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1. Introduction

There has been extensive research on the a posteriori error estimates of finite element
methods for PDEs and optimal control problems, mostly focused on the elliptic case.
A systematic introduction of a posteriori error estimates of finite element method
for partial differential equations can be found in [1,3,4]. A posteriori error estimates
of linear elliptic optimal control problems were established in [11,15], and for mixed
finite element approximation of Stokes optimal control problems in [14]. Some
results on a posteriori error estimates of mixed finite element methods applied to
elliptic equations or optimal control problems have also been obtained in [5,7–9,20].

Parabolic optimal control problems are frequently met in the mathematical mod-
el for describing petroleum reservoir simulation, environmental modeling, ground-
water contaminant transport, and many other applications. A priori and a poste-
riori error estimates of finite element methods for optimal control problems were
established in [13] and [16,22,23], respectively. A priori estimates of space-time finite
element discretization for parabolic control problems have obtained in [18,19], and
a characteristic finite element approximation for optimal control problems governed
by transient advection-diffusion equations were also investigated in [10]. Recently,
an optimal control system governed by hyperbolic equations with strong nonlinear-
ity is considered in [21]. To the best of our knowledge there has been little work
done on the a posteriori estimates of finite element methods for parabolic control
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problems. The purpose of this work is to investigate a posteriori error estimates of
semidiscrete finite element method for parabolic equations by using elliptic recon-
struction.

We are interested in the following parabolic optimal control problems:
min
u∈K

1

2

∫ T

0

(
∥y − yd∥2 + ∥u∥2

)
dt,

yt − div(A∇y) = f + u, x ∈ Ω, t ∈ J,

y|∂Ω = 0, t ∈ J,

y(0) = y0, x ∈ Ω,

(1.1)

where Ω is a bounded domain in R2 with a boundary ∂Ω, J = [0, T ] (T > 0). The
coefficient A = (aij(x))2×2 ∈ (W 1,∞(Ω̄))2×2 is an uniformly symmetric positive
definite matrix, i.e., there exists a constant c > 0 such that

(Aξ) · ξ ≥ c | ξ |2, ∀ ξ ∈ R2.

Moreover, we assume that f, yd ∈ C(J ;L2(Ω)), y0 ∈ H1
0 (Ω) and K is a nonempty

closed convex subset in L2(J ;L2(Ω)), defined by

K = { v| v ∈ L2(J ;L2(Ω)) and

∫ T

0

∫
Ω

v dx dt ≥ 0 }.

Here we adopt the standard notation Wm,q(Ω) for Sobolev spaces on Ω with nor-
m ∥ · ∥Wm,q(Ω) and seminorm | · |Wm,q(Ω). We set H1

0 (Ω) ≡
{
v ∈ H1(Ω) : v|∂Ω = 0

}
and denote Wm,2(Ω) by Hm(Ω). We denote by Ls(J ;Wm,q(Ω)) the Banach space
of all Ls integrable functions from J into Wm,q(Ω) with norm ∥v∥Ls(J;Wm,q(Ω)) =

(
∫ T

0
∥v∥sWm,q(Ω)dt)

1
s for s ∈ [1,∞) and the standard modification for s = ∞. Simi-

larly, one can define the space H l(J ;Wm,q(Ω)) and Ck(J ;Wm,q(Ω)) (cf. Ref. [13]).
In addition, c or C denotes a generic positive constant.

The plan of this paper is as follows. In Section 2, we shall construct a semidis-
crete finite element approximation for the model problem (1.1). In Section 3, we
give some useful error estimates for intermediate variables. We derive a posteriori
error estimates for finite element approximation of parabolic optimal control prob-
lems in Section 4. We give a conclusion and introduce our future works in the last
Section.

2. A semidiscrete finite element discretization

A semidiscrete finite element approximation for the model problem (1.1) is now
considered. For ease of exposition, we denote Lp(J ;Wm,q(Ω)) by Lp(Wm,q). Let
W = H1

0 (Ω) and U = L2(Ω). Moreover, we denote ∥ ·∥Hm(Ω) and ∥ ·∥L2(Ω) by ∥ ·∥m
and ∥ · ∥, respectively. Let

a(v, w) =

∫
Ω

(A∇v) · ∇w, ∀ v, w ∈ W,

(f1, f2) =

∫
Ω

f1 · f2, ∀ f1, f2 ∈ U.
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It follows from the assumptions on A that

a(v, v) ≥ c∥v∥21, |a(v, w)| ≤ C∥v∥1∥w∥1, ∀ v, w ∈ W.

