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Abstract For a monotone reaction-diffusion system with or without time
delay, a standard approach to show the existence of a mono-stable traveling
wave solution is the monotone iteration that requires the construction of a pair
of upper and lower solution. In this note we will show that the monotone iter-
ation approach can be improved by just constructing an upper solution. This
improvement gives more freedom for the construction of an upper solution.
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1. Introduction

The reaction-diffusion systems with or without time delay have been served as
models for many problems in biology, epidemiology, ecology, engineering and physics
[1,3,4,6]. One of important solutions, the traveling wave solution that is of interest
both in application and mathematics itself, has been extensively studied, and variety
of techniques have been developed to investigate the existence of wave solutions [2,5].

In the case that a system is monotonic, the monotone iteration now becomes
a standard approach in literature to show the existence of a mono-stable traveling
wave solution (a traveling wave connecting an unstable equilibrium and a stable
equilibrium). That is, to show the existence of a traveling wave solution by con-
structing a pair of upper and lower solution. In this note we will show that, by a
truncation approach similar to the idea used in [5], the monotone iteration approach
can be improved by just constructing an upper solution. The advantage of this im-
provement is twofold: First, requiring only an upper solution not only simplifies
the procedure but will release a restriction on the upper solution. To be specific,
recall that in the monotone iteration approach we need not only to construct an
upper solution and a lower solution, says U(ξ) and u(ξ), respectively, but also has
the constraint on the upper and lower solution as

U(ξ) ≥ u(ξ). (1.1)
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Hence, the need of only an upper solution without the constraint (1.1) gives more
freedom for the construction of an upper solution. The second advantage can be
seen in the following Corollary 1.1.

In this paper, we will consider the following class of time delayed reaction-
diffusion systems

∂u(x, t)

∂t
= D∆u(x, t) + F

(
u(x, t),

∫ 0

−σ

dη(θ)u(x, t+ θ)

)
, (1.2)

where u(x, t) ∈ IRn, F : IRn × IRn → IRn is a smooth function, D = dig(d1, · · · , dn)
is a nonnegative and nonzero diagonal matrix, η : [−σ, 0] → IRn×n is of bounded
variation with σ > 0. We suppose that

H1 There is a strictly positive vector E∗ ∈ IRn such that

F (0, 0) = F (E∗, η∗E∗) = 0, where η∗ =

∫ 0

−σ

dη(θ).

Thus 0 and E∗ are two equilibrium points of (2, 1). We look for a traveling wave
front of (1.2) connecting the equilibrium points 0 and E∗, i.e., a solution of the form
u(x, s) = U(x · ν + cs) satisfying the boundary condition

U(−∞) = 0, U(∞) = E∗, (1.3)

where ν ∈ IRn is a unit vector and c ∈ IR is a wave speed. A straightforward
substitution yields that U(t) with t = x · k + cs satisfying the system

cU̇(t) = DÜ(t) + F
(
U(t),

∫ 0

−σ

dη(θ)U(t+ cθ)
)
. (1.4)

Let R be a rectangle region:

R =
{
0 ≤ u ≤ E∗}.

(Here for u = (u1, · · · , un), v = (v1, · · · , vn) ∈ IRn, u ≪ (≤)v if ui < (≤)vi for
i = 1, · · · , n.)

We further suppose that (1.2) is a monotone system. That is, the functions
η(θ) = [ηij(θ)] and F (u, v) = (F1(u, v), · · · , Fn(u, v)) satisfy the following condi-
tions:

H2 ηij(θ) is non-decreasing for all i, j = 1, · · · , n.
H3 For u, v ∈ R,

∂Fi(u, v)

∂uj
≥ 0, i, j = 1, · · · , n, i ̸= j,

∂Fi(u, v)

∂vj
≥ 0, i, j = 1, · · · .

(1.5)

In addition to H1 - H3, we suppose

H4 There is a positive vector p ∈ IRn and a positive number s0 such that
F (sp, sη∗p) ≥ 0 for all 0 < s ≤ s0.
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In a rough sense Assumption H4 is equivalent to say that the equilibrium point 0
is unstable with respect to the following delay differential equations, which is called
the reaction equation corresponding to (1.2):

∂u(t)

∂t
= F

(
u(t),

∫ 0

−σ

dη(θ)u(t+ θ)

)
,

The main purpose of this chapter to prove that following Theorem.

