{0} is defined as

Dαh(t) =


Im−αh(m)(t), m− 1 < α ≤ m,m ∈ N,

dmh(t)

dtm
, α = m.

(2.2)

Definition 2.4. A two-parameter Mittag-Leffler function is defined by the follow-
ing series

Eα,β(t) =
∞∑
κ=0

tκ

Γ(ακ+ β)
. (2.3)

Note that E1,1(t) = et, E1,1(−t) = e−t.

Definition 2.5. The Laplace transform of a function u(x, t), t ≥ 0, denoted by
φ(x, s), is defined by

L{u(x, t)} = φ(x, s) =

∫ ∞

0

e−stu(x, t)dt, (2.4)

where s is the transform parameter and is assumed to be real and positive.

The Laplace transform of Mittag-Leffler function Eα,β(t) is

L(Eα,β(t)) =

∫ ∞

0

e−stEα,β(t)dt =
∞∑
κ=0

k!

sκ+1Γ(ακ+ β)
. (2.5)

The Laplace transform of Dαh(t) can be found as follows

L(Dαh(t)) = L(Jm−αh(m)(t))

=L[
1

Γ(m− α)

∫ t

0

(t− τ)m−α−1h(m)(τ)dτ ] =
1

sm−α
L(h(m)(t))

=
1

sm−α
[smL(h(t))− sm−1h(0)− sm−2h′(0)− sm−3h′′(0)− · · · − hm−1(0)].

(2.6)

Next, we outline the basic idea of the homotopy perturbation method [10, 11]
for the convenience of the reader. For that we consider an equation of the form

ψ1(u) + ψ2(u)− g(r) = 0, r ∈ D, (2.7)

where ψ1 is a linear operator, ψ2 is a nonlinear operator, g(r) is a known analytic
function and D is the given domain. By the homotopy technique, we construct a
homotopy H(u, p) as

H(u, p) = ψ1(u)− ψ1(u0) + pψ1(u0) + p[ψ2(u)− g(r)] = 0, (2.8)

where p ∈ [0, 1] is an embedding parameter for (2.7). Clearly

H(u, 0) = ψ1(u)− ψ1(u0) = 0, H(u, 1) = ψ1(u) + ψ2(u)− g(r) = 0. (2.9)
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The changing process of p from zero to unity is just that of u(r, p) from initial
approximation u0 to the solution u of (2.7). We assume that the solution of (2.7)
can be written as a power series in p, that is,

u =

∞∑
κ=0

pκuκ. (2.10)

Substituting (2.10) in (2.8) and equating the coefficients of same powers of p, a
successive procedure is used to determine uk. Finally, setting p = 1 in (2.10) yields
the solution for (2.7).

3. Fourth-order time-fractional differential equation-
s

For m− 1 < α ≤ m,m ∈ N, we consider the following fourth-order time-fractional
partial differential equation

∂αξ

∂tα
(x1, x2, t) = ϵ1(x1, x2)

∂4ξ

∂x41
(x1, x2, t) + ϵ2(x1, x2)

∂4ξ

∂x42
+ h(x1, x2, t), (3.1)

supplemented with initial conditions

∂kξ

∂tk
(x1, x2, , 0) = fk(x1, x2), k = 0, 1, · · · ,m− 1, (3.2)

where fk, k = 0, 1, · · · ,m− 1, h, ϵ1 and ϵ2 are known functions.
Now we explain the method for solving (3.1) supplemented with the initial con-

ditions (3.2).
Taking Laplace transform of (3.1) via (2.6), we obtain

1

sm−α
[smΩ(x1, x2, s)− sm−1f0(x1, x2)

− sm−2f1(x1, x2)− sm−3f2(x1, x2)− · · · − fm−1(x1, x2)]

=[ϵ1
∂4

∂x41
+ ϵ2

∂4

∂x42
]Ω(x1, x2, s) + h(x1, x2, s),

(3.3)

where Ω(x1, x2, s) and h(x1, x2, s) are the Laplace transform of ξ(x1, x2, t) and
h(x1, x2, t) respectively. We can rewrite (3.3) as

sαΩ(x1, x2, s) =[ϵ1
∂4

∂x41
+ ϵ2

∂4

∂x42
]Ω(x1, x2, s) + h(x1, x2, s)

+
1

sm−α
[sm−1f0(x1, x2) + sm−2f1(x1, x2)

+ sm−3f2(x1, x2) + · · ·+ fm−1(x1, x2)].

(3.4)

For solving (3.4) by homotopy perturbation method, we construct a homotopy
in the following form:

Ω(x1, x2, s) =
p

sα
[ϵ1

∂4

∂x41
+ ϵ2

∂4

∂x42
]Ω(x1, x2, s)

+
1

sm−2α
[sm−1f0(x1, x2) + sm−2f1(x1, x2)

+ sm−3f2(x1, x2) + · · ·+ fm−1(x1, x2)] +
1

sα
h(x1, x2, s).