Thus a possible weak formula for the model problem (1.1) reads:
min
u∈K

1

2

∫ T

0

(
∥y − yd∥2 + ∥u∥2

)
dt,

(yt, w) + a(y, w) = (f + u,w), ∀w ∈ W, t ∈ J,

y(0) = y0, ∀x ∈ Ω.

(2.1)

It is well known (e.g. see [12]) that the problem (2.1) has a unique solution (y, u),
and the pair (y, u) ∈

(
H1(L2) ∩ L2(H1)

)
×K is the solution of the formulation (2.1)

if and only if there is an adjoint state p ∈ H1(L2) ∩ L2(H1) such that the triplet
(y, p, u) satisfies the following optimality conditions:

(yt, w) + a(y, w) = (f + u,w), ∀w ∈ W, t ∈ J,

y(0) = y0, ∀x ∈ Ω, (2.2)

− (pt, q) + a(q, p) = (y − yd, q), ∀ q ∈ W, t ∈ J,

p(T ) = 0, ∀x ∈ Ω, (2.3)∫ T

0

(u+ p, v − u)dt ≥ 0, ∀ v ∈ K. (2.4)

Lemma 2.1. Let (y, p, u) be the solution of (2.2)-(2.4). Then u = max(0, p) − p,
where

p =

∫ T

0

∫
Ω
p dx dt∫ T

0

∫
Ω
1 dx dt

(2.5)

denotes the integral average on Ω× J of the function p.

Proof. For any function p ∈ H1(L2), we show that

u = max(0, p)− p

satisfies the variational inequality (2.4).
If p > 0, then u = p− p and∫ T

0

(u+ p, v − u)dt =

∫ T

0

∫
Ω

(p− p+ p)(v − p+ p)dxdt

= p

∫ T

0

∫
Ω

vdxdt ≥ 0, ∀ v ∈ K.

(2.6)

If p ≤ 0, then u = −p and∫ T

0

(u+ p, v − u)dt = 0, ∀ v ∈ K. (2.7)

Note that the solution of (2.3) is unique. Thus we complete the proof of the lemma.
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Now let T h be regular triangulations of Ω such that Ω̄ =
∪

τ∈T h

τ̄ and h =

max
τ∈T h

{hτ}, where hτ denotes the diameter of the element τ . Moreover, we set

Wh =
{
vh ∈ C(Ω̄) : vh|τ ∈ Pl, ∀ τ ∈ T h, wh|∂Ω = 0

}
,

Kh =L2(Wh) ∩K,

where Pl is the space of polynomials up to order l.
A semidiscrete finite element approximation of the weak formulation (2.1) is

min
uh∈Kh

1

2

∫ T

0

(
∥yh − yd∥2 + ∥uh∥2

)
dt,

(yh,t, wh) + a (yh, wh) = (f + uh, wh) , ∀ wh ∈ Wh, t ∈ J,

yh(0) = yh0 , ∀x ∈ Ω,

(2.8)

where yh0 is an appropriate approximation of y0.
It follows (e.g. see [16]) that the control problem (2.8) has a unique solution

(yh, uh), and (yh, uh) ∈ H1(Wh)×Kh is the solution of (2.8) if and only if there is a
adjoint state ph ∈ H1(Wh) such that the triplet (yh, ph, uh) satisfies the optimality
conditions

(yh,t, wh) + a(yh, wh) = (f + uh, wh), ∀wh ∈ Wh, t ∈ J,

yh(0) = yh0 , ∀x ∈ Ω, (2.9)

− (ph,t, qh) + a(qh, ph) = (yh − yd, qh), ∀ qh ∈ Wh, t ∈ J,

ph(T ) = 0, ∀x ∈ Ω, (2.10)∫ T

0

(uh + ph, v − uh)dt ≥ 0, ∀ v ∈ Kh. (2.11)

Similar to Lemma 2.1, we can derive the following relationship between uh and ph.

