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Abstract In this paper, an approximate analytical solution is derived for the
flow velocity and temperature due to the laminar, two-dimensional flow of non-
Newtonian incompressible visco elastic fluid due to a continuous stretching
surface. The surface is stretched with a velocity proportional to the distance
x along the surface. The surface is assumed to have either power-law heat
flux or power-law temperature distribution. The presence of source/sink and
the effect of uniform suction and injection on the flow are considered for anal-
ysis. An approximate analytical solution has been obtained using Homotopy
Analysis Method(HAM) for various values of visco elastic parameter, suction
and injection rates. Optimal values of the convergence control parameters are
computed for the flow variables. It was found that the computational time
required for averaged residual error calculation is very very small compared
to the computation time of exact squared residual errors. The effect of mass
transfer parameter, visco elastic parameter, source/sink parameter and the
power law index on flow variables such as velocity, temperature profiles, shear
stress, heat and mass transfer rates are discussed.
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1. Introduction

The heat and mass transfer study over a continuously stretching surface is one of
the important areas of current research. This finds its application over a broad
spectrum of Science and Engineering disciplines, especially in the field of chemical
engineering.

Many chemical engineering processes like glass blowing and polymer extrusion
involve cooling of a molten liquid being stretched into a cooling system [2]. As
polymer is a flexible, the filament surface may stretch during the course of blowing
and hence the surface velocity deviates from being uniform [5].

In such processes the fluid mechanical properties of the final product would
mainly depend on the cooling liquid used and the rate of stretching. Some of the
polymer fluids such as Polyethylene oxide, poly-isobutylene solution in cetane are
necessarily non Newtonian fluids. An utmost care has to be taken to control the rate

†the corresponding author. Email address: oviaraji@yahoo.com(R. Seshadri)
1Department of Mathematics, Ramanujan School of Mathematical Sciences,
Pondicherry University, Pondicherry-605014, India



390 R. Seshadri & S.R. Munjam

of cooling liquids it is stretched to get the end product with desired characteristics.
Care has to be taken to avoid rapid stretching that results in sudden solidification
thereby destroying the properties expected for the outcome.

The problem addressed here is a fundamental one that arises in many practical
situations. To name some of them, drawing, annealing and tinning of copper wires,
continuous stretching, rolling and manufacturing of plastic films and artificial fibres,
materials manufactured by extrusion process and heat treated materials traveling
between a feed roll and windup rolls or on conveyer belts, glass blowing, crystal
growing, paper production [24].

Sakiadis [27] was the first to study the boundary layer flow over a continuous
moving surface in an ambient fluid. Due to the entrainment of ambient fluid, this
boundary layer flow is quite different from the boundary layer flow over a stretching
semi-infinite flat plate in a fluid with a free stream.

Erickson et al. [7] extended this problem to study the temperature distribution
of the stretching surface in the boundary layer when the sheet is maintained at
a constant temperature with suction or injection. Crane [6] obtained an elegant
analytical solution to the boundary layer equations for the problem of steady two
dimensional flows due to a stretching surface in a quiescent incompressible fluid.

Following that, several solution procedures such as analytical solutions, closed
form solution, asymptotic solutions and numerical solutions on stretching surfaces
for various cases of flow are available in the literature. The solution analysis for
stretching surfaces in terms of finding approximate analytical solution procedure re-
cently pick up popularity with the help of the Homotopy Analysis Method (HAM)
first described by Liao [12]. The advantage of HAM is its independence on small
physical parameters such as convergence control parameter and auxiliary param-
eters [30]. HAM can control and adjust the convergence region and rate of the
homotopy solutions [12] and [11].

To increase the efficiency of HAM, many authors have considered several anal-
ysis. Liao [16] and Marinca et al. [18], Zhao et al. [31] and Araghi et al. [3] have
suggested an optimal HAM, optimal homotopy asymptotic method and modified
HAM which improves the solution by reducing the CPU time as well as minimizing
the residual errors.

The two-dimensional, magnetohydrodynamic non-Newtonian incompressible flow
due to a stretching sheet was studied using HAM by Liao [13]. Following this, sev-
eral other studies using HAM are available in the open literature Liao [15], [14] and
Abbasbandy [1] including one or more parameters such as magnetic effect, injection
or suction.

