ON A CLASS OF SINGULAR P-LAPLACIAN SEMIPOSITONE PROBLEMS WITH SIGN-CHANGING WEIGHT

S.H. Rasouli ${ }^{1, \dagger}$ and Z. Firouzjahi ${ }^{1}$

Abstract

We study existence of positive weak solution for a class of p Laplacian problem $$
\begin{cases}-\Delta_{p} u=\lambda g(x)\left[f(u)-\frac{1}{u^{\alpha}}\right], & x \in \Omega, \\ u=0, & x \in \partial \Omega,\end{cases}
$$ where λ is a positive parameter and $\alpha \in(0,1), \Omega$ is a bounded domain in R^{N} for $(N>1)$ with smooth boundary, $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the pLaplacian operator for $(p>2), g(x)$ is C^{1} sign-changing function such that maybe negative near the boundary and be positive in the interior and f is C^{1} nondecreasing function $\lim _{s \rightarrow \infty} \frac{f(s)}{s^{p-1}}=0$. We discuss the existence of positive weak solution when f and g satisfy certain additional conditions. We use the method of sub-supersolution to establish our result.

Keywords Positive solution, singular problem, sub-supersolution.
MSC(2000) 35J55, 35J65.

1. Introduction

We consider the singular following problem

$$
\begin{cases}-\Delta_{p} u=\lambda g(x)\left[f(u)-\frac{1}{u^{\alpha}}\right], & x \in \Omega, \tag{1.1}\\ u=0, & x \in \partial \Omega\end{cases}
$$

where λ is a positive parameter and $\alpha \in(0,1), \Omega$ is a bounded domain in R^{N} for $(N>1)$ with smooth boundary and $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the p-Laplacian operator for $(p>2), g(x)$ is C^{1} sign-changing function that maybe negative near the boundary and be positive in the interior and f is C^{1} nondecreasing function.

Problems involving the p-Laplacian arise from many branches of pure mathematics as in the theory of quasiregular and quasiconformal mapping (see [1]) as well as from various problems in mathematical physics notably the flow of non-Newtonian fluids.

Let $\tilde{f}(y)=f(y)-\frac{1}{y^{\alpha}}$. Then $\lim _{y \rightarrow 0} \tilde{f}(y)=-\infty$, and hence we refer to (1.1) as an infinite semipositone problem (see $[4-6,8]$). See [6] where the authors discussed the problem (1.1) when $a \equiv 1$ and $p=2$. In [5], the authors extended the study of [6], to the case when $p>1$. Here we focus on further extending the study in [5] to the problem (1.1). In fact, we study the existence of positive solution to the

[^0]problem (1.1) with sign-changing weight function $g(x)$. Due to the weight function, the extensions are challenging and nontrivial. Our approach is based on the method of sub-super solutions (see $[2,3,7]$).

To precisely state our existence result, we consider the eigenvalue problem

$$
\begin{cases}-\Delta_{p} \phi=\lambda|\phi|^{p-2} \phi, & x \in \Omega \tag{1.2}\\ \phi=0, & x \in \partial \Omega\end{cases}
$$

Let ϕ be the eigenfunction corresponding to the first eigenvalue λ_{1} of (1.2) such that $\phi(x)>0$ in Ω, and $\|\phi\|_{\infty}=1$. Let $m, \sigma, \delta>0$ be such that

$$
\begin{array}{ll}
\sigma \leq \phi \leq 1, & x \in \Omega-\overline{\Omega_{\delta}} \\
\left(1-\frac{\alpha p}{p-1+\alpha}\right)|\nabla \phi|^{p} \geq m, & x \in \overline{\Omega_{\delta}} \tag{1.4}
\end{array}
$$

where $\overline{\Omega_{\delta}}:=\{x \in \Omega \mid d(x, \partial \Omega) \leq \delta\}$. This is possible since $|\nabla \phi| \neq 0$ on $\partial \Omega$ while $\phi=0$ on $\partial \Omega$. We will also consider the unique solution $e \in W_{0}^{1, p}(\Omega)$ of the boundary value problem

