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Abstract In this paper, the problems of robust exponential generalized and
robust exponential Q-S chaos synchronization are investigated between differ-
ent dimensional chaotic systems. We consider the more practical and realistic
cases when unknown time varying parameters with uncertainties, environmen-
tal disturbances, and nonlinearity of input control signals are present. The
adaptive technique is employed to design the appropriate controllers and the
validity of the proposed controllers are proved using Lyapunov stability theo-
rem. Furthermore, numerical simulations are performed to show the efficiency
of the presented scheme.
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1. Introduction

In various disciplines of physics, biology, chemistry, engineering, and economy, we
encounter systems that undergo spatial and temporal evolution. To model, analyze,
and understand these phenomena, the study of dynamical systems is a useful tool
that helps in achieving these aims.

Chaos is an important, fascinating, and highly complex behavior which exists in
some dynamical systems. Chaotic dynamical system is characterized by its sensitive
dependence on initial conditions, unpredictability of the long-term future behavior,
and by having positive Lyapunov exponents for its attractor.

The applications of dynamical systems and chaos involve mathematical biology
Tu [36], economics Tu [36], electronic circuits El-Sayed etc [9, 10], secure commu-
nications Stavroulakis [34], cryptography Kocarev & Lian [24], and neuroscience
research Izhikevich [18], chaos control and synchronization Hegazi etc [16], Chai
etc [3], Chen etc [5] and Boccaletti etc [2].

The research field of chaos synchronization attains increasing interests through
the last two decades as it makes chaos usable in many practical applications includ-
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ing image encryption, real time video encryption and secure data communications
Zhu [42], Smaoui etc [33] and Gao & Chen [15].

Different types of chaos synchronization are investigated by utilizing several
techniques such as adaptive control Chen [4] and Elabbasy etc [7, 8], H-infinity
synchronization Wang etc [37], targeting synchronization Padmanaban etc [31], lin-
ear feedback synchronization Matouk [29], adaptive sliding mode control Jawaad
etc [19], Pourmahmood etc [32], Li & Chang [25] and Yan etc [39], backstepping
Matouk & Agiza [30], and nonlinear feedback synchronization Gambino etc [13].

Complete chaos synchronization is achieved when the synchronization errors
between the outputs of two chaotic systems are converging to zero. This ensures
that the outputs of the two systems evolve on the same chaotic trajectory. On the
other hand, in generalized, projective, and function projective synchronization, the
output of one system is synchronized to a given function of the output of the second
system. When the synchronization error converges to zero with an exponential rate,
this is called exponential synchronization. It is suitable for practical applications
which need speed and accuracy.

The Q-S type of synchronization is considered a generalization of all the men-
tioned types of synchronization. In this type, a function Q of the output of the first
system is synchronized to a function S of the output of the second system. The us-
age of Q-S synchronization makes the secure system more complicated as the forms
of the target functions are considered secret keys for the encrypted system.

We summarize some achievement related to basic types of chaos synchronization
as follows:

Complete chaos synchronization between two identical hyperchaotic systems
having unknown time varying parameters is studied in Li & Shi [26]. Also, complete
chaos synchronization is presented in Yan etc [39] between different systems -with i-
dentical linear parts- when unknown constant parameters and external disturbances
exist.

In Zhang etc [41] and Gang etc [14], generalized synchronization between two
different dynamical systems having known constant parameters is discussed. The
function projective synchronization, generalized synchronization, and generalized
functional synchronization of different systems with unknown constant parameters
is presented in Sun [35], Long etc [28] and Feng & Pu [11], respectively. The function
projective synchronization of different hyperchaotic systems subjected to external
disturbances is examined in Fu [12].

The Q-S synchronization scheme between different chaotic systems with known
constant parameters is proposed in Hu & Xu [17] whereas Wang & Shi [38] and Yang
& Chen [40] studied Q-S synchronization of non-identical chaotic systems with un-
known constant parameters. In Li [27], exponential generalized synchronization
for different coupled systems with uncertainties in constant system parameters is
discussed. The anti-synchronization of hyperchaotic systems with constant uncer-
tainties in linear parts and external disturbances is demonstrated in Jawaad etc [20].
In Aghabab & Heydari [1], complete chaos synchronization between two different
uncertain chaotic systems subjected to input nonlinearities is investigated.

Chaos synchronization of some classes of uncertain master and slave systems
with mixed types of time delays attracted much attention in recent years, see for
example Karimi etc [21–23].