Recently, Misra et al. [20] studied the steady MHD flow of a visco-elastic fluid
in a parallel channel in an uniform transverse magnetic field using perturbation
analysis and numerical methods. Raftari et al. [23] obtained the solution of the
MHD viscoelastic fluid flow and heat transfer in a channel with a stretching wall
using HAM. More researchers, Sajid et al. [26] and Hayat et al. [10], Shehzad et
al. [29], [28] and Chen and Char [5] have considered the heat transfer problem of
viscoelastic fluid over a continuous stretching surface. Recently Prasad et al. [22]
have studied thermal radiation effects on viscoelastic fluid flow and heat transfer
due to a stretching sheet using numerical method such as Runge - Kutta technique
with Shooting method. Rajeswari et al. [25] employed the two dimensional flow due
to a stretching surface in a viscoelastic fluid with effect of heat and mass transfer
using analytical method.
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An excellent review of heat transfer papers published during 1999 and 2002 are
given by Goldstein et al. [8], [9] in which the heat transfer studies due to several
flows in different types of geometries under various conditions are discussed very
lucidly.

2. Problem Formulation and Governing Equation

Here we consider the steady laminar motion of a viscous, incompressible fluid caused
by the stretching of a surface in an ambient fluid. The flat surface is coincident
with the plane y = 0, and the flow is confined to the region y > 0. Two equal
and opposite forces are applied along the x-axis so that the wall is stretched but
the origin remains fixed. The surface is stretched with a velocity proportional to
the distance x along the surface. The surface is assumed to have either power-law
temperature distribution or power-law heat flux distribution. The fluid far away
from the surface is kept at constant temperature.

The aim of the present study is to consider the effect of mass transfer, denoted
by α (injection and suction) on the flow and heat transfer of a viscoelastic fluid over
a continuous stretching surface placed in an ambient fluid. The effect of prescribed
surface temperature or prescribed heat flux when the temperature has power law
variation denoted by the parameter β is considered in the presence of source or
sink parameter s. The governing partial differential equations have been reduced to
a system of ordinary differential equations and an approximate analytical solution
has been obtained using Homotopy Analysis Method.

The steady two dimensional boundary layer equations governing the flow are

ux + vy = 0, (2.1)

uux + vuy = νuyy − λ1

[
(uuyy)x + uyvyy + vuyyy

]
, (2.2)

ρCp (uTx + vTy) = kTyy +Q (T − T∞) . (2.3)

The boundary conditions for the problem when x ≥ 0 are:

u = Ax(A > 0), v = vw, T = Tw or − kTy = qw at y = 0,

u → 0, T → T∞ as y → ∞. (2.4)

Since the problem is parabolic, the velocity u and the temperature T have to be
prescribed at certain value of x = x0(x0 < 0) which are given by

u(x0, y) = 0, T (x0, y) = T∞. (2.5)

Here x and y are distances along and perpendicular to the surface, respectively; u
and v are the components of the velocity along the x- and y- directions, respec-
tively; T is the temperature; Q is the source or sink parameter; k is the thermal
conductivity; λ is the viscoelastic parameters; ρ is the density; ν is the kinematic
viscosity; Cp is the specific heat at a constant pressure; qw is the surface heat flux;
the subscripts w and ∞ denote conditions at the surface and in the free stream,
respectively.

It may be remarked that the partial differential equations.(2.1)-(2.3) under con-
ditions eq.(2.4) and eq.(2.5) admit similarity solutions when the surface velocity
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uw = Ax(A > 0). We apply the following transformations

η =

(
A

ν

)1/2

y, u = Axf ′(η), v = −(Aν)1/2f(η), T − T∞ = (Tw − T∞)g(η),

Tw − T∞ = (Tw0 − T∞)
( x
L

)β
, T − T∞ =

(qw0

k

)( x
L

)β ( ν
A

)1/2
G(η),

λ = λ1
A

ν
, qw = qw0

( x
L

)β
, P r =

sCp

k
, s =

Qν

kA
, α = − (v)w

(Aν)1/2
, (2.6)

to eqs.(2.1)-(2.3) and we find that eq.(2.1) is identically satisfied and eqs.(2.2) and
(2.3) reduced to

f ′′′ + ff ′′ − (f ′)2 = λ[2f ′f ′′′ − (f ′′)2 − ff
′′′′
], (2.7)

g′′ + Prfg′ − (Prβf ′ − s)g = 0 (PST case), (2.8)