$$
\begin{cases}-\Delta_{p} e=1, & x \in \Omega \\ e=0, & x \in \partial \Omega\end{cases}
$$

to discuss our existence result. It is known that $e>0$ in Ω and $\frac{\partial e}{\partial n}<0$ on $\partial \Omega$.
Here we assume that the weight function $g(x)$ takes negative values in $\overline{\Omega_{\delta}}$, but require $g(x)$ be strictly positive in $\Omega-\overline{\Omega_{\delta}}$. To be precise we assume that there exist positive constants a, b such that $g(x) \geq-a$, on $\overline{\Omega_{\delta}}$ and $g(x) \geq b$ on $\Omega-\overline{\Omega_{\delta}}$.

2. Existence result

In this section, we shall establish our existence result via the method of sub-super solution. A function ψ is said to be a subsolution of (1.1), if it is in $W^{1, p}(\Omega) \cap C^{0}(\bar{\Omega})$ such that $\psi=0$ on $\partial \Omega$ and

$$
\int_{\Omega}|\nabla \psi|^{p-2} \nabla \psi \cdot \nabla w d x \leq \int_{\Omega} \lambda g(x)\left[f(\psi)-\frac{1}{\psi^{\alpha}}\right] w d x, \quad \forall w \in W
$$

where $W=\left\{w \in C_{0}^{\infty}(\Omega) \mid w \geq 0, x \in \Omega\right\}$ (see [8]).
A function z is said supersolution of (1.1), if it is in $W^{1, p}(\Omega) \cap C^{0}(\bar{\Omega})$ such that $z=o$ on $\partial \Omega$, and

$$
\int_{\Omega}|\nabla z|^{p-2} \nabla z \cdot \nabla w d x \geq \int_{\Omega} \lambda g(x)\left[f(z)-\frac{1}{z^{\alpha}}\right] w d x, \forall w \in W
$$

Then the following result holds :
Lemma 2.1. (See [3]). If there exist a subsolution ψ and supersolution z such that $\psi \leq z$ in Ω then (1.1) has a weak solution u such that $\psi \leq u \leq z$.

We make the following assumptions :
(H1) $f:(0, \infty) \rightarrow(0, \infty)$ is C^{1} nondecreasing function.
(H2) $\lim _{s \rightarrow \infty} \frac{f(s)}{s^{p-1}}=0$.
(H3) Suppose that there exists $\epsilon>0$ such that
(i) $f\left(\frac{\epsilon^{\frac{1}{p-1}}(p-1+\alpha) \sigma}{p}\right)>\left(\frac{p}{\epsilon^{\frac{1}{p-1}} \sigma(p-1+\alpha)}\right)^{\alpha}$,
(ii) $\frac{\epsilon^{\alpha+p-1} \lambda_{1}(p-1+\alpha)^{\alpha}}{a p^{\alpha}}>\frac{m \epsilon}{a f\left(\epsilon^{\frac{1}{p-1}}\right)}$,
(iii) $\frac{\epsilon \lambda_{1}}{N b}>\frac{m \epsilon}{a f\left(\epsilon^{\frac{1}{p-1}}\right)}$,
where

$$
N=f\left(\frac{\epsilon^{\frac{1}{p-1}}(p-1+\alpha) \sigma}{p}\right)-\left(\frac{p}{\epsilon^{\frac{1}{p-1}} \sigma(p-1+\alpha)}\right)^{\alpha}
$$

We are now ready to give our existence result.
Theorem 2.1. Let $(H 1)-(H 3)$ hold. Then there exists a positive weak solution of (1.1) for every $\lambda \in\left[\lambda_{*}(\epsilon), \lambda^{*}(\epsilon)\right]$, where

$$
\lambda^{*}=\frac{m \epsilon}{a f\left(\epsilon^{\frac{1}{p-1}}\right)} \quad \text { and } \quad \lambda_{*}=\max \left\{\frac{\epsilon^{\frac{\alpha+p-1}{p-1}} \lambda_{1}(p-1+\alpha)^{\alpha}}{a p^{\alpha}}, \frac{\epsilon \lambda_{1}}{N b}\right\}
$$

