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REMARKS ON THE REGULARITY CRITERIA
OF THE SOLUTIONS OF THE 3D

MICROPOLAR FLUID EQUATIONS∗

Qiao Liu

Abstract We provide two regularity criteria for the weak solutions of the 3D
micropolar fluid equations, the first one in terms of one directional derivative
of the velocity, i.e., ∂3u, while the second one is is in terms of the behavior of
the direction of the velocity u

|u| . More precisely, we prove that if

∂3u ∈ Lβ(0, T ;Lα(R3)) with
2

β
+

3

α
≤ 1 +

1

α
, 2 < α ≤ ∞, 2 ≤ β < ∞;

or

div

(
u

|u|

)
∈ L

4
1−2r (0, T ; Ẋr(R3)) with 0 ≤ r <

1

2
,

then the weak solution (u(x, t), ω(x, t)) is regular on R3 × [0, T ]. Here Ẋr(R3)
is the multiplier space.
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1. Introduction

In this paper, we study the following initial value problem of the incompressible
micropolar fluid equations:

∂tu−∆u−∇× ω +∇P + (u · ∇)u = 0 in R3 × (0, T ), (1.1)

∂tω −∆ω −∇ divω + 2ω + (u · ∇)ω −∇× u = 0 in R3 × (0, T ), (1.2)

div u = 0 in R3 × (0, T ), (1.3)

(u, ω)|t=0 = (u0, ω0) in R3. (1.4)

Here u = (u1(x, t), u2(x, t), u3(x, t)), P = P (x, t) and ω = (ω1(x, t), ω2(x, t), ω3(x, t))
are respectively the unknown velocity field of the flow, the pressure of the flow, and
the micro-rotational velocity, (u0, d0) is a given initial data with div u0 = 0 in the
sense of distributions.

The micropolar fluid equations was introduced by Eringen [7] in 1960s. It is
a special model of microfluids which exhibits the microrotational effects and mi-
crorotational inertia and can be viewed as a non-Newtonian fluid. In a physical
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sense, micropolar fluid may represent fluids that consists of rigid, randomly orient-
ed (or spherical) particles suspended in a viscous medium, where the deformation
of fluid particles is ignored. It describe many phenomena such as animal blood and
certain anisotropic fluids, e.g., liquid crystals which cannot be characterized ap-
propriately by the Navier-Stokes equations. For more detail background, we refer
the readers to see Lukaszewicz [14], Rojas-Medar [19] and the references therein.
Besides their physical applications, the micropolar fluid equations are also mathe-
matically significant.When ω = 0, system (1.1)-(1.4) reduces to be the well-known
Navier-Stokes equations (see [12]). Fundamental mathematical issues such as the
existences of weak and strong solutions for micropolar fluid equations were treated
by Galdi and Rionero [9] and Yamaguchi [21], respectively. However, the prob-
lem of global regularity of the weak solutions of the 3D micropolar fluids with any
initial value still remains unsolve since system (1.1)-(1.4) includes the 3D Navier–
Stokes equations. Therefore, it is an interesting thing that the regularity of a given
weak solution of the 3D micropolar fluids or the 3D Navier–Stokes equations can
be shown under some additional conditions, and over the years different criteria
for regularity of the weak solutions have been proposed. For the Navier–Stokes
equations, the well-known Prodi-Serrin conditions (see [15, 17, 18]) shows that any
weak solution u ∈ Lp(0, T ;Lq(R3)) with 2

p + 3
q ≤ 1, 3 < q ≤ ∞ and 2 ≤ p < ∞

is regular on R3 × [0, T ]. Beirãa da Veiga [1] established a Serrin’s type regulari-
ty criterion on the gradient of the velocity field, i.e., ∇u ∈ Lβ(0, T ;Lα(R3)) with
3
2 ≤ α ≤ ∞, 1 ≤ β ≤ ∞. Constantin and Fefferman [4] introduced a criteri-
on involving the direction of the vorticity, they showed that under a Lipshit-like
assumption on the direction of the vorticity rot u

|rot u| , the solution is smooth, here

rot u = (∂2u3 − ∂3u2, ∂3u1 − ∂1u3, ∂1u2 − ∂2u1) is the vorticity. In [20], Vasseur
established that the condition

div(
u

|u|
) ∈ Lp(0, T ;Lq) with

2

p
+

3

q
≤ 1

2
and 6 ≤ q ≤ ∞, (1.5)

still ensures the regular of solutions to the 3D Navier-Stokes equations. On the
other hand, it is desirable to show that show that there are many regularity results
of the weak solutions on the 3D Navier–Stokes equations if some partial derivatives
of the velocity satisfy certain growth conditions, i.e., Cao and Titi [2, 3], Zhou and
Pokorný [22] refined that one of the following conditions