G′′ + PrfG′ − (Prβf ′ − s)G = 0 (PHF case). (2.9)

The boundary conditions eqs.(2.4) and (2.5) are rewritten as

f(0) = α, f ′(0) = 1, f ′(∞) = 0, (2.10)

g(0) = 1, g(∞) = 0 (PST case), (2.11)

G(∞) = 0, G′(0) = −1 (PHF case). (2.12)

Here η is the similarity variable, f is the dimensionless stream function; f ′ is the di-
mensionless velocity; g and G are the dimensionless temperatures; Pr is the Prandtl
number; L is the characteristic length; Tw0 and qw0 are constants; β is the index
in the power-law variation of wall temperature or heat flux; s is the dimensionless
source or sink parameter; and prime denotes derivative with respect to η. α is
the mass transfer parameter (α is a constant when vw is a constant). Also α ≶ 0
according to whether there is suction or injection. The heat transfer coefficient of
in terms of Nusslet number is expressed as

Nu = − (Ty)w x

Tw − T∞
= −(Rex)

1/2g′(0) (PST case),

Nu =
(Rex)

1
2

G(0)
(PHF case), (2.13)

where Rex(= Ax2/ν) is the local Reynolds number.

3. HAM Analysis

The method of homotopy analysis is used for obtaining the approximate analytic
solution. For the details the methods one can refer to first described in detail by
Liao [12] as they are not presented here for the sake of brevity.

The main components of the HAM procedure are selecting suitable initial pro-
files satisfying the boundary conditions of the problem; choosing an appropriate
linear operator so that its solutions are simpler to evaluate analytically. The non-
linear operator is directly written from the governing equation of the problem. In
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Homotopy analysis, we always get a system of deformation equations which have to
be solved. We choose the initial guesses and auxiliary linear operators as follows.

f0(η) = α+ 1− e−η, g0(η) = e−η, G0(η) = e−η. (3.1)

Lf =
d3f

dη3
− df

dη
, Lg =

d2g

dη2
− g, LG =

d2G

dη2
−G, (3.2)

so that

Lf

[
C1 + C2e

η + C3e
−η
]
= 0, Lg

[
C4e

η + C5e
−η
]
= 0, LG

[
C6e

η + C7e
−η
]
= 0,
(3.3)

in which Ci are arbitrary constants, these Cis can be obtained using the boundary
conditions given in eqs.(2.10)-(2.12).

3.1. Higher-order deformation Equations

To obtain the HAM solution for the governing eqs.(2.7)-(2.9), let γ ∈ [0, 1] be an
embedding parameter and cf , cg and cG are the basic convergence control param-
eters. Then the zeroth order deformation equation and the non-linear operators
become,

(1− γ)LX [X(η, γ)−X0(η)] = γcXNX [X(η, γ)], (3.4)

where, X = f, g and G and X0 = f0, g0 and G0

Nf [f(η, γ)] =
∂3f(η, γ)

∂η3
+ f(η, γ)

∂2f(η, γ)

∂η2
−
(
∂f(η, γ)

∂η

)2

(3.5)

− λ

(
2
∂f(η, γ)

∂η

∂3f(η, γ)

∂η3
−
(
∂2f(η, γ)

∂2η

)2

− f(η, γ)
∂4f(η, γ)

∂η4

)
,

Ng[g(η, γ), f(η, γ)] =
∂2g(η, γ)

∂η2
+ Pr

(
f(η, γ)

∂g(η, γ)

∂η

)
− g(η, γ)

(
Prβ

∂f(η, γ)

∂η
− s(η, γ)

)
, (3.6)

NG[G(η, γ), f(η, γ)] =
∂2G(η, γ)

∂η2
+ Pr

(
f(η, γ)