It is observed that the exponential generalized and exponential Q-S synchroniza-
tion between systems with time varying parameters are not examined in literature.
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So, the aim of this paper is to investigate the problems of exponential generalized
and exponential Q-S chaos synchronization of different dimensional dynamical sys-
tems having different unknown time varying parameters and uncertainties under
the effects of environmental disturbances and input nonlinearities of controller. To
the best of the authors’ knowledge, this is the first work to face this problem which
is not investigated in other literature.

This paper is organized as follows: The proposed scheme of synchronization
is introduced in section (2). Numerical simulations are performed in section (3).
Finally, section (4) contains the conclusion and the general discussions of this work.

2. The proposed scheme of synchronization

In this section, the following master and slave systems are considered:
The master system is given by

ẋi =

n∑
j=1

(a1ij(t) + d1ij(t))xj(t) +

m∑
j=1

(a2ij(t) + d2ij(t))fij(X) + d3i(t), (2.1)

i = 1, 2, ..., n,

where X = [x1 x2 x3...xn]T ∈ Rn is the vector of state variables, a1ij(t) and a2ij(t)
are the unknown continuous time varying parameters of linear parts and nonlinear
parts of the system, respectively, d1ij(t) and d2ij(t) are the disturbances affect linear
and nonlinear parts of the system, respectively, fij(X) : Rn → R are a continuous
nonlinear functions, and d3i(t) are external disturbances affect the whole system.

The slave system has the form

ẏi =

l∑
j=1

(b1ij(t) + d4ij(t))yj(t) +

r∑
j=1

(b2ij(t) + d5ij(t))gij(Y ) + d6i(t) + Ψi(ui),

(2.2)

i = 1, 2, ..., l,

where the dimension of the master system is n, the dimension of the slave system is
l, the parameters of the slave system are defined as the parameters of master system,
and Ψi(ui) represent continuous nonlinear functions of control input signals ui.

Assumption 2.1. The unknown time varying parameters and disturbances of the
systems (2.1) and (2.2) are assumed to be bounded such that

ϑmin
ijk < |ϑijk(t)| < ϑmax

ijk , ξmin
ij < |ξij(t)| < ξmax

ij . (2.3)

Given the vector φ(X) = [φ1(X) φ2(X) ...φl(X)]T , of smooth continuous target
functions, the exponential generalized synchronization is defined as follows.

Definition 2.1. The exponential generalized synchronization is achieved if the nor-
m of the error e = Y − φ(X) satisfies the inequality ‖e‖2 ≤ Ce−ξt, C, ξ > 0 and
t > t0.

The error dynamical system for generalized synchronization is defined by

ei = yi − φi(X), i = 1, 2, . . . , l, (2.4)
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hence taking the derivative of ei with respect to time, we get

ėi =ẏi −
n∑
j=1

∂φi(X)

∂xj
ẋj

=

l∑
j=1

(b1ij(t) + d4ij(t))yj(t) +

r∑
j=1

(b2ij(t) + d5ij(t))gij(Y ) + d6i(t)

+ Ψi(ui)−
n∑
j=1

n∑
k=1

∂φi(X)

∂xj
(a1jk(t) + d1jk(t))xk(t)−

n∑
j=1

m∑
k=1

∂φi(X)

∂xj

(a2jk(t) + d2jk(t))fjk(X)−
n∑
j=1

∂φi(X)

∂xj
d3j(t). (2.5)

To design the appropriate controller to achieve the exponential generalized syn-
chronization, the following assumption is necessary.

Assumption 2.2. The continuous nonlinear function Ψi(ui) satisfies the following
inequality for positive real numbers ρ1 and ρ2

ρ1u
2
i ≤ uiΨi(ui) ≤ ρ2u2i . (2.6)

The controller ui is designed as follows:

ui =
−1

ρ1
[

l∑
j=1

(bes1ij(t) + des4ij(t)) |yj(t)|+
r∑
j=1

(bes2ij(t) + des5ij(t)) |gij(Y )|

+ des6i (t) +

n∑
j=1

n∑
k=1

∣∣∣∣∂φi(X)

∂xj

∣∣∣∣ (aes1jk(t) + des1jk(t)) |xk(t)|+
n∑
j=1

m∑
k=1

∣∣∣∣∂φi(X)

∂xj

∣∣∣∣
(aes2jk(t) + des2jk(t)) |fjk(X)|+

n∑
j=1

∣∣∣∣∂φi(X)

∂xj

∣∣∣∣ des3j(t) + k |yi − φi(X)|] signei

=
χi
ρ1

signei, (2.7)

where ϑesijk and ϑesij represent the estimations of parameters ϑmax
ijk and ϑmax

ij , respec-
tively, and k > 0 is the control gain.

