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GLOBAL STABILITY OF A DELAYED
RATIO-DEPENDENT PREDATOR-PREY

MODEL WITH GOMPERTZ GROWTH FOR
PREY∗
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Abstract A delayed ratio-dependent predator-prey model with Gompertz
growth for prey is investigated. The local stability of a predator-extinction
equilibrium and a coexistence equilibrium is discussed. Furthermore, the ex-
istence of Hopf bifurcation at the coexistence equilibrium is established. By
constructing a Lyapunov functional, sufficient conditions are obtained for the
global stability of the coexistence equilibrium.
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1. Introduction

Predator-prey systems are very important in analyzing the population dynamics
between different species. In many classical predator-prey models, the per capita
growth function is chosen as the logistic growth r[1 − x(t)/K], where x(t) is the
density of population at time t, r is the intrinsic growth rate and K is the carrying
capacity. In [11], Laird discovered that the experimental data for a variety of
primary and transplanted tumours of the mouse, rat and rabbit were well fit to the
Gompertz curve, which was first proposed by Benjamin Gompertz [7]. In [12], Laird
et al. showed that the Gompertz model, due to its ability to exhibit exponential
retardation, could describe the normal growth of an organism such as the gumea pig
over an incredible 10000-fold range of the growth. Since that time the Gompertz
equation is often used to describe the population dynamics and the inner growth of
tumour, i.e.

dx(t)

dt
= rx(t) ln

K

x(t)
. (1.1)

Note that the per capita rate of predation only depends on the prey numbers
in a large body of existing predator-prey theories. In reality, as the number of
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predators changes slowly relative to prey change, there is often competition among
the predators, and the per capita rate of predation should therefore depend on
the numbers of both prey and predator, most probably and likely on their ratio.
Therefore, a more suitable general predator-prey model should be based on the
”ratio-dependent” theory. These hypotheses are strongly supported by numerous
field and laboratory experiment and observation (see, for example, [1–3,8]).

On the other hand, many models in the literature represent the population dy-
namics by systems of ordinary differential equations without time delay. However,
inclusion of temporal delays in such models makes them more realistic. It is general-
ly recognized that some kind of time delays are tend to be destabilizing in the sense
that longer delays may destroy the stability of coexistence equilibrium [10]. Time
delay due to gestation is among them, because generally a duration of τ time units
elapses when an individual prey is killed and the moment when the corresponding
increase in the predator population is realized. The effect of this kind of delay on
the asymptotic behavior of populations has been studied by a number of papers
(see, for example, [5, 6, 13]).

Motivated by the works of Laird [12], Arditi [3] and Freedman [5], in this paper
we study a delayed ratio-dependent predator-prey model with Gompertz growth for
prey:

ẋ(t) =r1x(t) ln
K

x(t)
− a1x(t)y(t)

my(t) + x(t)
,

ẏ(t) =y(t)

[
a2x(t− τ)

my(t− τ) + x(t− τ)
− r2

]
,

(1.2)

with initial conditions

x(θ) = ϕ1(θ) ≥ 0, y(θ) = ϕ2(θ) ≥ 0, ϕ1(0) > 0, ϕ2(0) > 0, θ ∈ [−τ, 0]. (1.3)

In system (1.2), x(t) and y(t) represent the densities of the prey and predator at
time t, respectively. The parameters a1, a2,m, r1, r2 and K are positive constants
in which a1 is the capturing rate of predators, a2/a1 is the conversion rate of the
predator by consuming prey, m is the half saturation constant, r1 is the intrinsic
growth rate, r2 denotes the death rate of the predator, K is the carrying capacity,
respectively. τ > 0 is a constant delay due to the gestation of predators.

The organization of this paper is as follows. In the next section, by analyzing the
corresponding characteristic equations, the local stability of a predator-extinction
equilibrium and a coexistence equilibrium of system (1.2) is discussed. The exis-
tence of Hopf bifurcations at the coexistence equilibrium is established. Section
3 provides sufficient conditions for the predator-extinction equilibrium and coexis-
tence equilibrium of system (1.2) to be globally asymptotically stable. In Section
4, an example is given to illustrate the main results in this paper.

2. Local stability of equilibria

In this section, we investigate the local stability of a predator-extinction equilib-
rium and a coexistence equilibrium by analyzing the corresponding characteristic
equations, respectively.