∂G(η, γ)

∂η

)
−G(η, γ)

(
Prβ

∂f(η, γ)

∂η
− s(η, γ)

)
, (3.7)

with appropriate boundary conditions given as in eqs. (2.10)-(2.12) we have,

f(η; γ)|η=0 = α,
∂f(η; γ)

∂η

∣∣∣∣
η=0

= 1,
∂f(η; γ)

∂η

∣∣∣∣
η=∞

= 0, (3.8)

g(η; γ)|η=0 = 1, g(η; γ)|η=∞ = 0 (PST case), (3.9)

G(η; γ)|η=∞ = 0,
∂G(η; γ)

∂η

∣∣∣∣
η=0

= −1 (PHF case). (3.10)

For lth -order deformations equations, we first differentiate eq.(3.4) in l-times with
respect to γ, dividing them by l! and then setting γ = 0. Following this we have,

LX [Xl(η)− ΩlXl−1(η)] = cXRX
l (η), (3.11)
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where X = f , g and G, with its boundary conditions such as,

fl(0) = α, f ′
l (0) = 1, f ′

l (∞) = 0,

gl(0) = 1, gl(∞) = 0 (PST case),

Gl(∞) = 0, G′
l(0) = −1 (PHF case), (3.12)

where Rf
l (η), R

g
l (η) and RG

l (η) are remained of linear operators such as,

Rf
l (η) =f ′′′

l−1(η) +
l−1∑
j=0

[fl−1−jf
′′
j − f ′

l−1−jf
′
j ]

− 2λ

l−1∑
j=0

[f ′
l−1−jf

′′′
j + f ′′

l−1−jf
′′
j + fl−1−jf

′′′′
j ], (3.13)

Rg
l (η) =g′′l−1(η) + Pr

l−1∑
j=0

[fl−1−jg
′
j ]− βPr

l−1∑
j=0

[f ′
l−1−jgj ] + sgl−1(η), (3.14)

RG
l (η) =G′′

l−1(η) + Pr
l−1∑
j=0

[fl−1−jG
′
j ]− βPr

l−1∑
j=0

[f ′
l−1−jGj ] + sGl−1(η), (3.15)

where Ωl defines as

Ωl =

{
0 if l ≤ 1,
1 if l > 1.

(3.16)

Expanding X(η; γ) in Taylor’s series with respect to γ we have

X(η; γ) = X0(η) +
∞∑
l=1

Xl(η)γ
l, Xl(η) =

1

l!

∂lX(η; γ)

∂γl

∣∣∣∣
γ=0

. (3.17)

The auxiliary parameters are selected as γ = 0 and γ = 1 from eq.(3.4), one
may write

X(η; 0) = X0(η), X(η; 1) = X(η). (3.18)

Thus as γ increases from 0 to 1 and X(η; γ) varies from the initial guess X0(η) to
the solution X(η) of the governing equations respectively. The auxiliary parameters
are selected so that the series solutions converge for γ = 1 and the particular solution
is

X(η) = X0(η) +
∞∑
l=1

Xl(η), (3.19)

where X = f∗, g∗ and G∗. Therefore, we get the general approximate analytical
solutions (fl, gl, Gl) in terms of special solutions (f∗

l , g∗l , G∗
l ) are given by

fl(η) = f∗
l (η) + C1 + C2e

η + C3e
−η, (3.20)

gl(η) = g∗l (η) + C4e
η + C5e

−η, (3.21)

Gl(η) = G∗
l (η) + C6e

η + C7e
−η. (3.22)

We solve the eqs.(3.20)-(3.22) one after the other in the order l = 1, 2, 3, . . . by
means of the symbolic computation software Mathematica. It is shown that the
solution for the velocity profile can expressed as an infinite series of any desired
order.
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4. Error estimation at High orders

An optimal value of the convergence control parameter c0, integrated in the whole
region [0,∞) have the exact squared residual error at lth-order of approximation
[17], [21] and [19], [4] are given by

∆l =

∫ +∞

0

(
N

[
l∑

i=0

Xi(η)

])2

dη, (4.1)

where X = f , g and G.
At every lth-order of approximation, ∆l takes at most three convergence control

parametric values for eq.(3.20) and at most two for eq.(3.21) and (3.22). The
convergence control parameters are represented by cf , cg and cG for governing
equations eqs.(2.7), (2.8) and eq.(2.9) respectively. When ∆l decreases to zero
rapidly then the homotopy series solutions converges faster.