The implementation of the controller is examined in numerical simulations of
examples presented in Section 3. In real implementation of the controller, the
tanh function can be used to overcome the problem of chattering phenomenon and
enhance the performance of synchronization scheme.

Remark 2.1. From (2.6) and (2.7), the following helpful inequalities hold

ρ1u
2
i |ei| ≤ uiΨi(ui) |ei| ≤ ρ2u2i |ei| ,

ρ1(
χi
ρ1

)2 |ei| ≤ (
χi
ρ1

)Ψi(ui)ei ≤ ρ2(
χi
ρ1

)2 |ei| ,

Ψi(ui)ei ≤ ρ1(
χi
ρ1

) |ei| ,

Ψi(ui)ei ≤ χi |ei| .
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Remark 2.2. The sign function is used in controller (2.7) for two tasks:

(i) To enable the derivation of inequalities in Remark 2.1.

(ii) The controller has negative value when the synchronization error has positive
values. Hence, the controller decreases the value of ẏi(t) when yi > φi(X). On
the other hand, the controller increases the value of ẏi(t) when yi < φi(X).

We prove the validation of the proposed controller via utilizing the following
Lyapunov function V

V =
1

2
(

l∑
i=1

(e2i e
υt) +

n∑
i=1

n∑
j=1

(a2df1ij (t) + d2df1ij (t)) +

n∑
i=1

m∑
j=1

(a2df2ij (t) + d2df2ij (t))

+

n∑
i=1

d2df3i(t) +

l∑
i=1

l∑
j=1

(b2df1ij (t) + d2df4ij (t)) +

l∑
i=1

r∑
j=1

(b2df2ij (t) + d2df5ij (t))

+

l∑
i=1

d2df6i(t)), (2.8)

where ϑdfijk = ϑmax
ijk − ϑesijk , ϑdfij = ϑmax

ij − ϑesij and 0 < υ << k.
Computing the derivative of Lyapunov function defined in (2.8) with respect to

time yields

V̇ =

l∑
i=1

eiėie
υt +

υ

2

l∑
i=1

(e2i e
υt) +

n∑
i=1

n∑
j=1

(adf1ij (t)ȧdf1ij (t) + ddf1ij (t)ḋdf1ij (t))

+

n∑
i=1

m∑
j=1

(adf2ij (t)ȧdf2ij (t) + ddf2ij (t)ḋdf2ij (t)) +

n∑
i=1

ddf3i(t)ḋdf3i(t)

+

l∑
i=1

l∑
j=1

(bdf1ij (t)ḃdf1ij (t) + ddf4ij (t)ḋdf4ij (t)) +

l∑
i=1

r∑
j=1

(bdf2ij (t)ḃdf2ij (t)

+ ddf5ij (t)ḋdf5ij (t)) +

l∑
i=1

ddf6i(t)ḋdf6i(t). (2.9)

After some calculations, we can deduce that

V̇ ≤
l∑
i=1

|ei| (
l∑

j=1

(bmax
1ij + dmax

4ij ) |yj(t)|+
r∑
j=1

(bmax
2ij + dmax

5ij ) |gij(Y )|+ dmax
6i + χi

+

n∑
j=1

n∑
k=1

∣∣∣∣∂φi(X)

∂xj

∣∣∣∣ (amax
1jk + dmax

1jk ) |xk(t)|

+

n∑
j=1

m∑
k=1

∣∣∣∣∂φi(X)

∂xj

∣∣∣∣ (amax
2jk + dmax

2jk ) |fjk(X)|

+

n∑
j=1

∣∣∣∣∂φi(X)

∂xj

∣∣∣∣ dmax
3j (t))eυt +

υ

2

l∑
i=1

(e2i e
υt)

+

n∑
i=1

n∑
j=1

(adf1ij (t)ȧdf1ij (t) + ddf1ij (t)ḋdf1ij (t))
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+

n∑
j=1

∣∣∣∣∂φi(X)

∂xj

∣∣∣∣ dmax
3j (t))eυt +

υ

2

l∑
i=1

(e2i e
υt)

+

n∑
i=1

n∑
j=1

(adf1ij (t)ȧdf1ij (t) + ddf1ij (t)ḋdf1ij (t))

+

n∑
i=1

m∑
j=1

(adf2ij (t)ȧdf2ij (t) + ddf2ij (t)ḋdf2ij (t)) +

n∑
i=1

ddf3i(t)ḋdf3i(t)