∂3u ∈ Lp(0, T ;Lq) with
2

p
+

3

q
≤ 2, p >

27

16
, q > 1;

∇u3 ∈ Lp(0, T ;Lq) with
2

p
+

3

q
≤ 19

12
+

1

2q
, if q ∈ (

30

19
, 3] or

2

p
+

3

q
≤ 3

2
+

3

4q
, q > 3;

∂3u3 ∈ Lp(0, T ;Lq) with
2

p
+

3

q
≤ 3

4
+

3

2q
, q > 2,

implies the regularity of weak solutions to the 3D Navier-Stokes equations.

As the case of the 3D micropolar fluids, there still also many interesting results
have been obtained, Dong and Chen [5] proved the regularity of weak solutions
under the velocity condition

∇u ∈ Lq(0, T ; Ḃ0
p,r(R3)) with

2

q
+

3

p
≤ 2,

3

2
< p ≤ ∞, 1 ≤ r ≤ 2p

3
.
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Recently, Jia et al [10] obtained the following regularity criterion only in terms of
one derivative of the velocity

∂3u ∈ Lp(0, T ;Lq) with
2

q
+

3

p
= 1, 3 < p < ∞.

For other regularity criteria results of the 3D micropolar fluids, we refer the reader
to see [6, 8, 10] and their references therein.

Motivated by the regularity criteria results for the Navier-Stokes equations and
for the micropolar fluids equations cited above, the purpose of the present paper is
focused on the regularity criteria of the weak solutions of the 3D micropolar fluids.
To introduce the main results, let us first recall the definition of weak solutions the
3D micropolar fluids (1.1)-(1.4) (see [9, 14]).

Definition 1.1. (Weak solutions). Let (u0, ω0) ∈ L2(R3) with ∇ · u0 = 0 and
T > 0. A measurable function (u, ω) on R3 × (0, T ) is called a weak solution of
system (1.1)–(1.4) on (0, T ) if (u, ω) satisfies the following properties

(i) (u, ω) ∈ L∞(0, T ;L2(R3)) ∩ L2(0, T ;H1(R3));

(ii) (u, ω) verifies (1.1)–(1.4) in the sense of distribution, i.e.,∫ T

0

∫
R3

(∂tϕ+ (u · ∇)ϕ)udxdt+

∫ T

0

∫
R3

∇× ωdxdt+

∫
R3

u0ϕ(x, 0)dx

=

∫ T

0

∫
R3

∇u : ∇ϕdxdt;∫ T

0

∫
R3

(∂tφ+ (u · ∇)φ)ωdxdt+

∫ T

0

∫
R3

∇× uφdxdt+

∫
R3

ω0φ(x, 0)dxdt

=

∫ T

0

∫
R3

(∇ω : ∇φ+ divω divφ)dxdt+ 2

∫ T

0

∫
R3

ωφdxdt,

for all ϕ, φ ∈ C∞
0 (R3 × [0, T )) with div ϕ = 0. div u = 0 in distribution sense,

i.e., ∫ T

0

∫
R3

u · ∇ϕdxdt = 0,

for all ϕ ∈ C∞
0 (R3 × [0, T )).

(iii) (u, ω) satisfies the energy inequality, i.e.,

∥u(T )∥2L2 + ∥ω(T )∥2L2 + 2

∫ T

0

∥∇u∥2L2dt+ 2

∫ T

0

∥∇ω∥2L2dt

+ 2

∫ T

0

∥divω∥2L2dt+ 2

∫ T

0

∥ω∥2L2dt ≤ ∥u(0)∥2L2 + ∥ω(0)∥2L2 (1.6)

for 0 < t ≤ T ≤ ∞.

Our main results read as follows:

Theorem 1.1. Let (u0, ω0) ∈ H1(R3) with div u0 = 0. Assume (u, ω) is the weak
solution of system (1.1)-(1.4) on R3× (0, T ). Suppose that the one derivative of the
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velocity, i.e., ∂3u satisfies

∂3u ∈ Lβ(0, T ;Lα(R3)) with
2

β
+

3

α
≤ 1 +

1

α
, 2 < α ≤ ∞.

Then the solution (u, ω) is regular on R3 × [0, T ].