Lemma 2.2. Let (yh, ph, uh) be the solution of (2.9)-(2.11). Then we have uh =
max(0, ph)− ph, where

ph =

∫ T

0

∫
Ω
ph dx dt∫ T

0

∫
Ω
1 dx dt

(2.12)

denotes the integral average on Ω× J of the function ph.

Proof. For any function ph ∈ H1(Wh), we show that

uh = max(0, ph)− ph

satisfies the variational inequality (2.11).
If ph > 0, then uh = ph − ph and∫ T

0

(uh + ph, v − uh)dt =

∫ T

0

∫
Ω

(ph − ph + ph)(v − ph + ph)dxdt

= ph

∫ T

0

∫
Ω

vdxdt ≥ 0, ∀ v ∈ Kh.

(2.13)
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If ph ≤ 0, then uh = −ph and∫ T

0

(uh + ph, v − uh)dt = 0, ∀ v ∈ Kh. (2.14)

Note that the solution of (2.10) is unique. Thus we complete the proof of the lemma.

3. Error estimates of intermediate variables

We now give some error estimates of intermediate variables. For any control function
uh ∈ Kh, let (y(uh), p(uh)) ∈ H1(H1

0 ) × H1(H1
0 ) be the solution of the following

equations:

(yt(uh), w) + a (y(uh), w) = (f + uh, w) , ∀w ∈ W, t ∈ J,

y(uh)(0) = y0, ∀x ∈ Ω, (3.1)

− (pt(uh), q) + a (q, p(uh)) = (y(uh)− yd, q) , ∀ q ∈ W, t ∈ J,

p(uh)(T ) = 0, ∀x ∈ Ω. (3.2)

We define the errors as follows:

ey = y(uh)− yh,

and
ep = p(uh)− ph.

Then, from (2.9)-(2.10) and (3.1)-(3.2), the above errors satisfy the following equa-
tions

(ey,t, w) + a(ey, w) = −r1(w), ∀w ∈ W, (3.3)

− (ep,t, q) + a(q, ep) = (ey, q)− r2(q), ∀ q ∈ W, (3.4)

where

r1(w) = (yh,t, w) + a(yh, w)− (f + uh, w),

r2(q) = −(ph,t, q) + a(q, ph)− (yh − yd, q).

We now introduce elliptic reconstructions ỹ(t), p̃(t) ∈ H1
0 (Ω) of yh, ph for t ∈ J ,

respectively. For given yh, ph, let ỹ(t), p̃(t) ∈ H1
0 (Ω) satisfy

a(ỹ − yh, w) = −r1(w), ∀w ∈ W, (3.5)

a(q, p̃− ph) = (ỹ − yh, q)− r2(q), ∀ q ∈ W. (3.6)

Since for any wh, qh ∈ Wh, r1(wh) = 0 and r2(qh) = 0, let us note that yh and ph
are elliptic projection of ỹ and p̃, respectively. By using elliptic reconstructions, we
rewrite:

ey = (ỹ − yh)− (ỹ − y(uh)) := ηy − ξy,

and
ep = (p̃− ph)− (p̃− p(uh)) := ηp − ξp.
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Let (y, p, u) and (yh, ph, uh) be the solutions of (2.2)-(2.4) and (2.9)-(2.11), respec-
tively. We decompose the errors as follows:

y − yh = (y − y(uh)) + (y(uh)− yh) := ry − ey,

and
p− ph = (p− p(uh)) + (p(uh)− ph) := rp − ep.

From (2.2)-(2.3) and (3.1)-(3.2), we derive

(ry,t, w) + a(ry, w) = (u− uh, w), ∀w ∈ W, t ∈ J, (3.7)

− (rp,t, q) + a(q, rp) = (ry, q), ∀ q ∈ W, t ∈ J. (3.8)

Lemma 3.1. Let ry, rp satisfy (3.7)-(3.8). Then we have

∥ry∥L∞(L2) ≤ C∥u− uh∥L2(L2), (3.9)

∥rp∥L∞(L2) ≤ C∥u− uh∥L2(L2). (3.10)

Proof. By selecting w = ry in (3.7), we obtain

(ry,t, ry) + a(ry, ry) = (u− uh, ry). (3.11)