System (1.2) always has a predator-extinction equilibrium E1(K, 0). Let

R0 =
a2
r2

.
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It is easy to show that if R0 > 1, then system (1.2) has a unique coexistence
equilibrium E∗(x∗, y∗), where

x∗ = Ke
a1(r2−a2)

ma2r1 , y∗ =
K(a2 − r2)

mr2
e

a1(r2−a2)
ma2r1 .

The characteristic equation of system (1.2) at the predator-extinction equilibri-
um E1(K, 0) is of the form

(λ+ r1)(λ− a2 + r2) = 0. (2.1)

Clearly, Eq. (2.1) always has one negative root λ1 = −r1 and another root λ2 =
a2 − r2. Hence, if R0 < 1, the equilibrium E1 is locally asymptotically stable; if
R0 > 1, E1 is unstable.

To study the local stability of the coexistence equilibrium, we consider the lin-
earization of system (1.2) at E∗(x∗, y∗)

˙̂x(t) = r1

[
x∗ ln K

x∗

my∗ + x∗ − 1

]
x̂(t)− a1x

∗2

(my∗ + x∗)2
ŷ(t),

˙̂y(t) =
a2my∗2

(my∗ + x∗)2
x̂(t− τ)− a2mx∗y∗

(my∗ + x∗)2
ŷ(t− τ).

The characteristic equation of system (1.2) at the coexistence equilibrium E∗(x∗, y∗)
is of the form

λ2 + P1λ+ (Q1λ+Q0)e
−λτ = 0, (2.2)

where

P1 = r1 −
a1r

2
2y

∗

a22x
∗ , Q0 =

mr1r
2
2y

∗

a2x∗ , Q1 =
mr22y

∗

a2x∗ .

When τ = 0, (2.2) becomes

λ2 + (P1 +Q1)λ+Q0 = 0,

where

P1 +Q1 = r1 +
r2(ma2 − a1)(a2 − r2)

ma22
.

Therefore, if the following condition holds,

(H1) P1 +Q1 > 0,

the coexistence equilibrium E∗(x∗, y∗) is locally asymptotically stable for τ = 0.
When τ > 0, if iω(ω > 0) is a solution of (2.2), separating real and imaginary

parts, we obtain that

Q1ω sinωτ +Q0 cosωτ = ω2, Q1ω cosωτ −Q0 sinωτ = −P1ω. (2.3)

Squaring and adding the two equations of (2.3), it follows that

ω4 + (P 2
1 −Q2

1)ω
2 −Q2

0 = 0. (2.4)

It is easy to see that Eq. (2.4) has a unique positive root ω(τ). From Eq. (2.3), we
can get the corresponding τk > 0,

τk =
1

ω
arccos

(
(Q0 − P1Q1)ω

2

Q2
1ω

2 +Q2
0

)
+

2kπ

ω
, k = 0, 1, · · ·, (2.5)
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such that Eq. (2.2) has a pair of purely imaginary roots.
Now we turn to determine the direction in which the pair of imaginary roots

λ = ±iω(τk) cross the imaginary axis as τ increases.
Differentiating (2.2) with respect to τ, we obtain

dλ

dτ
=

λ(Q1λ+Q0)e
−λτ

2λ+ P1 + (Q1 −Q1λτ −Q0τ)e−λτ
. (2.6)

It is convenient to consider (dλ/dτ)−1. Hence, from (2.6) we have(
dλ

dτ

)−1

=
(2λ+ P1)e

λτ +Q1 −Q1λτ −Q0τ

λ(Q1λ+Q0)
, (2.7)

where, due to (2.2)

eλτ = −Q1λ+Q0

λ2 + P1λ
. (2.8)

Therefore, substituting (2.8) in (2.7), we have that(
dλ

dτ

)−1

= − 2λ+ P1

λ(λ2 + P1λ)
+

Q1

λ(Q1λ+Q0)
− τ

λ
.

Simple computation at λ = iω(τ0) yields

sign

{
d(Reλ)

dτ

}
λ=iω(τ0)

= sign

{
Re

(
dλ

dτ

)−1
}

λ=iω(τ0)

= sign

{
Q2

1ω
4 + 2Q2

0ω
2 + P 2

1Q
2
0

ω2(P 2
1 + ω2)(Q2

1ω
2 +Q2

0)

}
= 1.