(3.5)
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Let the solution of (3.5) can be expressed as

Ω(x1, x2, s) =
∑∞

j=0 p
jΩj(x1, x2, s), (3.6)

where Ωj(x1, x2, s), j = 0, 1, 2, . . . , are unknown functions which need to be deter-
mined. Substituting (3.6) into (3.5) yields

∞∑
j=0

pjΩj(x1, x2, s) =
p

sα
[ϵ1

∂4

∂x41
+ ϵ2

∂4

∂x42
]

∞∑
j=0

pjΩj(x1, x2, s) +
1

sα
h(x1, x2, s)

+
1

sm−2α
[sm−1f0(x1, x2) + sm−2f1(x1, x2)

+ sm−3f2(x1, x2) + · · ·+ fm−1(x1, x2)].

(3.7)

Equating the coefficients of same powers of p, (3.7) gives

p0 : Ω0(x1, x2, s) =
1

sm−2α
[sm−1f0(x1, x2) + sm−2f1(x1, x2)

+ sm−3f2(x1, x2) + · · ·+ fm−1(x1, x2)] +
1

sα
h(x1, x2, s),

p1 : Ω1(x1, x2, s) =
1

sα
[ϵ1

∂4

∂x41
+ ϵ2

∂4

∂x42
]Ω0(x1, x2, s),

p2 : Ω2(x1, x2, s) =
1

sα
[ϵ1

∂4

∂x41
+ ϵ2

∂4

∂x42
]Ω1(x1, x2, s),

...

pn+1 : Ωn+1(x1, x2, s) =
1

sα
[ϵ1

∂4

∂x41
+ ϵ2

∂4

∂x42
]Ωn(x1, x2, s).

(3.8)
In the limit p→ 1, (3.6) becomes the approximate solution for (3.4) and is given by

Mn(x1, x2, s) =
∑n

j=0 Ωj(x1, x2, s). (3.9)

Taking the inverse Laplace transform of (3.9), we get the approximate solution of
the problem (3.1)-(3.2):

ξ(x1, x2, t) ≃ ξn(x1, x2, t) = L−1(Mn(x1, x2, s)). (3.10)

The original solution ξ(x1, x2, t) can be found approximately from Mn(x1, x2, s) by
means of the Stehfest’s algorithm [38] as follows

ξn(x1, x2, t) = S(t)
2ν∑
l=1

ϖlMn(x1, x2, lS(t)),

where ν is positive integer, S(t) = ln(2)
t and

ϖl = (−1)l+ν

min(l,ν)∑
k=[ l+1

2 ]

kν(2k)!

(ν − k)!k!(k − 1)!(l − k)!(2k − l)!
,

[r] denotes the integer part of the real number r.
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4. Numerical results

In this section, we demonstrate the application LHPM approach developed in the
preceding section.

Example 4.1. Consider a fourth-order time-fractional differential equations [9]

∂αξ

∂tα
(x, t) = − ∂4ξ

∂x4
(x, t), α ∈ (0, 1), t > 0, x ∈ [−3, 3], (4.1)

with the initial condition

ξ(x, 0) = exp(−x). (4.2)

The exact solution is given by

ξ(x, t) = exp(−x)(1 +
∞∑
k=1

(−t)kα

Γ(kα+ 1)
) = exp(−x)Eα,1(−tα). (4.3)

By using LHPM, we obtain

Ω0(x, s) =
exp(−x)

s
, Ω1(x, s) = − 1

sα
∂4

∂x4
Ω0(x, s), Ω2(x, s) = − 1

sα
∂4

∂x4
Ω1(x, s),

...

Ωn+1(x, s) = − 1

sα
∂4

∂x4
Ωn(x, s),

(4.4)
and so on.

Table 1 shows the absolute errors |ξ(x, t) − ξn(x, t)| using the LHPM with p =
10, α = 0.75, 0.85, 0.99 for various values of x and t. As it is clear from the table,
the numerical solutions are in good agreement with the exact solution.

x/t 0.2 0.4 0.8 1.0
−3 α = 0.75 2.24e− 5 2.29e− 4 3.39e− 4 9.16e− 4

0.85 8.91e− 4 4.28e− 4 9.72e− 4 1.06e− 4
0.99 0.0023 3.41e− 4 1.77e− 4 2.77e− 4

−1.5 α = 0.75 1.73e− 4 5.91e− 5 2.43e− 5 2.27e− 4
0.85 1.78e− 4 1.19e− 4 1.22e− 4 1.43e− 4
0.99 3.97e− 5 1.42e− 4 1.42e− 4 1.56e− 4

0 α = 0.75 6.06e− 5 5.18e− 6 4.35e− 5 2.72e− 6
0.85 1.28e− 5 2.44e− 5 5.42e− 5 1.13e− 5
0.99 6.71e− 5 1.41e− 5 7.66e− 6 2.02e− 5

1.5 α = 0.75 3.34e− 6 7.08e− 6 6.33e− 7 4.68e− 6
0.85 9.99e− 6 2.42e− 6 1.36e− 6 1.18e− 5
0.99 3.20e− 6 3.85e− 6 5.45e− 6 1.00e− 5

3 α = 0.75 2.58e− 6 1.39e− 6 1.64e− 6 9.96e− 7
0.85 1.71e− 6 1.14e− 6 4.02e− 7 3.77e− 6
0.99 1.85e− 6 4.62e− 7 1.18e− 6 1.41e− 6

Table 1. Absolute errors using the LHPM with p = 10, α = 0.75, 0.85, 0.99 for various values of x and
t for Example 4.1.
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Figure 1. The exact and the numerical solutions with x = −3, 3, n = 10, p = 10 for various values of t
and α = 0.5, 0.7, 0.9.