Remark 2.1. Note that (H3) implies $\lambda_{*}<\lambda^{*}$.
Example 2.1. Let $B>0$ and $f(x)=e^{\frac{B x^{2}}{B+x^{2}}}$. Then, $f(x)>0$ for $x>0$ and f is nondecreasing and

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{x^{p-1}}=\lim _{x \rightarrow \infty} \frac{e^{\frac{B x^{2}}{B+x 2}}}{x^{p-1}}=0
$$

We can choose $\epsilon>0$ such that f satisfy (H3).
Proof of the Theorem 2.1. First we construct a positive subsolution of (1.1). For this, we let $\psi=\frac{p-1+\alpha}{p} \epsilon^{\frac{1}{p-1}} \phi^{\frac{p}{p-1+\alpha}}$. Let $w \in W$. Since $\nabla \psi=\epsilon^{\frac{1}{p-1}} \phi^{\frac{1-\alpha}{p-1+\alpha}} \nabla \phi$, then a calculation shows that

$$
\begin{aligned}
& \int_{\Omega}|\nabla \psi|^{p-2} \nabla \psi \cdot \nabla w d x \\
= & \epsilon \int_{\Omega} \phi^{\frac{(p-1)(1-\alpha)}{p-1+\alpha}}|\nabla \phi|^{p-2} \nabla \phi \cdot \nabla w d x \\
= & \epsilon \int_{\Omega}|\nabla \phi|^{p-2} \nabla \phi\left[\nabla\left(\phi^{1-\frac{\alpha p}{p-1+\alpha}} w\right)-\nabla\left(\phi^{1-\frac{\alpha p}{p-1+\alpha}}\right) w\right] d x \\
= & \epsilon \int_{\Omega}|\nabla \phi|^{p-2} \nabla \phi \nabla\left(\phi^{1-\frac{\alpha p}{p-1+\alpha}} w\right) d x-\epsilon \int_{\Omega}|\nabla \phi|^{p-2} \nabla \phi \cdot \nabla\left(\phi^{1-\frac{\alpha p}{p-1+\alpha}}\right) w d x \\
= & \epsilon \int_{\Omega} \lambda_{1} \phi^{-\frac{\alpha p}{p-1+\alpha}} \phi^{p} w d x-\epsilon \int_{\Omega}\left(1-\frac{\alpha p}{p-1+\alpha}\right) \phi^{-\frac{\alpha p}{p-1+\alpha}}|\nabla \phi|^{p} w d x \\
= & \epsilon \int_{\Omega}\left[\lambda_{1} \phi^{p-\frac{\alpha p}{p-1+\alpha}}-\left(1-\frac{\alpha p}{p-1+\alpha}\right) \phi^{-\frac{\alpha p}{p-1+\alpha}}|\nabla \phi|^{p}\right] w d x .
\end{aligned}
$$

First we consider the case when $x \in \overline{\Omega_{\delta}}$. We have $\left(1-\frac{\alpha p}{p-1+\alpha}\right)|\nabla \phi|^{p} \geq m$ and
$g(x) \geq-a$. Hence since $\lambda \leq \lambda^{*}=\frac{m \epsilon}{a f\left(\epsilon^{\frac{1}{p-1}}\right)}$, we have

$$
\begin{align*}
-\epsilon\left(1-\frac{\alpha p}{p-1+\alpha}\right) \phi^{-\frac{\alpha p}{p-1+\alpha}}|\nabla \phi|^{p} & \leq-m \epsilon \phi^{-\frac{\alpha p}{p-1+\alpha}} \\
& \leq-m \epsilon \\
& \leq-\lambda a f\left(\epsilon^{\frac{1}{p-1}}\right) \tag{2.1}\\
& \leq-\lambda a f\left(\frac{p-1+\alpha}{p} \epsilon^{\frac{1}{p-1}} \phi^{\frac{p}{p-1+\alpha}}\right)
\end{align*}
$$

and since $\lambda \geq \lambda_{*}=\frac{\epsilon^{\frac{\alpha+p-1}{p-1}} \lambda_{1}(p-1+\alpha)^{\alpha}}{a p^{\alpha}}$, we have