This root of equation (2.2) crosses the imaginary axis from the left to the right as τ
continuously varies from a number less than τk to one greater than τk by Rouché’s
theorem [4]. Therefore, the transversality condition holds and the conditions for
Hopf bifurcation [9] are satisfied at τ = τk.

In conclusion, we have the following result.

Theorem 2.1. Let R0 > 1 and (H1) hold.

(i) If τ ∈ [0, τ0), the coexistence equilibrium E∗(x∗, y∗) of system (1.2) is locally
asymptotically stable;

(ii) If τ > τ0, the equilibrium E∗(x∗, y∗) is unstable and system (1.2) undergoes a
Hopf bifurcation at E∗ when τ = τ0.

3. Global asymptotic stability

In this section, we are concerned with the global asymptotic stability of the predator-
extinction equilibrium E1 and coexistence equilibrium E∗, respectively. In order to
do this, we need the following result.

Lemma 3.1. Positive solutions of system (1.2) with initial conditions (1.3) are
ultimately bounded if R0 > 1.
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Proof. Let (x(t), y(t)) be any positive solution of system (1.2) with conditions
(1.3). From the first equation of system (1.2), we obtain that

ẋ(t) ≤ r1x(t) ln
K

x(t)
≤ r1x(t)

(
K

x(t)
− 1

)
= r1(K − x(t)).

A standard comparison argument shows that

lim sup
t→+∞

x(t) ≤ K. (3.1)

Hence, there exists a T1 > 0, such that if t > T1, x(t) ≤ M1 for some M1 > K.
In addition, from the second equation of system (1.2), we derive that

ẏ(t) ≤ (a2 − r2)y(t),

for t > τ, which implies that

y(t− τ) ≥ y(t)e−(a2−r2)τ .

Therefore, for t > T1 + τ, we have that

ẏ(t) ≤ y(t)

[
a2M1

me−(a2−r2)τy(t) +M1
− r2

]
= y(t)

M1(a2 − r2)−mr2e
−(a2−r2)τy(t)

me−(a2−r2)τy(t) +M1
.

By a comparison argument, we have that

lim sup
t→+∞

y(t) ≤ M1(a2 − r2)

mr2
e(a2−r2)τ , M∗. (3.2)

Therefore, there exists a T2 ≥ T1, such that if t ≥ T2, y(t) ≤ M2 for some M2 > M∗.

Theorem 3.1. Suppose that R0 < 1. Then the predator-extinction equilibrium
E1(K, 0) of system (1.2) is globally asymptotically stable provided that

(H2) lnK + 1− a1
mr1

> 0.

Proof. Since R0 < 1, we derive from (3.2) that

lim
t→+∞

y(t) = 0. (3.3)

From the first equation of system (1.2), we have that

ẋ(t) ≥ r1x(t)(lnK − lnx(t))− a1
m

x(t)

≥ x(t)[r1 lnK + r1 −
a1
m

− r1x(t)].

A comparison argument shows that

lim inf
t→+∞

x(t) ≥ lnK + 1− a1
mr1

. (3.4)
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Define

v(t) =
y(t)

x(t)
.

If (H2) holds, we derive from (3.3) and (3.4) that

lim
t→+∞

v(t) = 0. (3.5)

Rewrite the first equation of system (1.2) as

ẋ(t) = r1x(t) ln
K

x(t)
− a1x(t)v(t)

mv(t) + 1
.

By (3.5), for arbitrary ε > 0, there is a T3 > 0, such that if T > T3, v(t) ≤ ε.
Therefore, we get that

ẋ(t) ≥ x(t)

(
r1 ln

K

x(t)
− a1ε

)
.

By a comparison argument, we derive that

x(t) ≥ K

e
a1ε
r1

.

It is easy to show that
lim inf
t→+∞

x(t) ≥ K.

Using (3.1), we derive that
lim

t→+∞
x(t) = K.

Next we will investigate the global stability of the coexistence equilibrium of
system (1.2). The strategy is to construct an appropriate Lyapunov functional.