+

l∑
i=1

l∑
j=1

(bdf1ij (t)ḃdf1ij (t) + ddf4ij (t)ḋdf4ij (t))

+

l∑
i=1

r∑
j=1

(bdf2ij (t)ḃdf2ij (t) + ddf5ij (t)ḋdf5ij (t)) +

l∑
i=1

ddf6i(t)ḋdf6i(t). (2.10)

From (2.10), the updating laws are derived to ensure that V̇ has negative values
as follows:

ȧes1ij =

l∑
p=1

∣∣∣∣∂φp(X)

∂xi

∣∣∣∣ |xj(t)| |ep| eυt,
ȧes2ij =

l∑
p=1

∣∣∣∣∂φp(X)

∂xi

∣∣∣∣ |fij(X)| |ep| eυt,

ḃes1ij = |yj(t)| |ei| eυt,

ḃes2ij = |gij(Y )| |ei| eυt,

ḋes1ij =

l∑
p=1

∣∣∣∣∂φp(X)

∂xi

∣∣∣∣ |xj(t)| |ep| eυt, (2.11)

ḋes2ij =

l∑
p=1

∣∣∣∣∂φp(X)

∂xi

∣∣∣∣ |fij(X)| |ep| eυt,

ḋes3i =

l∑
p=1

∣∣∣∣∂φp(X)

∂xi

∣∣∣∣ |ep| eυt,
ḋes4ij = |yj(t)| |ei| eυt,

ḋes5ij = |gij(Y )| |ei| eυt,

ḋes6i = |ei| eυt,

and therefore the derivative of V has the following form

V̇ ≤ −k∗
l∑
i=1

e2i e
υt, k∗ = k − υ

2
. (2.12)

From (2.8) and (2.12) it can be shown that

1

2

l∑
i=1

e2i e
υt ≤ V ≤ V (0), (2.13)
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and therefore
‖e‖2 ≤

√
2V (0)e−υt/2, t ≥ 0 (2.14)

i.e. exponential generalized synchronization is achieved.
We extend the proposed scheme to the case of exponential Q-S synchronization

as follows:

Definition 2.2. The exponential Q-S synchronization is achieved if the norm of
the error eqs = Q(Y)− S(X) satisfies the following inequality

‖Q(Y)− S(X)‖2 ≤ Ce
−ζt, C, ζ > 0 and t > t0, (2.15)

where Q(Y ) = [q1 q2...qln ]T and S(X) = [s1 s2...sln ]T are vectors of continuous
smooth target functions qi (Y ) and si(X), respectively.

The error dynamical system is expressed by

ėqs = DQ(Y )Ẏ −DS(X)Ẋ

= DQ(Y )(G(Y,B,ds) + Ψ(u))−DS(X)F(X,A,dm), (2.16)

where

DQ(Y ) =


∂q1
∂y1

∂q1
∂y2

. ∂q1
∂yl

∂q2
∂y1

. . .

. . . .
∂qln
∂y1

. .
∂qln
∂yl

 , DS(X) =


∂s1
∂x1

∂s1
∂x2

. ∂s1
∂xn

∂s2
∂x1

. . .

. . . .
∂sln
∂x1

. .
∂sln
∂xn

 ,
F(X,A,dm), G(Y,B,ds), A, B, ds and dm represent the right hand side of sys-
tem (2.1), the right hand side of system (2.2), vector of time varying parameters of
master system, vector of time varying parameters of slave system, vector of envi-
ronmental disturbances of master system, and vector of environmental disturbances
of slave system, respectively.

The control input u is proposed in the following form

u =− 1

ρ1
(G(|Y | , Bes,dess ) +D−1

AbsQ(Y )

(DAbsS(X)F(|X| , Aes,desm) + k |eqs|))sign eqs, (2.17)

where signeqs = [signe1qs...signelnqs]
T , |eqs| = [|e1qs| ... |elnqs|]T ,

eiqs = qi(Y )− si(X), DAbsQ(Y ) =



∣∣∣ ∂q1∂y1

∣∣∣ ∣∣∣ ∂q1∂y2

∣∣∣ .
∣∣∣∂q1∂yl

∣∣∣∣∣∣ ∂q2∂y1

∣∣∣ . . .

. . . .∣∣∣∂qln∂y1

∣∣∣ . .
∣∣∣∂qln∂yl

∣∣∣

 ,

DAbsS(X) =



∣∣∣ ∂s1∂x1

∣∣∣ ∣∣∣ ∂s1∂x2

∣∣∣ .
∣∣∣ ∂s1∂xn

∣∣∣∣∣∣ ∂s2∂x1

∣∣∣ . . .