Theorem 1.1. Suppose that Assumptions H1 - H4 are satisfied. If, in addition,
suppose that, for a fixed c > 0,

(a1) There is a monotone increasing function U ∈ C(IR;R) such that

U(t0) << E∗ for some t0 and U(−∞) = 0 << U(t), t > −∞.

(a2) For i = 1, · · · , n, there is a δ < ti ≤ ∞ such that U̇i(t) and Üi(t) are contin-
uous on (δ, ti], in addition,

cU̇i(t) ≥ diÜi(t) + Fi

(
Ui(t),

∫ 0

−σ

dη(θ)U(t+ cθ)
)
, t ∈ (−∞, ti).

Ui(t) = E∗
i , t ≥ ti

i = 1, 2, · · · , n.

(1.6)

(a3) For V0 ∈ R, F (V0, η
∗V0) = 0 if and only if V0 or V0 = E∗.

Then the system (1.2) has a traveling wave solution of wave speed c connecting 0
and E∗.

To prove Theorem 1.1, we need to establish a few lemmas, which will be intro-
duced in the next section. A complete proof of Theorem 1.1 will be given in Section
3. With the aid of Theorem 1.1, we have the following

Corollary 1.1. Suppose that Assumptions H1 - H4 and (a3) in Theorem 1.1 are
satisfied. If for some c∗, (1.2) has a monotone increasing traveling wave solution
connecting 0 and E∗, then for any c > c∗, (1.2) has a monotone increasing traveling
wave solution connecting 0 and E∗.

Proof. If for some c∗ ≥ 0, (1.2) has an monotone increasing traveling wave solu-
tion U∗(t) connecting 0 and E∗, then we have

c∗U̇∗(t) = DÜ∗(t) + F
(
U∗(t),

∫ 0

−σ

dη(θ)U∗(t+ c∗θ)
)
. (1.7)

From (1.7) and the fact that U̇∗(t) ≥ 0 it follows that, for c > c∗,

cU̇∗(t) ≥ c∗U̇∗(t) = DÜ∗(t) + F
(
U∗(t),

∫ 0

−σ

dη(θ)U∗(t+ c∗θ)
)
. (1.8)

Moreover, c > c∗ implies that U∗(t + cθ) ≤ U∗(t + c∗θ) for all θ ≤ 0 and t ∈ IR.
Hence, we deduce by Assumption H2 and H3 that

F
(
U∗(t),

∫ 0

−σ

dη(θ)U∗(t+ c∗θ)
)
≥ F

(
U∗(t),

∫ 0

−σ

dη(θ)U∗(t+ cθ)
)
.
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The above inequality and (1.7) therefore yield that

cU̇∗(t) ≥ DÜ∗(t) + F
(
U∗(t),

∫ 0

−σ

dη(θ)U∗(t+ cθ)
)
. (1.9)

That is, U∗(t) is an upper solution of (1.4). Thus, Corollary 1.1 is a direct conse-
quence of Theorem 1.1.

Remark 1.1. The implication of Corollary 1.1 is that if the system (1.2) has a
positive traveling wave solution connecting 0 and E∗ with some wave speed c̄ > 0,
then the number cm defined by

cm = inf {c > 0 : (1.2) has a traveling wave solution

of wave speed c connecting 0 and E∗}

gives the minimum wave speed of traveling waves of (1.2).