Define
P (u) =

u

m+ u
,

then system (1.2) can be rewritten as

ẋ(t) =x(t)

{
r1 ln

x∗

x(t)
+ a1

[
y∗

x∗P

(
x∗

y∗

)
− y(t)

x(t)
P

(
x(t)

y(t)

)]}
,

ẏ(t) =a2y(t)

[
P

(
x(t− τ)

y(t− τ)

)
− P

(
x∗

y∗

)]
.

(3.6)

Define

u(t) =
x(t)

y(t)
, u∗ =

x∗

y∗
,

then system (3.6) becomes

ẋ(t) =x(t)

[
r1 ln

x∗

x(t)
+ a1

(
P (u∗)

u∗ − P (u)

u

)]
,

u̇(t) =u(t)

[
r1 ln

x∗

x(t)
+ a1

(
P (u∗)

u∗ − P (u)

u

)
− a2(P (u(t− τ))− P (u∗))

]
.

(3.7)
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Define v(t) = (v1(t), v2(t)) by

v1(t) = x(t)− x∗, v2(t) = u(t)− u∗,

F (v2) = P (u)− P (u∗) =
mv2

(m+ u∗)(m+ u)
. (3.8)

It is easy to verify that

v2F (v2) > 0, v2 ̸= 0;

F ′(v2)u =
mu

(m+ u)2
< 1;

P (u∗)

u∗ − P (u)

u
=

1

m
F (v2).

(3.9)

Therefore, from (3.7) and (3.8), we finally obtain

v̇1(t) =(v1(t) + x∗)

[
r1 ln

x∗

v1(t) + x∗ +
a1
m

F (v2(t))

]
,

v̇2(t) =(v2(t) + u∗)

[
r1 ln

x∗

v1(t) + x∗ +
a1
m

F (v2(t))− a2F (v2(t− τ))

]
.

(3.10)

It is clearly that the global stability of the equilibrium E∗ of (1.2) is equivalent to
that of the trivial solution of (3.10). Now we formulate the corresponding result as
follows.

Theorem 3.2. Assume that R0 > 1. Then the coexistence equilibrium E∗(x∗, y∗)
of system (1.2) is globally asymptotically stable provided that

(H3) Ai > 0, i = 1, 2,

where
A1 =

r1
M1

− a1
m

− τ
a2r1
M1

,

A2 =2a2 −
3a1
m

− r1
M1

− τa2

(
r1
M1

+
a1
m

+ 2a2

)
.

Proof. Define

V1(t) = v1(t)− x∗ ln
v1(t) + x∗

x∗ +

∫ u(t)

u∗

P (ν)− P (u∗)

ν
dν. (3.11)

Calculating the derivative of V1(t) along solutions of system (3.10), it follows that

dV1(t)

dt
=

v1(t)

v1(t) + x∗ v̇1(t) +
F (v2(t))

u(t)
v̇2(t)

= v1(t)

[
r1 ln

x∗

v1(t) + x∗ +
a1
m

F (v2(t))

]
+ F (v2(t))

[
r1 ln

x∗

v1(t) + x∗ +
a1
m

F (v2(t))− a2F (v2(t− τ))

]
= r1v1(t) ln

x∗

v1(t) + x∗ +
a1
m

v1(t)F (v2(t)) + r1 ln
x∗

v1(t) + x∗F (v2(t))

+
(a1
m

− a2

)
F 2(v2(t)) + a2F (v2(t))

∫ t

t−τ

F ′(v2(s))v
′
2(s)ds
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= r1v1(t) ln
x∗

v1(t) + x∗ +
a1
m

v1(t)F (v2(t)) + r1 ln
x∗

v1(t) + x∗F (v2(t))

+
(a1
m

− a2

)
F 2(v2(t)) + a2F (v2(t))

∫ t

t−τ

F ′(v2(s))u(s)r1 ln
x∗

v1(s) + x∗

+ F ′(v2(s))u(s)
[a1
m

F (v2(s))− a2F (v2(s− τ))
]
ds.