From Hölder’s inequality and Young’s inequality, we get

1

2

d

dt
(∥ry∥2) + c∥ry∥21 ≤ C(δ)∥u− uh∥2 + δ∥ry∥2. (3.12)

Let us note that ry(0) = 0, on integrating (3.12) with respect to time from 0 to t
and using Gronwall’s lemma, we have

∥ry∥2L∞(L2) ≤ C(δ)∥u− uh∥2L2(L2). (3.13)

By choosing q = rp in (3.8), we obtain

− (rp,t, rp) + a(rp, rp) = (ry, rp). (3.14)

From Hölder’s inequality and Young’s inequality, we derive

− 1

2

d

dt
(∥rp∥2) + c∥rp∥21 ≤ C(δ)∥ry∥2 + δ∥rp∥2. (3.15)

Note that rp(T ) = 0, on integrating (3.15) with respect to time from t to T and
using Gronwall’s lemma, we have

∥rp∥2L∞(L2) ≤ C(δ)∥ry∥2L2(L2). (3.16)

According to embedding theorem, so inequality (3.10) follows from (3.13) and (3.16).

Lemma 3.2. Let (y, p, u) and (yh, ph, uh) be the solutions of (2.2)-(2.4) and (2.9)-
(2.11), respectively. Assume that uh + ph|τ ∈ H1(τ) and that exists w ∈ Kh such
that ∣∣∣∣∣

∫ T

0

(uh + ph, w − u)dt

∣∣∣∣∣ ≤ C

∫ T

0

∑
τ

hτ |uh + ph|H1(τ)∥u− uh∥L2(τ)dt. (3.17)
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Then

∥u− uh∥L2(L2) ≤ C
(
η1 + ∥ph − p(uh)∥L2(L2)

)
, (3.18)

where

η1 =

(∫ T

0

∑
τ

h2
τ |uh + ph|2H1(τ)dt

) 1
2

. (3.19)

Proof. It follows from (2.4) and (2.11) that

∥u− uh∥2L2(L2) =

∫ T

0

(u− uh, u− uh)dt

=

∫ T

0

(u+ p, u− uh)dt+

∫ T

0

(uh + ph, uh − u)dt

+

∫ T

0

(ph − p(uh), u− uh)dt+

∫ T

0

(p(uh)− p, u− uh)dt

≤
∫ T

0

(uh + ph, w − u)dt+

∫ T

0

(ph − p(uh), u− uh)dt

+

∫ T

0

(p(uh)− p, u− uh)dt

:=I1 + I2 + I3.

(3.20)

According to the assumption (3.17) and Young’s inequality, for the first term we
have

I1 =

∫ T

0

(uh + ph, w − u)dt ≤ C(δ)η21 + δ∥u− uh∥2L2(L2). (3.21)

From Hölder’s inequality and Young’s inequality, we get

I2 =

∫ T

0

(ph − p(uh), u− uh)dt

≤C(δ)∥ph − p(uh)∥2L2(L2) + δ∥u− uh∥2L2(L2).

(3.22)

Let us note that y(0) − y(uh)(0) = 0 and p(T ) − p(uh)(T ) = 0, from (2.2) minus
(3.1) and select w = p(uh)− p, then integral from 0 to T in the equation two sides
and use integral by parts, we have

−
∫ T

0

(y − y(uh), pt(uh)− pt)dt+

∫ T

0

a(y − y(uh), p(uh)− p)dt

=

∫ T

0

(u− uh, p(uh)− p)dt.

(3.23)

Similarly, from (2.3) minus (3.2) and select q = y(uh) − y, then integral from 0 to
T in the equation two sides, we have

−
∫ T

0

(pt − pt(uh), y(uh)− y)dt+

∫ T

0

a(y(uh)− y, p− p(uh))dt

=

∫ T

0

(y − y(uh), y(uh)− y)dt.