Theorem 1.2. Let (u0, ω0) ∈ L2(R3) ∩  L4(R3) with div u0 = 0. Assume (u, ω)

is the weak solution of system (1.1)-(1.4) on R3 × (0, T ). Suppose that div
(

u
|u|

)
satisfies

div

(
u

|u|

)
∈ L

4
1−2r (0, T ; Ẋr(R3)) with 0 ≤ r <

1

2
, (1.7)

or
∥∥∥div ( u

|u|

)∥∥∥
L∞(0,T ;Ẋ 1

2
)

is small. Then the solution (u, ω) is regular on R3×[0, T ].

Here Ẋr(R3) is the multiplier space.

Remark 1.1. 1. It is easy to see that our result of Theorem 1.1 is an improve-
ment of the recent work by Jia et al [11].

2. Since the multiplier space Ẋr(R3) (see Definition 3.1 below) with 0 ≤ r ≤ 1 is

wider that the Lebesgue space L
3
r (R3), hence our result (1.7) gives that the

condition (1.5) still implies the weak solution (u, d) is regular on R3 × (0, T ).
We also notice that the result of Theorem 1.2 is still valid for the direction
regularity problem of the three dimensional Navier-Stokes equations. So it is
an improvement of the recent result obtained by Vasseur [20].

The remainder of the paper is organized as follows. In Section 2, we shall
present the proof of Theorem 1.1. Section 3 is devoted to the proof of Theorem
1.2. Throughout the paper, we use the letter C to denote the constants which may
change from line to line; and use ∥ · ∥X to denote the norm of space X(R3).

2. Proof of Theorem 1.1

In this section, we give the proof of Theorem 1.1. In order to prove Theorem 1.1,
we need to quote the following lemma from [2,3], which will play an important role
in our discussion.

Lemma 2.1. For ϕ, f, g ∈ C∞
c (R3), we have∣∣∣∣∫

R3

ϕfgdx1dx2dx3

∣∣∣∣ ≤ C∥ϕ∥
r−1
r

L2 ∥∂3u∥
1
r

L
2

3−r
∥f∥

r−2
r

L2 ∥∂1f∥
1
r

L2∥∂2f∥
1
r

L2∥g∥L2 ,

where 2 < r < 3, C > 0 is a positive bounded constant.

We now give the proof of Theorem 1.1. By differentiating (1.1) and (1.2) with
respect to space variable, then multiply the resulting equations with ∇u and ∇ω,
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respectively, one obtains that

1

2

d

dt
(∥∇u(·, t)∥2L2 + ∥∇ω(·, t)∥2L2)+∥∇2u(·, t)∥2L2

+∥∇2ω(·, t)∥2L2 + ∥∇ divω(·, t)∥2L2

≤
∫
R3

∇(u · ∇u) · ∇udx+

∫
R3

∇(u · ∇ω) · ∇ωdx

−
∫
R3

∇(∇× ω) · ∇ω +∇(∇× u) · ∇ωdx+ 2∥∇ω∥2L2

:=I1 + I2 + I3 + 2∥∇ω∥2L2 . (2.1)

By using the Hölder inequality and integration by parts, it follows that

I3 + 2∥∇ω∥2L2 ≤ 1

8
(∥∇2u∥2L2 + ∥∇2ω∥2L2) + C(∥∇u∥2L2 + ∥∇ω∥2L2).

By using Lemma 2.1 (with r = 3α−2
α , 2 < α ≤ ∞) and the Young inequality, we

have

I1 = −
∫
R3

(u · ∇u) ·∆udx = −
3∑

i,j=1

∫
R3

ui∂iuj∆ujdx

≤ C∥u∥
2α−2
3α−2

L2 ∥∂3u∥
α

3α−2

Lα ∥∇u∥
α−2
3α−2

L2 ∥∇2u∥
2α

3α−2

L2 ∥∆u∥L2

≤ C∥∂3u∥
α

3α−2

Lα ∥∇u∥
α−2
3α−2

L2 ∥∇2u∥
5α−2
3α−2

L2

≤ 1

8
∥∇2u∥2L2 + C∥∂3u∥

2α
α−2

Lα ∥∇u∥2L2 ,

where we have used the fact that ∥∆u∥L2 ≤ ∥∇2u∥L2 . Similarly,

I2 = −
∫
R3

(u · ∇ω) ·∆ωdx = −
3∑

i,j=1

∫
R3

ui∂iωj∆ωjdx

≤ C∥u∥
2α−2
3α−2

L2 ∥∂3u∥
α

3α−2

Lα ∥∇ω∥
α−2
3α−2

L2 ∥∇2ω∥
2α

3α−2

L2 ∥∆ω∥L2

≤ C∥∂3u∥
α

3α−2

Lα ∥∇ω∥
α−2
3α−2

L2 ∥∇2ω∥
5α−2
3α−2

L2

≤ 1

8
∥∇2ω∥2L2 + C∥∂3u∥

2α
α−2

Lα ∥∇ω∥2L2 .