Using the inequality lnx ≤ x− 1, a2+ b2 ≥ 2ab and the Cauchy-Schwarz inequality,
by Lemma 3.1, we derive from (3.9) that for t > T ∗,

dV1(t)

dt
≤ r1v1(t)

(
x∗

v1(t) + x∗ − 1

)
+

a1
m

v1(t)F (v2(t))− r1
v1(t)

v1(t) + x∗F (v2(t))

+
(a1
m

− a2

)
F 2(v2(t)) + a2|F (v2(t))|

∫ t

t−τ

F ′(v2(s))u(s)r1

∣∣∣∣− v1(s)

v1(s) + x∗

∣∣∣∣
+ F ′(v2(s))u(s)

[a1
m

|F (v2(s))|+ a2|F (v2(s− τ))|
]
ds

≤ − r1
M1

v21(t) +
a1
2m

[v21(t) + F 2(v2(t))] +
r1

2M1
[v21(t) + F 2(v2(t))]

+
(a1
m

− a2

)
F 2(v2(t)) + a2|F (v2(t))|

∫ t

t−τ

F ′(v2(s))u(s)
r1
M1

|v1(s)|

+ F ′(v2(s))u(s)
[a1
m

|F (v2(s))|+ a2|F (v2(s− τ))|
]
ds

≤ −1

2

[
r1
M1

− a1
m

]
v21(t) +

[
3a1
2m

+
r1

2M1
− a2

]
F 2(v2(t))

+ a2|F (v2(t))|
∫ t

t−τ

[
r1
M1

|v1(s)|+
a1
m

|F (v2(s))|+ a2|F (v2(s− τ))|
]
ds

≤ −1

2

[
r1
M1

− a1
m

]
v21(t) +

[
3a1
2m

+
r1

2M1
− a2

]
F 2(v2(t))

+
1

2
a2τ

[
r1
M1

+
a1
m

+ a2

]
F 2(v2(t))

+
1

2
a2

∫ t

t−τ

[
r1
M1

v21(s) +
a1
m

F 2(v2(s)) + a2F
2(v2(s− τ))

]
ds.

(3.12)
Now define a Lyapunov functional V (t) as

V (t) = V1(t) +
1

2
a2

∫ t

t−τ

∫ t

ν

[
r1
M1

v21(s) +
a1
m

F 2(v2(s)) + a2F
2(v2(s− τ))

]
dsdν

+
1

2
τa22

∫ t

t−τ

F 2(v2(s))ds.

(3.13)
From (3.11)-(3.13), it is easy to verify that

dV (t)

dt
≤ −1

2
[A1v

2
1(t) +A2F

2(v2(t))].

Define

ω1(|v(t)|) = V1(t), ω2(|v(t)|) = A1v
2
1(t) +A2F

2(v2(t)),
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where ω1(·) and ω2(·) are continuous definite functions such that ωi(0) = 0, and
lims→+∞ ω(s) = +∞, i = 1, 2. Applying the corollary 5.2 on Page 30 in [10], we
conclude that the equilibrium E∗(x∗, y∗) of system (1.2) is asymptotically stable
with respect to positive solutions.

4. Numerical simulations

In this section, we give an example to show the feasibility of Theorems 2.1 and
3.2. Numerical simulations are carried out to illustrate the local stability of the
coexistence equilibrium and the existence of periodic solutions near the equilibrium.

In system (1.2), let r1 = 2, r2 = 1, a1 = 1, a2 = 4,K = 3,m = 12. Then system
(1.2) has a predator-extinction equilibrium E1(3, 0) and a coexistence equilibrium
E∗(3e−1/32, 0.75e−1/32). It is easy to verify that the assumption in (H1) holds. From
(2.4) and (2.5), we get ω = 0.7552, τ0 = 2.0766. Numerical simulations show that
the coexistence equilibrium E∗ is asymptotically stable for τ ∈ [0, 2.0766) (see, for
example, Fig.1) and unstable for τ > 2.0766 (see, for example, Fig.2). By using
Theorem 1, we know that system (1.2) undergoes a Hopf bifurcation at E∗ when τ =
τ0. Theorem 2 provides that the coexistence equilibrium E∗(3e−1/32, 0.75e−1/32) is
globally stable if τ < 0.1885. Therefore, the global stability of E∗ will impose
restrictions on the length of time delay τ. In other words, time delay destabilizes
E∗ for system (1.2).
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Figure 1. The equilibrium E∗ is locally asymptotically stable with τ = 2.
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Figure 2. System (1.2) admits a periodic solution near the equilibrium E∗ with τ = 2.5.
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