$$
\begin{align*}
\epsilon \phi^{-\frac{\alpha p}{p-1+\alpha}} \lambda_{1} \phi^{p} & \leq \epsilon \phi^{-\frac{\alpha p}{p-1+\alpha}} \lambda_{1} \phi^{p} \\
& \leq \frac{\lambda a p^{\alpha}}{\epsilon^{\frac{\alpha}{p-1}}(p-1+\alpha)^{\alpha}} \tag{2.2}\\
& \leq \frac{\lambda a}{\left(\frac{p-1+\alpha}{p} \epsilon^{\frac{1}{p-1}} \phi^{\frac{p}{p-1+\alpha}}\right)^{\alpha}} .
\end{align*}
$$

By combining (2.1) and (2.2) we see that

$$
\begin{aligned}
& \epsilon\left[\phi^{p-\frac{\alpha p}{p-1+\alpha}} \lambda_{1}-\left(1-\frac{\alpha p}{p-1+\alpha}\right) \phi^{-\frac{\alpha p}{p-1+\alpha}}|\nabla \psi|^{p}\right] \\
\leq & \lambda g(x)\left[f\left(\frac{p-1+\alpha}{p} \epsilon^{\frac{1}{p-1}} \phi^{\frac{p}{p-1+\alpha}}\right)-\frac{1}{\left(\frac{p-1+\alpha}{p} \epsilon^{\frac{1}{p-1}} \phi^{\frac{p}{p-1+\alpha}}\right)^{\alpha}}\right]
\end{aligned}
$$

On the other hand, on $\Omega-\overline{\Omega_{\delta}}$, we have $g(x) \geq b$ and $\sigma \leq \phi^{\frac{p}{p-1+\alpha}} \leq 1$. Thus for $\lambda \geq \lambda_{*}=\frac{\epsilon \lambda_{1}}{N b}$, we have

$$
\begin{aligned}
& \left.\epsilon \phi^{-\frac{\alpha p}{p-1+\alpha}} \lambda_{1} \phi^{p}-\left(1-\frac{\alpha p}{p-1+\alpha}\right) \phi^{-\frac{\alpha p}{p-1+\alpha}}|\nabla \psi|^{p}\right) \\
\leq & \epsilon \lambda_{1} \phi^{p-\frac{\alpha p}{p-1+\alpha}} \\
\leq & \epsilon \lambda_{1} \\
\leq & \lambda b N \\
\leq & \lambda b\left[f\left(\frac{p-1+\alpha}{p}\right) \sigma \epsilon^{\frac{1}{p-1}}-\frac{1}{\left(\left(\frac{p-1+\alpha}{p}\right) \sigma \epsilon^{\frac{1}{p-1}}\right)^{\alpha}}\right] \\
\leq & \lambda g(x)\left[f\left(\frac{p-1+\alpha}{p} \epsilon^{\frac{1}{p-1}} \phi^{\frac{p}{p-1+\alpha}}\right)-\frac{1}{\left(\left(\frac{p-1+\alpha}{p}\right) \epsilon^{\frac{1}{p-1}} \phi^{\frac{p}{p-1+\alpha}}\right)^{\alpha}}\right] \\
= & \lambda g(x)\left[f(\psi)-\frac{1}{\psi^{\alpha}}\right] .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \int_{\Omega}|\nabla \psi|^{p-2} \nabla \psi \cdot \nabla w d x \\
= & \epsilon \int_{\Omega}\left[\lambda_{1}\left(\phi^{p-\frac{\alpha p}{p-1+\alpha}}-\left(1-\frac{\alpha p}{p-1+\alpha}\right) \phi^{-\frac{\alpha p}{p-1+\alpha}}|\nabla \phi|^{p}\right] w d x\right. \\
\leq & \int_{\Omega} \lambda g(x)\left[f\left(\frac{p-1+\alpha}{p} \epsilon^{\frac{1}{p-1}} \phi^{\frac{p}{p-1+\alpha}}\right)-\frac{1}{\left(\frac{p-1+\alpha}{p} \epsilon^{\frac{1}{p-1}} \phi^{\left.\frac{p}{p-1+\alpha}\right)^{\alpha}}\right.}\right] w d x \\
= & \int_{\Omega} \lambda g(x)\left[f(\psi)-\frac{1}{\psi^{\alpha}}\right] w d x .
\end{aligned}
$$

i.e. ψ is a subsolution of (1) for $\lambda \in\left[\lambda_{*}, \lambda^{*}\right]$.