2. Preliminaries

Lemma 2.1. Fix any constants a and δ with a > 0. Consider the second order
non-homogeneous linear equation

ü− cu̇− ku = −f(t), t ≥ δ,

u(δ) = a,
(2.1)

where f : [δ,∞) → IR is piecewise continuous and |f(t)| ≤ mt as t → ∞ for some
constant m. Then u(t) is a solution of (2.1) and u̇(t) is continuous with u(t) = O(t)
(order of t) as t → ∞ if and only if

u(t) =a
[
1− 1

λ2 − λ1

∫ ∞

δ

eλ2(δ−s)f(s)ds
]
eλ1(t−δ)

+
1

λ2 − λ1

[ ∫ t

δ

eλ1(t−s)f(s)ds+

∫ ∞

t

eλ2(t−s)f(s)ds
]

=aeλ1(t−δ) +
1

λ2 − λ1

[ ∫ t

δ

K1(t, s)f(s)ds+

∫ ∞

t

K2(t, s)f(s)ds
]
,

(2.2)

where

λ1 =
c−

√
c2 + 4k

2
< 0,

λ2 =
c+

√
c2 + 4k

2
> 0,

and
K1(t, s) = eλ1(t−s) − eλ1(t−δ)eλ2(δ−s),

K2(t, s) = eλ2(t−s) − eλ2(δ−s)eλ1(t−δ).
(2.3)

Proof. With the use of variational-of-parameter formula we obtain

u(t) =c1e
λ1(t−δ) + c2e

λ2(t−δ)

+
1

λ2 − λ1

[∫ t

δ

eλ1(t−s)f(s)ds−
∫ t

δ

eλ2(t−s)f(s)ds

]
.

(2.4)
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Multiplying both sides of (2.4) by eλ2(t−δ), we obtain

e−λ2(t−δ)u(t) = c1e
−λ2(t−δ)+λ1(t−δ) + c2

+
1

λ2 − λ1
e−λ2(t−δ)

∫ t

δ

eλ1(t−s)f(s)ds

− 1

λ2 − λ1
e−λ2(t−δ)

∫ t

δ

eλ2(t−s)f(s)ds.

(2.5)

Since λ1 < 0, λ2 > 0, and λ2 > |λ1|, then when t → ∞, we have

e−λ2(t−δ)u(t) → 0,

c1e
−λ2(t−δ)+λ1(t−δ) → 0,

1

λ2 − λ1
e−λ2(t−δ)

∫ t

δ

eλ1(t−s)f(s)ds → 0.

(2.6)

Therefore, (2.5) and (2.6) yield that

c2 =
1

λ2 − λ1

∫ ∞

δ

eλ2(δ−s)f(s)ds.

Upon a substitution of the above equality into (2.4) yields that

u(t) =c1e
λ1(t−δ) +

1

λ2 − λ1

∫ ∞

δ

e−λ2(t−s)f(s)ds

+
1

λ2 − λ1

∫ t

δ

eλ1(t−s)f(s)ds− 1

λ2 − λ1
e−λ2(t−δ)

∫ t

δ

eλ2(t−s)f(s)ds

=c1e
λ1(t−δ) +

1

λ2 − λ1

∫ t

δ

eλ1(t−s)f(s)ds+
1

λ2 − λ1

∫ ∞

t

eλ2(t−s)f(s)ds.

(2.7)

The initial condition u(δ) = a and (2.7) therefore imply that

a = u(δ) = c1 +
1

λ2 − λ1
eλ2δ

∫ ∞

δ

e−λ2sf(s)ds.

Hence

c1 = a− 1

λ2 − λ1

∫ ∞

δ

eλ2(δ−s)f(s)ds. (2.8)

Thus we have

u(t) = aeλ1(t−δ) − eλ1(t−δ)

λ2 − λ1

∫ ∞

δ

eλ2(δ−s)f(s)ds

+ 1
λ2−λ1

[ ∫ t

δ
eλ1(t−s)f(s)ds+

∫∞
t

eλ2(t−s)f(s)ds
]

= aeλ1(t−δ) + 1
λ2−λ1

[ ∫ t

δ

(
eλ1(t−s) − eλ1(t−δ)eλ2(δ−s)

)
f(s)ds

+
∫∞
t

(
eλ2(t−s) − eλ2(δ−s)eλ1(t−δ)

)
f(s)ds

]
= aeλ1(t−δ) + 1

λ2−λ1

[ ∫ t

δ
K1(t, s)f(s)ds+

∫∞
t

K2(t, s)f(s)ds
]
.

(2.9)
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Moreover, it is easy to verify that the solution u(t) given in (2.9) has the order of t
as t → ∞.