In that case, at the lth-order of approximation, the corresponding optimal values
of the convergence control parameters are given by the minimum of ∆l, for the
coupled nonlinear algebraic equations as follows.

∂∆l

∂cf
= 0;

∂∆l

∂cg
= 0;

∂∆l

∂cG
= 0 (4.2)

Whenever, the eq.(3.19) is known to be convergent series, the eqs.(3.20)-(3.22)
represent the exact solution of governing equations. But, eq.(4.1) requires too much
CPU time to compute the exact residual errors even for the low order of approx-
imation. It is observed that, it needs 42.31, 296.86 and 965.116 seconds of CPU
time for l = 2, 4 and 6 respectively and therefore not very useful in practice.

To overcome this, we compute averaged residual errors suggested by [17]

EX ≃ 1

l

i∑
j=0

(
N

[
l∑

i=0

Xi(j∆x)

])2

, (4.3)

where ∆x = 10
l and l = 20 for the governing equations (2.7)-(2.9). The HAM-

based Mathematica package BVPh 2.0∗ has been utilized to compute the av-
eraged residual errors of eqs.(2.7)-(2.9). The exact squared residual error comput-
ed using eq.(4.1) and convergence control parameters(i.e, cf , cg and cG) at the
10th, 16th and 20th-order approximation are as shown in Figures.1-3. It is ob-
served from computation that, the exact squared residual increases in the region of
cf ∈ [−1.5,−0.9], decrease in the region of cg ∈ [−1.8,−1.0] and increases in the
region of cG ∈ [−1.9,−0.6] as the order of approximation increases, which shows
that the series solution converges for cf , cg and cG at arbitrary values. The ex-
act squared residual attains its minimum values at cf = −1.25846, cg = −1.02823
and cG = −1.0262. These calculations, not only give the efficiency region of the
convergence control parameters but also their appropriate values to enable faster
convergence of the solution series. The same analysis has been carried out for
averaged residual errors too using eq.(4.3).

Table-1 gives the minimum of the averaged squared residual errors for Ef , Eg

and EG for different orders of approximation. The minimum value of these averaged

∗Ref. http://numericaltank.sjtu.edu.cn/BVPh.htm
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Table 1. Minimum of the averaged squared residual error Ef , Eg and EG with the
CPU time at fixed cf = −1.25846, cg = −1.02823 and cG = −1.0262.

l Minimum of Averaged Squared Residual Errors
CPU time(Sec.) Ef Eg EG

2 0.22801 3.06471× 10−7 2.22635× 10−7 8.3716× 10−7

4 1.43008 1.82403× 10−10 1.26878× 10−10 2.49866× 10−10

6 4.01023 2.17438× 10−13 1.34723× 10−11 1.30498× 10−11

8 8.20247 4.06611× 10−16 1.42224× 10−12 2.82727× 10−12

10 13.8808 9.65429× 10−19 1.09374× 10−16 9.26369× 10−16

12 22.0793 2.60275× 10−21 1.16563× 10−18 1.26017× 10−18

14 32.2448 7.91939× 10−24 6.31826× 10−20 7.31169× 10−20

16 43.3805 2.75127× 10−26 5.07436× 10−22 1.25455× 10−21

Figure 1. Exact residual error for
the function f(η).

Figure 2. Exact residual error for
the function g(η).

Figure 3. Exact residual error for
the function G(η).

Figure 4. Averaged squared resid-
ual error at different order of approx-
imations.

squared residuals for the computation of series solutions for f , g and G respectively
are found to be (Ef )l=10 = 9.65429 × 10−19, (Eg)l=14 = 6.31826 × 10−20 and
(EG)l=10 = 9.26369× 10−16 at cf = −1.25846, cg = −1.02823 and cG = −1.0262.