(3.24)
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By using (3.23) and (3.24), we derive

I3 =

∫ T

0

(p(uh)− p, u− uh)dt = −
∫ T

0

(y − y(uh), y − y(uh))dt ≤ 0. (3.25)

Then (3.18) follows from (3.20)-(3.25).
From (3.1)-(3.2) and (3.5)-(3.6), we have the following error equations:

(ξy,t, w) + a(ξy, w) = (ηy,t, w), ∀w ∈ W, t ∈ J, (3.26)

− (ξp,t, q) + a(q, ξp) = (ξy, q) + (ηp,t, q), ∀ q ∈ W, t ∈ J. (3.27)

Lemma 3.3. Let ξy and ξp satisfy (3.26)-(3.27). Then the following estimates
hold:

∥ξy∥L∞(L2) ≤ C(∥ηy,t∥L2(L2) + ∥ηy(0)∥), (3.28)

∥ξp∥L∞(L2) ≤ C(∥ηp,t∥L2(L2) + ∥ηy,t∥L2(L2) + ∥ηy(0)∥). (3.29)

Proof. By choosing w = ξy in (3.26), we obtain

(ξy,t, ξy) + a(ξy, ξy) = (ηy,t, ξy). (3.30)

From Hölder’s inequality and Young’s inequality, we get

1

2

d

dt
(∥ξy∥2) + c∥ξy∥21 ≤ C(δ)∥ηy,t∥2 + δ∥ξy∥2. (3.31)

Integrating (3.31) with respect to time from 0 to t and using Gronwall’s lemma, we
derive

∥ξy∥2L∞(L2) ≤ C(δ)
(
∥ηy,t∥2L2(L2) + ∥ηy(0)∥2

)
. (3.32)

By selecting q = ξp in (3.27), we have

− (ξp,t, ξp) + a(ξp, ξp) = (ξy, ξp) + (ηp,t, ξp). (3.33)

From Hölder’s inequality and Young’s inequality, we obtain

− 1

2

d

dt
(∥ξp∥2) + c∥ξp∥21 ≤ C(δ)(∥ξy∥2 + ∥ηp,t∥2) + δ∥ξp∥2. (3.34)

Note that ξp(T ) = 0, on integrating (3.34) with respect to time from t to T and
using Gronwall’s lemma, we derive

∥ξp∥2L∞(L2) ≤ C(δ)
(
∥ξy∥2L2(L2) + ∥ηp,t∥2L2(L2)

)
. (3.35)

Then (3.28)-(3.29) follows from (3.32) and (3.35).
From (3.5)-(3.6), we derive the error equations:

a(ηy, wh) = 0, ∀wh ∈ Wh, (3.36)

a(qh, ηp) = (ηy, qh), ∀ qh ∈ Wh. (3.37)
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Lemma 3.4. Let (yh, ph, uh) and (ỹ, p̃) satisfy (2.9)-(2.11) and (3.5)-(3.6), re-
spectively. There exists a positive constant C which depends only on the coefficient
matrix A, the domain Ω, the shape regularity of the elements and polynomial degree
l such that

∥ηy∥2 ≤C
(
∥h1+min{1,l}(yh,t − div(A∇yh)− f − uh)∥2

+ min
wh∈Wh

∥h(∇yh −∇hwh)∥2
)
, (3.38)

∥ηy,t∥2 ≤C
(
∥h1+min{1,l}(yh,t − div(A∇yh)− f − uh)t∥2

+ min
wh∈Wh

∥h(∇yh −∇hwh)∥2
)
, (3.39)

∥ηp∥2 ≤C
(
∥h1+min{1,l}(ph,t − div(A∗∇ph)− yh + yd)∥2 + ∥ηy∥2

+ min
wh∈Wh

∥h(∇ph −∇hwh)∥2
)
, (3.40)

∥ηp,t∥2 ≤C
(
∥h1+min{1,l}(ph,t − div(A∗∇ph)− yh + yd)t∥2

+ ∥ηy,t∥2 + min
wh∈Wh

∥h(∇ph −∇hwh)∥2
)
, (3.41)

where A∗ is the adjoint matrix of A.

Proof. Set w = ỹ − yh in (3.5), we have

a(ỹ − yh, ỹ − yh) = −(yh,t − f − uh, ỹ − yh)− a(yh, ỹ − yh).

Similar to [2, 17], by using embedding theorem and Cauchy’ inequality, we can
obtain (3.38). Similarly, it is easy to prove (3.39)-(3.41).