. . . .∣∣∣∂sln∂x1

∣∣∣ . .
∣∣∣∂sln∂xn

∣∣∣

 ,
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D−1
AbsQ(Y ) is the inverse matrix of DAbsQ(Y ), also, Aes, Bes,dess and desm are the

estimations of system parameters and disturbances A,B,ds and dm, respectively.
Note that the inverse of nonsingular square matrix can be computed directly, where-
as the right inverse matrix z−1 = zT (zzT )−1 is used when the matrix z is not a
square matrix [6].

Choosing the following Lyapunov function

V (eqs, A,B,Dp) =
1

2
(eTqseqs)e

υt +
1

2
(ATdfAdf +BTdfBdf + dTmdf

dmdf
+ dTsdf dsdf ),

(2.18)
where Adf = Amax −Aes, Bdf = Bmax −Bes, dmdf

= dmax
m −desm , dsdf = dmax

s −dess ,
and for Ω = A,B,ds or dm the symbol Ωmax represent the vector of maximum
values of the elements exist in Ω,

ATdf Ȧdf + dTmdf
ḋmdf

= −eTqs(DAbsS(X)(F(|X| , Amax,dmax
m )− F(|X| , Aes,desm)))eυt,

BTdf Ḃdf + dTsdf ḋsdf = −eTqs(DAbsQ(Y )(G(|Y | , Bmax,dmax
s )−G(|Y | , Bes,dess )))eυt,

(2.19)

then computing the derivative of V , substituting from (2.19) and performing some
calculations to get

V̇ ≤ −k∗
ln∑
i=1

e2iqse
υt, (2.20)

‖eqs‖2 ≤
√

2V (0)e−υt/2, t ≥ 0 (2.21)

and therefore the exponential Q-S synchronization is achieved.

3. Numerical simulations

In this section, illustrative example is presented to verify theoretical findings. The
Lorenz system is taken as the master system corresponding to system (2.1) as

ẋ1 = a1(t)(x2 − x1) + d1,

ẋ2 = a2(t)x1 + d2x1 − x2 − a3(t)x1x3, (3.1)

ẋ3 = a4(t)x1x2 − a5(t)x3 + d3x3 + d4,

and the following hyperchaotic system proposed by Chen etc [6], which has two
positive Lyapunov exponents larger than most known hyperchaotic systems and
therefore more complexity, represents the slave system (2.2)

ẏ1 = b1(t)(y2 − y1) + b2(t)y2y3 + d5y2y3 + d6 + ψ1(u1),

ẏ2 = b3(t)y1 + y2 + y4 + d7y1 − b4(t)y1y3 + d8y1y3 + d9 + ψ2(u2), (3.2)

ẏ3 = b5(t)y1y2 + d10y1y2 − b6(t)y3 + d11 + ψ3(u3),

ẏ4 = −b7(t)y2 + d12y2 + d13 + ψ4(u4),

where a1(t) = 10 + 2 cos 13t, a2(t) = 28 + cos2 0.7πt, a3(t) = 1 + 0.3 sin 5t, a4(t) =
1 + 0.1 sin 3t cos 7t, a5(t) = 8

3 , b1(t) = 35 + 2.3 sin 24t, b2(t) = 35 + 4 cos 15t,

b3(t) = 25 + 3 sin2 5πt, b4(t) = 5 + sin 11t cos 27t, b5(t) = 1 + 0.2 sin 9t, b6(t) =
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4.9 + 0.2 cos 19πt, b7(t) = 100 + 14 sin 8πt, ψi(ui) = (7 + 2 sin t)ui, the environmen-
tal disturbances di are obtained by generating random real numbers from normal
distribution with zero mean value and standard deviation value equals 3 as shown
in Figure 1.

Figure 1. The disturbances di are obtained from normal distribution with mean
0 and standard deviation 3 and they are used in master and slave systems

Remark 3.1. The continuous nonlinear function ψi(ui) = (7 + 2 sin t)ui satisfy
Assumption 2.2 with parameters ρ1 = 5 and ρ2 = 9.

We set υ = 0.01 and study two cases of exponential chaos synchronization as
follows:

Case 1: Exponential generalized synchronization with target functions defined
by

φ(X) =


x21
2x2

x2 + 4x3
−x22 + 0.1x3

 .

Case 2: Exponential Q-S synchronization with functions Q(Y ) and S(X)

Q(Y ) =

 y1 + y2
y2 + y3 − 3y4
y1 + y2 + y3

 , S(X) =

 x2 + x3
sin(x1) + x2 + x3

x1 + x2

 .