Inserting the estimates of I1, I2 and I3 into the inequality (2.1), it follows that

d

dt
(∥∇u(·, t)∥2L2 + ∥∇ω(·, t)∥2L2) + ∥∇2u(·, t)∥2L2

+ ∥∇2ω(·, t)∥2L2 + 2∥∇ divω(·, t)∥2L2

≤C∥∂3u∥
2α

α−2

Lα (∥∇u∥2L2 + ∥∇ω∥2L2),

which together with the Gronwall inequality lead to the a priori estimate

sup
0≤t≤T

(∥∇u(·, t)∥2L2 + ∥∇ω(·, t)∥2L2)

≤(∥∇u0∥2L2 + ∥∇ω0∥2L2) exp

{
C

∫ T

0

∥∂3u(s)∥
2α

α−2

Lα ds

}
< ∞. (2.2)
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Combining the a priori estimate (2.2) with the energy inequality (1.6), and by
standard arguments of continuation of local solutions, we conclude that the solution
(u(x, t), ω(x, t)) can be extended beyond t = T provided ∂3u ∈ Lβ(0, T ;Lα) for
2
β + 3

α ≤ 1 + 1
α with 2 < α ≤ ∞. This completes the proof of Theorem 1.1. �

3. Proof of Theorem 1.2

In this section, we shall give the proof of Theorem 1.2. Before going to do it, let us
first recall the definition of the multiplier space.

Definition 3.1. For 0 ≤ r < 3
2 , the space Ẋr(R3) is defined as the space of

f(x) ∈ L2
loc(R3) such that

∥f∥Ẋr
= sup

∥g∥Ḣr≤1

∥fg∥L2 < +∞,

where we denote the completion of the space C∞
0 (R3) by Ḣr(R3) with respect to

the norm ∥u∥Ḣr := ∥(−∆)
r
2 u∥L2 .

We have the homogeneity properties: ∀x0 ∈ R3 and λ > 0,

f(·+ x0)Ẋr
= ∥f(·)∥Ẋr

; ∥f(λ·)∥Ẋr
=

1

λr
∥f(·)∥Ẋr

.

The following imbedding holds:

L
3
r (R3) ↪→ L

3
r ,∞(R3) ↪→ Ẋr(R3) for 0 ≤ r <

3

2
.

Moreover, the vector function v := ( x2

|x|1+r ,− x1

|x|1+r , 0) ∈ Ẋr(R3) for 0 ≤ r < 3
2 and

div v = 0, but v /∈ L
3
2 (R3). For more detailed properties of the space Ẋr(R3), we

refer to [12,13].

We now present the proof of Theorem 1.2. Firstly, multiplying both sides of
the equation (1.1) by |u|2u, and integrating over R3. After suitable integration by
parts, we obtain

1

4

d

dt
∥u(·, t)∥4L4 + ∥|u||∇u|(·, t)∥2L2 +

1

2
∥∇|u|2(·, t)∥2L2

=−
∫
R3

∇P · |u|2udx+

∫
R3

∇× ω · |u|2udx, (3.1)

where we used the following identities due to the divergence free condition:∫
R3

(u · ∇u) · |u|2udx =
1

4

∫
R3

u · ∇|u|4dx = 0;∫
R3

(∆u) · |u|2udx = −
∫
R3

|∇u|2|u|2dx− 1

2

∫
R3

|∇|u|2|dx.