Now for each piecewise continuous function f : [δ,∞) → IR that has the order
of t as t → ∞, the equation (2.1) has a unique solution u(t) which has an order of
t as t → ∞. Let this unique solution be denoted by uf (t) : t ≥ δ. Then we have

Lemma 2.2. The following hold:

(a) uf is monotone increasing with respect to f . i.e., if f(t) ≥ g(t) for all t ≥ δ,
then uf (t) ≥ ug(t) for all t ≥ δ.

(b) If f(t) is an increasing function on t and f(t) ≥ ka for all t ≥ δ, then

u̇f (t) ≥ 0 , t ≥ δ.

Hence uf (t) is nondecreasing function of t and uf (t) ≥ a for t ≥ δ.

Proof. Recall that λ1 < 0 < λ2. If t > s > δ, then t − s < t − δ, λ2(δ − s) < 0.
Hence

λ1(t− s) > λ1(t− δ) > λ1(t− δ) + λ2(δ − s).

It follows that for t ≥ s ≥ δ,

K1(t, s) = eλ1(t−s) − eλ1(t−δ)+λ2(δ−s) > 0, for t > s > δ.

By a similar argument one is able to verify that

K2(t, s) = eλ2(t−s) − eλ2(δ−s)eλ1(t−δ) > 0, for δ < t < s.

Thus, by the formula (2.2) we easily conclude that uf (t) is monotone increasing
with respect to f . So that (a) holds.

Next, suppose that f(t) ≥ ka is nondecreasing. Differentiating the first equality
of (2.2) with respect to t we obtain

u̇f (t) =λ1

[
a− 1

λ2 − λ1

∫ ∞

δ

eλ2(δ−s)f(s)ds
]
eλ1(t−s)

+
λ1

λ2 − λ1

∫ t

δ

eλ1(t−s)f(s)ds+
λ2

λ2 − λ1

∫ ∞

t

eλ2(t−s)f(s)ds.

(2.10)

If, in addition to f(t) ≥ ka, suppose that f(t) is increasing function, then, the fact
that λ1 < 0, λ2 > 0, and (2.10) imply that

u̇f (t) ≥λ1

[
a− ka

λ2 − λ1

∫ ∞

δ

eλ2(δ−s)ds
]
eλ1(t−s)

+

[
λ1

λ2 − λ1

∫ t

δ

eλ1(t−s)ds+
λ2

λ2 − λ1

∫ ∞

t

eλ2(t−s)ds

]
f(t).

(2.11)

Notice that ∫ ∞

δ

eλ2(δ−s)ds =
1

λ2
,

λ1

∫ t

δ

eλ1(t−s)ds = eλ1(t−δ) − 1,

λ2

∫ ∞

t

eλ2(t−s)ds = 1.

(2.12)
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(2.11) and (2.12) yield that

u̇f (t) ≥ λ1ae
λ1(t−sδ) +

[
− λ1

λ2(λ2 − λ1)
+

1

λ2 − λ1

]
eλ1(t−δ)(ka)

= λ1ae
λ1(t−δ) +

ka

λ2
eλ1(t−δ)

=
[
λ1 + δ

k

λ2

]
aeλ1(t−δ).

(2.13)

Recall that λ1 and λ2 are solution of λ2 − cλ − k = 0. so we have λ1λ2 = −k. So
that

λ1 +
k

λ2
= 0. (2.14)

From (2.13) and (2.14) we deduce that

u̇f (t) ≥ 0 for all t ≥ δ.

This completes the proof of Part (b).
Now we turn to consider the system (1.4) with the boundary condition (1.3).