Remark 3.2. In case 1 we have e =


y1 − x21
y2 − 2x2

y3 − x2 − 4x3
y4 + x22 − 0.1x3

,
∂φ1(X)

∂x1
= 2x1,

∂φ1(X)

∂x2

= 0, . . ., etc. Therefore, the control signals ui can be easily obtained from (2.7).
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For example,

u1 =
−1

5
[bes1 (t)(|y1(t)|+ |y2(t)|) + (bes2 (t) + des5 (t)) |y2(t)y3(t)|

+ des6 (t) +

3∑
j=1

∣∣∣∣∂φ1(X)

∂xj

∣∣∣∣ aes1 (t)(|x1(t)|+ |x2(t)|)

+

3∑
j=1

∣∣∣∣∂φ1(X)

∂xj

∣∣∣∣ des1 (t) + k |y1 − φ1(X)|] signe1

=
χ1

ρ1
signe1, (3.3)

and so on. We choose k = 5 and replace the sign function by tanh 400ei in real
implementation of the controller.

Remark 3.3. In case 2 we have e =

 y1 + y2 − x2 − x3
y2 + y3 − 3y4 − sin(x1)− x2 − x3

y1 + y2 + y3 − x1 − x2

,

DAbsQ(Y ) =

 1 1 0 0
0 1 1 3
1 1 1 0

 , D−1
AbsQ(Y ) =

1

19


9 −1 1
10 1 −1
−19 0 19

3 6 −16

 ,
DAbsS(X) =

 0 1 1
|cosx1| 1 1

1 1 0

 , and we can simply use equations (2.17) to realize

the controller.

Results of numerical simulations are shown in Figure 2 to Figure 8 for the fol-
lowing initial values of parameters: x1(0) = 1, x2(0) = 2, x3(0) = 3, y1(0) = 14,
y2(0) = 9, y3(0) = 11, y4(0) = 15, aes1 (0) = 5, aes2 (0) = 15, aes3 (0) = 0.3, aes4 (0) =
0.5, aes5 (0) = 1, bes1 (0) = 20, bes2 (0) = 25, bes3 (0) = 10, bes4 (0) = 2, bes5 (0) = 0.2, bes6 (0) =
2, bes7 (0) = 45, and desi (0) = 1, i = 1, 2, ...13.

Figure 2. Synchronization error e1 in the case of generalized synchronization

As an illustration to the computational complexity when performing the process
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of synchronization from time 0 to 100, the running time of the proposed scheme is
9.2 sec for exponential generalized synchronization and 11.3 sec for exponential Q-S
chaos synchronization.

It is observed that the two cases of exponential chaos synchronization are achieved
through a small time interval due to exponential rate of decaying of synchronization
error which has a norm less than const∗e−0.005t for t > 0. The value of the constant
depends on the form of Lyapunov functions defined in equations (2.8) and (2.18)
and depends also on initial values of parameters such that it equals

√
2V (0).

For example in generalized synchronization case it has an approximate value√
2V (0) ≈ 66.7. So, in theoretical view we have

3∑
i=1

e2i ≤ 66.7e−0.005t which is sat-

isfied by the developed algorithm as shown Figure 2 to Figure 5. Also, Numerical
simulations show the good performance of the proposed scheme for Q-S synchro-
nization case, see Figure 6 to Figure 8.

Figure 3. Synchronization error e2 in the case of generalized synchronization

Figure 4. Synchronization error e3 in the case of generalized synchronization
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Figure 5. Synchronization error e4 in the case of generalized synchronization

Figure 6. Synchronization error versus time for e1qs in the case of Q-S synchro-
nization

Figure 7. Synchronization error versus time for e2qs in the case of Q-S synchro-
nization
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Figure 8. Synchronization error versus time for e3qs in the case of Q-S synchro-
nization

4. Discussion and conclusion

The chaos synchronization in realistic cases involves the presence of unknown time
varying parameters, environmental disturbances, and input nonlinearity is achieved.
The cases of generalized and Q-S chaos synchronization are studied since they in-
crease and strengthen the security level of communication channel more than other
types of chaos synchronization such as complete, projective, and anti synchroniza-
tion which can be considered as special cases of generalized or Q-S synchronization.

We proposed suitable Lyapunov functions to obtain the updating laws for the
two cases of synchronization that are examined and theoretically proved the validity
of the presented new controllers. Results obtained illustrate the good performance
of the proposed controllers that succeed in achieving the intended two cases of
exponential chaos synchronization through a small time interval due to exponential
rate of decaying of synchronization error.