In particular, for the case of l ≤ 6, it takes only 0.228013, 1.43008 and 4.01023
seconds of computing time to get optimal convergence control values (using eq.(4.3))
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for l = 2, 4 and 6 respectively. This is much much smaller compared to the CPU
time needed to compute exact squared residual errors (using eq.(4.1)) for the same
set of l = 2, 4 and 6 which are found to be 42.31, 296.86 and 965.116 seconds,
respectively. Hence by using eq.(4.3) to calculate the squared residuals we use only
0.53% of CPU time for l = 2; 0.48% of CPU time for l = 4 and 0.41% of CPU
time for l = 6 compared to exact squared residual computation using eq.(4.1). It
is found that, the CPU time required to compute errors using eq.(4.3) is much less
than that of using eq.(4.1). Hence, we use only eq.(4.3) to find the convergence
control parameters for entire calculations.

The averaged squared residual at different orders of approximation for f(η),
g(η) and G(η) is shown as Fig.4. The corresponding averaged squared residual
decreases much more quickly with convergence control parameters cf = −1.25846,
cg = −1.02823 and cG = −1.0262. Therefore, the suitable choice of convergence
control parameter can greatly accelerate the convergence of series solution in HAM.

5. Results and Discussion

We have studied the effect of various parameters such as visco elastic parameter,
mass transfer parameter, effect of source/sink in PST and PHF cases on velocity and
temperature profiles as well as in skin friction and heat transfer rates. It is found
that, velocity and temperature profiles increase, increasing visco elastic parameter
and mass transfer parameter values. The heat transfer values decreases as the mass
transfer parameter is raised. The effect is similar even for the increase in visco
elastic parameters.

Table 2. Convergence of Homotopy solution for different orders of approximation
for −f ′′(0), −g′(0) and −G′(0) when (α = 0.1, β = 0.5 and s = 0.1, λ = 0.2.)

l −f ′′(0) −g′(0) −G′(0)
1 1.1280000 0.6750000 0.4055992
5 1.1998968 0.6139803 0.4115234
10 1.2014585 0.6012477 0.4115303
15 1.2014756 0.6012218 0.4115304
20 1.2014757 0.6012215 0.4115304
25 1.2014758 0.6012213 0.4115304
30 1.2014758 0.6012213 0.4115304
35 1.2014758 0.6012213 0.4115304

Computations have been carried out for velocity and temperature profiles and
for skin friction coefficients and heat transfer rates for several combinations of pa-
rameters α, λ, β, s and only few important and interesting results are reported in
this research article in the form of tables and figures.

Table-2 illustrates the convergence of skin friction −f ′′(0), heat transfer −g′(0)
and −G′(0) after performing up to 35th-order approximation of functions f , g and
G computed from deformation equations. As seen, the computation is terminated
as soon as three consecutive values agree in their seventh decimal places. For the
special case α = 0 (in the absence of mass transfer), Table-3 shows the comparison
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of skin friction results with that of Prasad et al. [22] and found them to be in very
good agreement.

Table 3. Comparison of Skin friction coefficients −f ′′(0) for various values of
viscoelastic parameter when (α = 0.0, β = 0.5 and s = 0.1)

λ − f ′′(0)
Prasad et al. [22] Present

0.0 — 1.0000000
0.1 1.0663694 1.0658414
0.2 1.1113553 1.1116667
0.3 1.1909626 1.1904193
0.4 — 1.2773057
0.5 — 1.3798041

It is seen from Table-4 that the heat transfer rates for different Prandtl numbers
(and for two different values of mass transfer) for a fixed β = 3.0 is compared in
the absence of visco elastic parameter with that of Chen and Char [5]. It is found
that the values of the heat transfer coefficients in terms of local Nusselt number are
small for Pr = 0.01 in comparison to the values for Pr = 1.0. This means that the
values of the local Nusselt number increases with an increase in Prandtl number.

Table 4. Comparison of heat transfer rates(−g′(0)) for different Pr, when (s = 0.0,
λ = 0.0 and β = 3.0.)