Multiplying both sides of the equation (1.2) by |ω|2ω, and integrating over R3. After
suitable integration by parts, we obtain

1

4

d

dt
∥ω(·, t)∥4L4 + ∥|ω||∇ω|(·, t)∥2L2 + ∥∇|ω|2(·, t)∥2L2 +

1

2
∥|∇ × ω||ω|(·, t)∥2L2

+ 2

∫
R3

|ω|4dx =

∫
R3

∇× u · |ω|2ωdx, (3.2)
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where we have used the fact that ∇divω = ∇× (∇× ω) + ∆ω implies

−
∫
R3

∇ divω · |ω|2ωdx

=−
∫
R3

(∇× (∇× ω) + ∆ω) · |ω|2ωdx

=

∫
R3

|∇ × ω|2|ω|2dx+

∫
R3

∇× ω · ∇|ω|2 × ωdx+

∫
R3

|∇ω|2|ω|2dx+
1

2

∫
R3

|∇|ω|2|2dx

≥
∫
R3

|∇ × ω|2|ω|2dx− 1

2

∫
R3

(|∇ × ω|2|ω|2 + |∇|ω|2|2)dx+

∫
R3

|∇ω|2|ω|2dx

+
1

2

∫
R3

|∇|ω|2|2dx

=
1

2

∫
R3

|∇ × ω|2|ω|2dx+
1

2

∫
R3

|∇ω|2|ω|2dx.

Combining (3.1) and (3.2) together, it follows that

1

4

d

dt
(∥u(·, t)∥4L4 + ∥ω(·, t)∥4L4) + ∥|u||∇u|(·, t)∥2L2 +

1

2
∥∇|u|2(·, t)∥2L2

+ ∥|ω||∇ω|(·, t)∥2L2 + ∥∇|ω|2(·, t)∥2L2 + 2∥ω(·, t)∥4L4

≤
∫
R3

|Pu||∇|u|2|dx+

∫
R3

|ω||u|2|∇u|dx+

∫
R3

|u||ω|2|∇ω|dx

≡I + I2 + I3, (3.3)

where we use the following identities∫
R3

∇P · |u|2udx = −
∫
R3

Pu · ∇|u|2dx;∫
R3

∇× ω · |u|2udx = −
∫
R3

|u|2ω · ∇ × udx−
∫
R3

ω · ∇|u|2 × udx;∫
R3

∇× u · |ω|2ωdx = −
∫
R3

|ω|2u · ∇ωdx−
∫
R3

u · ∇|ω|2 × ωdx

and the facts that |∇ × u| ≤ |∇u|, |∇|u|| ≤ |∇u| and |∇|u|2| ≤ 2|u||∇u|.
Then we shall estimate the above terms I1, I2 and I3 one by one. For the term

I2, by using the Hölder inequality and the Young inequality

I2 ≤ ∥|ω||u|∥L2∥|u||∇u|∥L2

≤ 1

2
∥|u||∇u|∥2L2 + C∥|ω||u|∥2L2

≤ 1

2
∥|u||∇u|∥2L2 + C∥ω∥2L4∥u∥2L4

≤ 1

2
∥|u||∇u|∥2L2 + C(∥ω∥4L4 + ∥u∥4L4). (3.4)

Similarly, we can estimate I3 as

I3 ≤ 1

2
∥|ω||∇ω|∥2L2 + C(∥ω∥4L4 + ∥u∥4L4). (3.5)
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Now, we estimate I1 under the assumption Theorem (1.1). Using the hölder
inequality, the interpolation inequality, and the fact that

|u| div( u

|u|
) = − u

|u|
· ∇|u|,

we can do estimate I1 for p ≥ 6 as

I1 ≤ C

∫
R3

|Pu||u||∇|u||dx ≤ C

∫
R3

|Pu||u|
∣∣∣∣ u|u| · ∇|u|

∣∣∣∣dx
= C

∫
R3

|Pu||u|
∣∣∣∣|u| div( u

|u|

)∣∣∣∣dx ≤ C∥Pu∥L2

∥∥∥∥|u|2 div( u

|u|

)∥∥∥∥
L2

≤ C∥|P ||u|∥L2∥|u|2∥Ḣr

∥∥∥∥div( u

|u|

)∥∥∥∥
Ẋr

≤ C∥|P ||u|∥L2∥|u|2∥1−r
L2 ∥∇|u|2∥rL2

∥∥∥∥div( u

|u|

)∥∥∥∥
Ẋr

≤ C∥|P ||u|∥L2∥u∥2−2r
L4 ∥∇|u|2∥rL2

∥∥∥∥div( u

|u|

)∥∥∥∥
Ẋr

, (3.6)

where we have used the fact that the condition div u = 0 implies that (see, e.g., [20])

u

|u|
· ∇|u| = |u| div

(
u

|u|

)
.

For estimate ∥|P ||u|∥2L2 . Taking the gradient on (1.1) and using the facts ∇ · u = 0
and div(∇× ω) = 0 yield

−∆P =
3∑

i,j=1

∂i∂j(uiuj).