Future work can include circuit implementation of the proposed scheme of syn-
chronization in practical secure telecommunications systems.

Acknowledgements

The authors thank the referees for their valuable comments and suggestions.

References

[1] M.P. Aghabab and A. Heydari, Chaos synchronization between two different
chaotic systems with uncertainties, external disturbances, unknown parameters
and input nonlinearities, Appl. Math. Model., 36 (2012), 1639-1652.

[2] S. Boccaletti, J. Kurthsc, G. Osipovd, D.L. Valladaresb and C.S. Zhouc, The
synchronization of chaotic systems, Physics Reports, 366 (2002), 1-101.

[3] Y. Chai, L. Chen, R. Wu and J. Dai, Q-S synchronization of the fractional-
order unified system, PRAMANA-journal of physic, 80 (2013), 449-461.

[4] G. Chen, Controlling chaotic and hyperchaotic systems via a simple adaptive



336 A.M.A. El-Sayed, A. Elsaid, H.M. Nour & A. Elsonbaty

feedback controller, Computers and Mathematics with Applications , 61 (2011),
2031-2034.

[5] G. Chen and X. Yu, Chaos Control-Theory and Applications, Springer, 2003.

[6] Z. Chen, Y. Yang, G. Qi and Z. Yuan, A novel hyperchaos system only with
one equilibrium, Phys. Lett. A., 360 (2007), 696-701.

[7] E.M. Elabbasy, H.N. Agiza and M.M. El-Dessoky, Global synchronization cri-
terion and adaptive synchronization for new chaotic system, Chaos, Solitons
and Fractals, 23 (2005), 1299-1309.

[8] E.M. Elabbasy, H.N. Agiza and M.M. El-Dessoky, Adaptive synchronization of
a hyperchaotic system with uncertain parameter, Chaos, Solitons and Fractals,
30 (2006), 1133-1142.

[9] A.M.A. El-Sayed, A. Elsaid, H.M. Nour and A. Elsonbaty, Dynamical behav-
ior, chaos control and synchronization of a memristor-based ADVP circuit,
Commun. Nonlinear Sci. Numer. Simulat., 18 (2013), 148-170.

[10] A.M.A. El-Sayed, H.M. Nour, A. Elsaid, A.E. Matouk and A. Elsonbaty, Cir-
cuit realization, bifurcations, chaos and hyperchaos in a new 4D system, Appl.
Math. Comp., 239 (2014), 333-345.

[11] W.D. Feng and H. Pu, Adaptive generalized functional synchronization of
chaotic systems with unknown parameters, Chin. Phys. B, 17 (2008), 3603-
3608.

[12] G. Fu, Robust adaptive modified function projective synchronization of different
hyperchaotic systems subject to external disturbance, Commun Nonlinear Sci
Numer Simulat., 17 (2012), 2602-2608.

[13] G. Gambino, M.C. Lombardo and M. Sammartino, Global linear feedback con-
trol for the generalized Lorenz system, Chaos, Solitons and Fractals, 29 (2006),
829-837.

[14] Z. Gang, L. Zeng-rong and M.A. Zhong-jun, Generalized synchronization of
continuous dynamical system, Appl. Math. Mech. (English Edition), 28 (2007),
157-162.

[15] T. Gao and Z. Chen, A new image encryption algorithm based on hyper-chaos,
Physics Letters A , 372 (2008), 394-400.

[16] A.S. Hegazi, E. Ahmed and A.E. Matouk, On chaos control and synchroniza-
tion of the commensurate fractional order Liu system, Commun Nonlinear Sci
Numer Simulat, 18 (2013), 1193-1202.

[17] M. Hu and Z. Xu, A general scheme for Q-S synchronization of chaotic systems,
Nonlin. Anal., 69 (2008), 1091-1099.

[18] E.M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Ex-
citability and Bursting, Mit Press, 2007.

[19] W. Jawaad, M.S.M. Noorani and M.M. Al-sawalha, Anti-Synchronization of
chaotic systems via adaptive sliding mode control, Chin. Phys. Lett., 29 (2012),
1-3.

[20] W. Jawaad, M.S.M. Noorani and M.M. Al-sawalha, Robust active sliding mode
anti-synchronization of hyperchaotic systems with uncertainties and external
disturbances, Nonlin. Anal. Real World Applications, 13 (2012), 2403-2413.