− g′(0)
Pr Chen and Char [5] Present

α = 0.7 α = 2.0 α = 0.7 α = 2.0
0.01 0.047667 0.034729 0.0474709 0.0347462
0.10 0.352134 0.326386 0.3519053 0.3261310
0.72 1.150099 1.854735 1.1508700 1.8546038
1.00 1.342679 2.429752 1.3421119 2.4266375

The effect of visco elastic parameter and mass transfer on velocity profiles are
plotted in Figs.5 and 6. It is observed that there is a slight overshoot in velocity
profiles as λ increases, but the increase in mass transfer parameter α makes the
velocity profiles to converge faster to its free stream values.

The temperature variation for PST and for PHF cases by for different source/sink
parameters are presented in Figs. 7 and 8. There is a temperature overshoot as s
increases for both PST and PHF cases, but the values are higher for PST compared
to PHF. The effect of heat transfer rates for the PST case, for various values of s
are plotted in Fig. 9. It is found that the heat transfer rate is not affected much by
the change in the power law index for a given value of s. However, the heat trans-
fer rate increases as the source/sink parameter value increases for a given β. The
variation of heat transfer rates versus β for various values of visco elastic parameter
presented in Fig. 10 shows the increase in heat transfer rates for increase on λ as
well as β.
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Figure 5. Effect of visco elastic pa-
rameter on velocity profiles.
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Figure 6. Effect of mass transfer (in-
jection) on velocity profiles.
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Figure 7. Effect of source/sink on
temperature profiles (PST case).
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Figure 8. Effect of source/sink on
temperature profiles (PHF case).
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Figure 9. Effect of source/sink on
heat transfer rate (PST case).
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Figure 10. Effect of viscoelastic pa-
rameter on heat transfer rate (PST
case).

Figs. 11 and 12 give the temperature profiles for the prescribed surface temper-
ature(PST) and prescribed heat flux(PHF) cases for various values of mass transfer
parameter. In the case of increasing values suction (α < 0), the profiles tend to
approach to the free stream values faster where as in the case of injection (α > 0)
there is a slight overshoot in the temperature profiles close to the wall and then it
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gradually approaches to free stream values.
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Figure 11. Effect of mass trans-
fer parameter on temperature profiles
(PST case).
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Figure 12. Effect of mass trans-
fer parameter on temperature profiles
(PHF case).

6. Conclusion

The flow, heat and mass transfer analysis is carried out on a viscoelastic fluid over
a continuous stretching surface in an ambient fluid. Using Homotopy Analysis
Method (HAM), a series solution in the form of polynomials are derived with the
wall normal height η as a variable for velocity f and temperature g and G. The
coefficients of the polynomial contain all the other parameters such as λ, β, s and
α. The computations have been carried out to retain at least up to 20th degree
in η in the polynomial expressions of f , g and G to get the results accurate up to
seventh decimal place. The Computer Algebra Software Mathematica is used to
perform these semi-analytical calculations. The effect of various parameters such as
mass transfer parameters α, viscoelastic parameters λ are studied on flow velocities.
The influence of power law variation β on PST and PHF cases, the presence of
source/sink parameter s and the effect of Prandtl number Pr on the temperature
profiles and heat transfer rates are also analyzed. Thus the present study helps
in identifying a suitable parameter that can be used to increase or decrease the
heat transfer rates of the continuous moving surface thereby enhancing the final
product to a desired characteristics. Visco elastic parameter, heat and mass transfer
parameters helps in controlling the boundary layer thickness of both velocity and
temperature.

The following conclusions are drawn from the present study.

• The velocity profiles decreases for the increase in λ and α values whereas the
trend is quite opposite for the temperature profiles.

• The skin friction coefficients decreases for the increase in the values of visco
elastic parameter for any fixed value of α.

• The temperature profiles increases for the increase in the values of mass trans-
fer parameter and source/sink parameter where as it decreases for the increase
in the values of power law index on temperature and Prandtl number.

• The heat transfer rates are almost nil when λ = s = 0. The heat transfer
rates increases for the increase in α, β and Pr, but decreases for the increase
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in λ and source/sink parameter. Another observation is that the heat transfer
rates show similar trend for both PST and PHF cases for the change of all
the parameters but the heat transfer values for PHF case is always at a lower
value compared to that of PST case.
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