In Fig. 1, we plot the exact and the numerical solutions with x = −3, 3, n =
10, p = 10 for various values of t and α = 0.5, 0.7, 0.9.

In Fig. 2, we plot the numerical solution and the exact solution with n = 10, p =
10α = 0.5, 0.7, 0.9 for various values of α and x.
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Figure 2. The numerical solution and the exact solution with n = 10, p = 10, α = 0.5, 0.7, 0.9 for
various values of α and x.

Example 4.2. Consider the time-fractional fourth-order differential equation [21]

∂αξ

∂tα
(x, t) = −(

1

x
+

x4

120
)
∂4ξ

∂x4
(x, t),

α ∈ (1, 2], t > 0, x ∈ (
1

2
, 1),

(4.5)

with the initial conditions

ξ(x, 0) = 0,
∂ξ

∂t
(x, 0) = 1 +

x5

120
(4.6)
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and the boundary conditions

ξ(
1

2
, t) = 1 +

0.55

120
sin(t, α),

∂2ξ

∂x2
(
1

2
, t) =

1

48
sin(t, α),

ξ(1, t) =
121

120
sin(t, α),

∂2ξ

∂x2
(1, t) =

1

6
sin(t, α),

(4.7)

where the function sin(t, α) is defined as sin(t, α) =
∑∞

i=0
(−1)itiα+1

Γ(iα+2) .

Using the Laplace transform and homotopy perturbation method (LHPM) on
(4.1), we obtain

Ω0(x, s) =
1

s2
(1 +

x5

120
),

Ω1(x, s) = − 1

sα
(
1

x
+

x4

120
)
∂4

∂x4
Ω0(x, s),

Ω2(x, s) = − 1

sα
(
1

x
+

x4

120
)
∂4

∂x4
Ω1(x, s),

...

Ωn+1(x, s) = − 1

sα
(
1

x
+

x4

120
)
∂4

∂x4
Ωn(x, s),

(4.8)

and so on.
In Table 2, we list the results obtained by LHPM and compared with Adomian

decomposition method (ADM) and He’s variational iteration method (HVIM) re-
sults given by Khan et al. in [21] at n = 3, α = 1.5, 1, 75 for various values of x and
t. It can easily be inferred from the tabulated values that the results obtained by
LHPM are better than the ones found by ADM and HVIM.

α = 1.5 α = 1.75
t x LHPM ADM HV IM LHPM ADM HV IM
0.2 0.5 0.194734 0.194734 0.196914 0.197359 0.19736 0.197687

0.6 0.194809 0.194809 0.196991 0.197437 0.197437 0.197763
0.75 0.195068 0.195068 0.197527 0.197699 0.197699 0.198026
1.0 0.196306 0.196306 0.198504 0.198952 0.198953 0.199282

0.4 0.5 0.370692 0.370692 0.377682 0.382210 0.382211 0.383217
0.6 0.370836 0.370835 0.377828 0.382359 0.382359 0.383366
0.75 0.371328 0.371328 0.37833 0.382867 0.382867 0.383875
1.0 0.373683 0.373633 0.38073 0.385296 0.385296 0.33631

0.6 0.5 0.521418 0.521419 0.531411 0.546533 0.546537 0.547792
0.6 0.521620 0.521621 0.531617 0.546747 0.546748 0.548005
0.75 0.522311 0.522314 0.532323 0.547473 0.547475 0.548733
1.0 0.525626 0.525627 0.5357 0.550946 0.550947 0.552214

Table 2. Comparison of the numerical solutions obtained by the present method and those obtained by
ADM and HVIM with α = 1.5, 1.75 for various values of x and t.

In Fig. 3, we plot the numerical solutions with x = 0.6, 0.9; n = 3, p = 10 for
various values of t and α.

In Fig. 4, we plot the numerical solution with n = 3, p = 10, t = 1 for various
values of α and x.
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Figure 3. The numerical solutions with x = 0.6, 0.9; n = 3, p = 10 for various values of t and α.
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Figure 4. The numerical solution with n = 3, p = 10, t = 1 for various values of α and x.

5. Conclusions

In this paper, a numerical method (LHPM) consisting of the Laplace transform,
homotopy perturbation method and Stehfest’s numerical inversion algorithm for
solving fourth-order time-fractional partial differential equations with variable coef-
ficients is presented. The importance of the work lies in the fact that our numerical
method is more accurate and efficient than Adomian decomposition method (ADM)
and He’s variational iteration method (HVIM) [10,14], and yields a better approxi-
mation to the exact solution. This has been shown with the aid of some examples.
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