Fix real numbers δ and c > 0, and let U0 ∈ IRn be a strictly positive vector. We
begin with studying the existence of a solution for the following truncated problem:

cU̇(t) = DÜ(t) + F
(
U(t),

∫ 0

−σ

dη(θ)U(t+ cθ)
)
, t ≥ δ,

U(θ) = U0, θ ∈ [δ − cσ, δ],

(2.15)

where D = diag(d1, · · · , dn) is a diagonal matrix with di > 0 for i = 1, . . . , n
(see Remark 3.1 for the case that not all di > 0). Let U = (U1, · · · , Un), F =
(F1, · · · , Fn), U0 = (a1, · · · , an), and let k > 0 be a constant. We then can rewrite
(2.15) an equivalent system as

Üi(t)− ciUi(t)− kUi(t) = −
[
kUi(t) +

1

di
Fi

(
U(t),

∫ 0

−σ

dη(θ)U(t+ cθ)
)]

, t ≥ δ,

Ui(θ) = ai, θ ∈ [δ − cσ, δ],

i = 1, · · · , n,
(2.16)

where ci = c/di. The smoothness of F (u, v) implies that we can pick k > 0 suffi-
ciently large such that

k +
1

di

∂Fi(u, v)

∂ui
> 0, (u, v) ∈ R×R, i = 1, · · · , n. (2.17)

Let

λi
1 =

ci −
√
c2i + 4k

2
< 0,

λi
2 =

ci +
√
c2i + 4k

2
> 0,

Ki
1(t, s) = eλ

i
1(t−s) − eλ

i
1(t−δ)eλ

i
2(δ−s),

Ki
2(t, s) = eλ

i
2(t−s) − eλ

i
2(δ−s)eλ

i
1(t−δ).

(2.18)
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We define an operator T = TU0 : C([δ − cσ,∞), IRn) → C([δ − cσ,∞), IRn) by

T (f) = [T1(f), · · · , Tn(f)]

with
Ti(f)(θ) = ai, θ ∈ [δ − cσ, δ],

Ti(f)(t) = aie
λi
1(t−δ) +

1

λi
2 − λi

1

∫ t

δ

Ki
1(t, s)fi(s)ds

+
1

λi
2 − λi

1

∫ ∞

t

Ki
2(t, s)fi(s)ds, t ≥ δ,

i = 1, 2, . . . , n.

(2.19)

From the definition of the operator T and Lemma 2.2 it follows that T is a monotone
operator.

Let
Xδ = C([δ − cσ,∞);R)

and define a function F k = [F k
1 , · · · , F k

n ] : Xδ → C(δ, IRn) by

F k
i (U)(t) = kUi(t) +

1

di
Fi

(
U(t),

∫ 0

−σ

dη(θ)U(t+ cθ)
)
, t ≥ δ. (2.20)

As a consequence of Lemma 2.1 and the inequality (2.17) we have

Lemma 2.3. Let the operators T and F k be defined as above. Then

(A) U ∈ Xδ is a solution of the system (2.15) or (2.16) if and only if

U(t) = T (F k(U))(t), t ≥ δ − cσ. (2.21)

(B) The operator T
(
F k(·)

)
: Xδ → C([δ − cσ,∞), IRn) is monotone increasing

with respect to U ∈ Xδ. That is,

T
(
FK(U)

)
(t) ≥ T

(
FK(V )

)
(t), for all t ≥ δ − cσ

if U, V ∈ Xδ and U(t) ≥ V (t), for t ≥ δ − cσ.

Since the operator T
(
FK(·)

)
is a monotone operator, it is natural to show the

existence of a solution to (2.21) by a monotone iteration approach.

Definition 2.1. A function U ∈ Xδ is an upper (lower) solution of (2.21) if

U(t) ≥ (≤) T (F k(U))(t), t ≥ δ − cσ.

Lemma 2.4. Suppose c > 0 in (2.21). Let U = (U1, · · · , Un) ∈ Xδ = C([δ −
cσ,∞);R). If U(t) is nondecreasing and there are constants t1, · · · , tn, such that
δ < ti ≤ ∞ for i = 1, · · · , n, U̇i(t) and Üi(t) are continuous on (δ, ti), and the left
limit of ui(t) at ti exists, in addition,

U(θ) ≥ U0, θ ∈ [δ − cσ, δ],

cU̇i(t) ≥ diÜi(t) + Fi

(
Ui(t),

∫ 0

−σ

dη(θ)U(t+ cθ)
)
, t ∈ (δ, ti),

Ui(t) = E∗
i , t ≥ ti,

i = 1, 2, · · · , n,

(2.22)

then U(t) is an upper solution of (2.21).
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Proof. Since Ui(t) is non-decreasing, U̇i(ti) ≥ 0, here U̇i(ti) is the left derivative.
Define Ū = (Ū1, · · · , Ūn) by

Ūi(t) =

{
Ui(t), t ≤ ti,

E∗
i + U̇i(ti)(t− ti), t > ti.