Generalized and Q-S chaos synchronization 337

[21] H.R. Karimi, M. Zapateiro and N. Luo, Adaptive synchronization of master-
slave systems with mixed neutral and discrete time-delays and nonlinear per-
turbations, Asian Journal of Control, 14 (2012), 251-257.

[22] H.R. Karimi, Robust delay-dependent H-infinity control of uncertain time-delay
systems with mixed neutral, discrete and distributed time-delays and Markovian
switching parameters, IEEE Trans. Circuits and Systems I, 58 (2011), 1910-
1923.

[23] H.R. Karimi, New delay-dependent xxponential H(infinity) synchronization for
uncertain neural networks With mixed time delays, IEEE Trans. on Systems,
Man and Cybernetics Part B, 40 (2010), 173-185.

[24] L. Kocarev and S. Lian, Chaos-Based Cryptography, Springer, 2011.

[25] W.L. Li and K.M. Chang, Robust synchronization of drive-response chaotic
systems via adaptive sliding mode control, Chaos, Solitons and Fractals, 39
(2009), 2086-2092.

[26] Z. Li and S. Shi, Robust adaptive synchronization of Rossler and Chen chaotic
systems via slide technique, Phys. Lett. A, 311 (2003), 389-395.

[27] R.hung. Li, Exponential generalized synchronization of uncertain coupled chaot-
ic systems by adaptive control, Commun Nonlinear Sci Numer Simulat, 14
(2009), 2757-2764.

[28] C. Long, S.Y. Dong and W.D. Shi, Adaptive generalized synchronization be-
tween Chen system and a multi-scroll chaotic system, Chin. Phys. B., 19 (2010),
1-3.

[29] A.E. Matouk, Dynamical analysis, feedback control and synchronization of Liu
dynamical system, Nonlinear Analysis, 69 (2008), 3213-3224.

[30] A.E. Matouk and H.N. Agiza, Bifurcations, chaos and synchronization in AD-
VP circuit with parallel resistor, J. Math. Anal. Appl., 341 (2008), 259-269.

[31] E. Padmanaban, R. Banerjee and S.K. Dana, Targeting and control of synchro-
nization in chaotic oscillators, International Journal of Bifurcation and Chaos,
22 (2012), 1-12.

[32] M. Pourmahmood, S. Khanmohammadi and G. Alizadeh, Synchronization of
two different uncertain chaotic systems with unknown parameters using a robust
adaptive sliding mode controller, Commun Nonlinear Sci Numer Simulat, 16
(2011), 2853-2868.

[33] N. Smaoui, A. Karouma and M. Zribi, A Secure communications based on
the synchronization of the hyperchaotic Chen and the unified chaotic systems,
Commun Nonlinear Sci Numer Simulat, 16 (2011), 3279-3293.

[34] P. Stavroulakis, Chaos Applications in Telecommunications, CRC Press, 2006.

[35] Z. Sun, Function projective synchronization of two four-scroll hyperchaotic sys-
tems with unknown parameters, Cent. Eur. J. Phys., 11 (2013), 89-95.

[36] P.N.V. Tu, Dynamical Systems-An Introduction with Applications in Eco-
nomics and Biology, Springer-Verlag, 1995.

[37] B. Wang, P. Shi, H.R. Karimi, Y. Songf and J. Wanga, Robust H-infinity
synchronization of a hyper-chaotic system with disturbance input, Nonlinear
Analysis: Real World Applications, 14 (2013), 1487-1495.



338 A.M.A. El-Sayed, A. Elsaid, H.M. Nour & A. Elsonbaty

[38] Z.L. Wang and X.R. Shi, Adaptive Q-S synchronization of non-identical chaotic
systems with unknown parameters, Nonlin. Dyn., 59 (2010), 559-567.

[39] J.J. Yan, M.L. Hung, T.Y. Chiang and Y.S. Yang, Robust synchronization of
chaotic systems via adaptive sliding mode control, Phys. Lett. A., 356 (2006),
220-225.

[40] Y. Yang and Y. Chen, The generalized Q-S synchronization between the gen-
eralized Lorenz canonical form and the Rossler system, Chaos, Solitons and
Fractals, 39 (2009), 2378-2385.

[41] G. Zhang, Z. Liu and Z. Ma, Generalized synchronization of different dimen-
sional chaotic dynamical systems, Chaos, Solitons and Fractals, 32 (2007),
773-779.

[42] C. Zhu, A novel image encryption scheme based on improved hyperchaotic se-
quences, Opt. Commun., 285 (2012), 29-37.


	Introduction
	The proposed scheme of synchronization
	Numerical simulations
	Discussion and conclusion