4. A posteriori error estimates

We now derive a posteriori error estimates for the semidiscrete finite element approx-
imation of the parabolic optimal control problem. By collecting Lemmas 3.1-3.4,
we finally derive the following results:

Theorem 4.1. Let (y, p, u) and (yh, ph, uh) be the solutions of (2.2)-(2.4) and
(2.9)-(2.11), respectively. Assume that all the conditions in Lemmas 3.1-3.4 are
valid. Then the following a posteriori error estimates hold:

∥u− uh∥L2(L2) ≤ C
(
η1 + ∥ηy,t∥L2(L2) + ∥ηp,t∥L2(L2) + ∥yh0 − y0∥

)
, (4.1)

∥y − yh∥L∞(L2) ≤ C
(
∥u− uh∥L2(L2) + ∥ηy∥L2(L2)

)
, (4.2)

∥p− ph∥L∞(L2) ≤ C
(
∥u− uh∥L2(L2) + ∥ηy∥L2(L2) + ∥ηp∥L2(L2)

)
, (4.3)

where η1 is defined in Lemma 3.2 and the estimates for ηy, ηy,t, ηp and ηp,t are
define in Lemma 3.4.

Theorem 4.2. Let (y, p, u) and (yh, ph, uh) be the solutions of (2.2)-(2.4) and
(2.9)-(2.11), respectively. Assume that all the conditions in Theorem 4.1 are valid.
There exists a positive constant C independent of h such that

∥u− uh∥L∞(L2)

≤C
(
η1 + ∥ηy,t∥L2(L2) + ∥ηy∥L2(L2) + ∥ηp,t∥L2(L2) + ∥ηp∥L2(L2) + ∥yh0 − y0∥

)
.
(4.4)



304 Y. Tang & Y. Hua

Proof. From Lemmas 2.1-2.2, we have

∥u− uh∥L∞(L2) ≤ C∥p− ph∥L∞(L2). (4.5)

Then (4.4) follows from (4.1), (4.3) and (4.5).

5. Numerical experiment

In this section, we present a numerical example to illustrate our theoretic results.
The optimal control problem was dealt numerically with codes developed based on
AFEPack. The package is freely available and the details can be found at [11].

We solve the following parabolic optimal control problem:
min
u∈K

1

2

∫ T

0

(
∥y(x, t)− yd(x, t)∥2 + ∥u(x, t)− ud(x, t)∥2

)
dt,

yt(x, t)− div(A(x)∇y(x, t)) = f(x, t) + u(x, t), inΩ× (0, T ],

y(x, t) = 0, on ∂Ω× (0, T ],

y(x, 0) = y0(x), inΩ.

The partial derivative of time is approximated by the backward Euler method.
For ease of exposition, we take a small time size ∆t = 10−2, N = T/∆t ∈ Z+,
tn = n∆t, n = 0, 1, · · · , N , ϕn = ϕ(x, tn) and set the discrete time-dependent norm

|||ϕ||| =

(
N∑

n=1

∆t∥ϕn∥2
) 1

2

.

Example 5.1. The data are as follows:

T = 1, Ω = [0, 1]× [0, 1],

A(x) =

{
2 · E, x1 + x2 ≤ 1,

E, x1 + x2 > 1,

y(x, t) =

{
sin(πx1)sin(πx2)sin(πt), x1 + x2 ≤ 1,

2sin(πx1)sin(πx2)sin(πt), x1 + x2 > 1,

p(x, t) = y(x, t),

u(x, t) = max(0, p(x, t))− p(x, t),

f(x, t) = yt(x, t)− div(A(x)∇y(x, t))− u(x, t),

yd(x, t) = y(x, t) + pt(x, t) + div(A∗(x)∇p(x, t)).

Numerical results based on a sequence of uniformly refined meshes and adaptive
meshes are listed in Table 1. It is clear that the adaptive meshes generated via the
error estimators η1, ηy, ηy,t, ηp and ηp,t are able to save substantial computational
work, in comparison with the uniform meshes. In Figure 1, it is easy to see that the
mesh adapts very well to the neighborhood of the discontinuous line x1 + x2 = 1,
and a higher density of node points are indeed distributed along the line.
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Mesh nodes sides elements |||u− uh||| |||y − yh||| |||p− ph|||
uniform mesh 2065 6032 3968 5.46e-02 3.51e-02 3.52e-02
adaptive mesh 667 1856 1190 543e-02 3.54e-02 3.53e-02

Table 1. Numerical results, Example 5.1.

Figure 1. The adaptive mesh.
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