By using the Calderon-Zygmund inequality, it is easy to obtain that there exists a
absolute positive constant C such that

∥P∥Lr ≤ C∥u∥2L2r for 1 < r < ∞.

Hence, it is easy to find that

∥Pu∥2L2 ≤ ∥|P |2|u|2∥L1 ≤ ∥P∥L2∥Pu2∥L2

≤ ∥u∥2L4∥P∥L3∥|u|2∥L6 ≤ ∥u∥2L4∥u∥2L6∥∇|u|2∥L2

≤ ∥u∥2L4∥∇u∥2L2∥∇|u|2∥L2 .

Hence, by inserting above estimate into (3.6), it follows that for 0 ≤ r < 1
2

I1 ≤ C

∥∥∥∥div( u

|u|

)∥∥∥∥
Ẋr

∥u∥3−2r
L4 ∥∇|u|2∥r+

1
2

L2 ∥∇u∥L2 .

By using the Young inequality two times, we have

I1 ≤ 3

2
∥∇|u|2∥2L2 + C

∥∥∥∥div( u

|u|

)∥∥∥∥ 4
3−2r

Ẋr

∥∇u∥
4

3−2r

L2 ∥u∥4L4

≤ 3

2
∥∇|u|2∥2L2 + C

(∥∥∥∥div( u

|u|

)∥∥∥∥ 4
1−2r

Ẋr

+ ∥∇u∥2L2

)
∥u∥4L4 . (3.7)
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Inserting the estimates (3.4), (3.5) and (3.7) into (3.3) gives that

d

dt
(∥u(·, t)∥4L4 + ∥ω(·, t)∥4L4) + ∥|u||∇u|(·, t)∥2L2 + ∥∇|u|2(·, t)∥2L2

+ ∥|ω||∇ω|(·, t)∥2L2 + ∥∇|ω|2(·, t)∥2L2

≤C

(∥∥∥∥div( u

|u|

)∥∥∥∥ 4
1−2r

Ẋr

+ ∥∇u∥2L2

)
(∥u∥4L4 + ∥ω∥4L4). (3.8)

Applying the Growall’s inequality to the above estimate, we obtain

sup
0≤t≤T

{∥u(·, t)∥4L4 + ∥ω(·, t)∥4L4}+
∫ T

0

∥|u||∇u|(·, t)∥2L2 + ∥∇|u|2(·, t)∥2L2dt

+

∫ T

0

∥|ω||∇ω|(·, t)∥2L2 + ∥∇|ω|2(·, t)∥2L2dt

≤e
C

∫ T
0

(
∥div( u

|u| )∥
4

1−2r

Ẋr
+∥∇u∥2

L2

)
dt
(∥u0∥4L4 + ∥ω0∥4L4)

≤e
C(

∫ T
0 ∥div( u

|u| )∥
4

1−2r

Ẋr
dt+∥(u0,ω0)∥2

L2 )(∥u0∥4L4 + ∥ω0∥4L4) < ∞, (3.9)

where we have used the energy inequality (1.5) in the last inequality.
When r = 1

2 , the estimate (3.7) reduces to

d

dt
(∥u(·, t)∥4L4 + ∥ω(·, t)∥4L4) + ∥|u||∇u|(·, t)∥2L2 + ∥∇|u|2(·, t)∥2L2

+ ∥|ω||∇ω|(·, t)∥2L2 + ∥∇|ω|2(·, t)∥2L2

≤C

∥∥∥∥div( u

|u|

)∥∥∥∥2
Ẋ 1

2

∥∇u∥2L2(∥u∥4L4 + ∥ω∥4L4).

Hence, the condition
∥∥∥div ( u

|u|

)∥∥∥
L∞(0,T ;Ẋ 1

2
)
is small enough together with the Growal-

l’s inequality give that

sup
0≤t≤T

{∥u(·, t)∥4L4 + ∥ω(·, t)∥4L4}+
∫ T

0

∥|u||∇u|(·, t)∥2L2 + ∥∇|u|2(·, t)∥2L2dt < ∞.

(3.10)

From (3.9) and (3.10), we get by using the assumption (1.6) that

∥u∥L4(0,T ;L12) + ∥ω∥L4(0,T ;L12) < ∞.

Combining the above inequality and the standard Serrin regularity criterion (see
e.g., [19]), we have (u, ω) smooth on R3 × (0, T ). Then, by using the standard
arguments of the continuation of local solutions, we conclude that the solution
(u(x, t), ω(x, t)) can be extended to T . This completes the proof of Theorem 1.2. �
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