Now we will construct a supersolution of (1.1). For this, we let $z:=c e$ and $w \in W$. Since $\nabla z=c \nabla e$ then a calculation shows that

$$
\begin{aligned}
\int_{\Omega}|\nabla z|^{p-2} \nabla z . \nabla w d x & =c^{p-1} \int_{\Omega}|\nabla e|^{p-2} \nabla e . \nabla w d x \\
& =c^{p-1} \int_{\Omega} w d x
\end{aligned}
$$

By (H2) we can choose c large enough so that

$$
\left(c\|e\|_{\infty}\right)^{p-1}\left(\lambda\|g(x)\|_{\infty}\|e\|_{\infty}\right)^{-1} \geq f\left(c\|e\|_{\infty}\right)
$$

Hence

$$
\begin{aligned}
c^{p-1} & \geq \lambda\|g(x)\|_{\infty} f\left(c\|e\|_{\infty}\right) \\
& \geq \lambda g(x) f(c e) \\
& \geq \lambda g(x)\left[f(c e)-\frac{1}{(c e)^{\alpha}}\right] \\
& =\lambda g(x)\left[f(z)-\frac{1}{z^{\alpha}}\right] .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
\int_{\Omega}|\nabla z|^{p-2} \nabla z \cdot \nabla w d x & =c^{p-1} \int_{\Omega} w d x \\
& \geq \int_{\Omega} \lambda g(x)\left[f(c e)-\frac{1}{(c e)^{\alpha}}\right] w d x \\
& =\int_{\Omega} \lambda g(x)\left[f(z)-\frac{1}{z^{\alpha}}\right] w d x
\end{aligned}
$$

i.e., z is a supersolution of (1.1) with $z \geq \psi$ for c large (note $|\nabla e| \neq 0$; on $\partial \Omega$). Thus, there exist a positive weak solution u of (1.1) such that $\psi \leq u \leq z$. This completes the proof of Theorem 2.1.

Acknowledgements

The authors express their gratitude to the anonymous referees for the useful comments and remarks.

References

[1] J.I. Diaz, Nonlinear Partial Differential Equations And Free Boundaries, Vol. I, vol. 106 of Pitman Research Notes in Mathematics, Pitman, Boston, MA, 1985.
[2] P. Drabek and J. Hernandez, Existence and uniqueness of positive solutions for some quasilinear elliptic problems, Nonlinear. Analysis, 44(2001), 189-204.
[3] S. Gui, Existence and nonexistence of positive solution for singular semilinear elliptic boudary value problems, Nonlinear Anal, 2000, 149-176.
[4] E.K. Lee and R. Shivaji, Positive solutions for infinit semipositone problems with falling zeros, Nonlinear Analysis ,72(2010), 4475-4479.
[5] E.K. Lee, R. Shivaji and J. Ye, Classes of infinite semipositone $n \times n$ systems ,Diff. Int. Eqs, 24(3-4)(2011), 361-370.
[6] M. Ramaswamy, R. Shivaji and J. Ye, Positive solution for a class of infinite semipositone problems, Diff. Integ. Eqns, 20(2007), 1423-1433.
[7] S.H. Rasouli, Z. Halimi and Z. Mashhadban, A remark on the existence of positive weak solution for a class of (p, q)-Laplacian nonlinear system with signchanging weight, Nonl. Anal, 73(2010), 385-389.
[8] R. Shivaji and J. Ye, Positive solutions for a class of infinite semipositone problems, Differential and Integral Equations, 12(2007), 1423-1433.

[^0]: ${ }^{\dagger}$ the corresponding author. Email address:s.h.rasouli@mit.ac.ir (S.H. Rasouli)
 ${ }^{1}$ Department of Mathematics, Faculty of Basic Sciences, Babol University of Technology, Babol, Iran