(2.23)

Then U(t) ≤ Ū(t), t ≥ δ − cσ and Ū(t) is order of |t| as t → ∞. For i = 1, · · · , n,
let

¨̄Ui(t)− ci
˙̄Ui(t)− kŪi(t) = −hi(t), t ≥ δ. (2.24)

Then (2.23)- (2.24) yield that

hi(t) ≥ kUi(t) +
1

di
Fi

(
U(t),

∫ 0

−σ

dηi(θ)U(t+ cθ)
)

= F k
i (U)(t), t ∈ (δ, ti].

(2.25)

Recall that Fi(E
∗, η∗E∗) = 0 and U(t) ≤ E∗. The monotonicity of F k(U) implies

that

kE∗
i = kE∗

i +
1

di
Fi

(
E∗,

∫ 0

−σ

dη(θ)E∗) ≥ F k
i

(
U
)
(t). (2.26)

Hence for t > ti,

hi(t) = ciU̇i(ti) + kŪi(t)

≥ kE∗
i

= kE∗
i +

1

di
Fi(E

∗, η∗E∗)

≥ kUi(t) +
1

di
Fi

(
U(t),

∫ 0

−σ

dη(θ)U(t+ cθ)
)

= F k
i (U)(t), t > ti.

(2.27)

From (2.25) and (2.27) it follows that

hi(t) ≥ F k
i (U)(t), t ≥ δ.

Hence, for t ∈ (δ, ti),

Ui(t) = Ūi(t) = Ti(hi)(t) ≥ Ti(F
k(U))(t). (2.28)

Now for t > ti, by (2.26) we have

Ui(t) = E∗
i = Ti(F

k(E∗))(t) ≥ Ti(F
k(U))(t). (2.29)

(2.28) and (2.29) therefore imply that U(t) is an upper solution.
By the system (2.16), Part (a) of Lemma 2.2 we can easily prove the the following

lemma on the lower solution.

Lemma 2.5. Let 0 << U0 ∈ IRn. If F (U0, η
∗U0) ≥ 0, then

U0(t) = U0, t ≥ δ − cσ

is a lower solution.
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Proof. First by the definition of the operator T = TU0 given in (2.19) we have

U0 = T (kU0)(t), t ≥ δ − cσ (2.30)

for any constant function U0(t) = U0. If F (U0, η
∗U0) ≥ 0, then F k(U0) ≥ kU0 by

the definition of F k. Hence

U0(t) = U0 = T (kU0)(t) ≤ T (F k(U0))(t), t ≥ δ − cσ

by the monotonicity of T . That is, U0(t) ≡ U0 is a lower solution of (2.21).

Corollary 2.1. Suppose that (2.21) has an upper solution U(t) with

U0 ≤ U(t) ≤ E∗, t ≥ δ − cσ.

If in addition that F (U0, η
∗U0) ≥ 0, then (2.15) has a solution U δ(t) which is

increasing function of t.

Proof. By Lemma 2.6, V 0(t) ≡ U0 for t ≥ δ − cσ is a lower solution of (2.21).
Hence, a monotone iteration argument implies that the sequence {V m} with

0 << U0 ≤ V m(t) = T (F k(V m−1))(t) ≤ V m+1(t) ≤ U(t),

t ≥ δ − cσ
(2.31)

is a monotone increasing sequence bounded above by U(·). It follows that V m(·)
converges to some function as m → ∞. We let

lim
m→∞

V m(·) = Uδ(·) ∈ C([δ − cσ,∞), R).

Then it is clear that U δ(·) is a solution (2.21), so is a solution of (2.15). We
claim that U δ(t) is an increasing function of t for t ≥ δ. To confirm this claim,
it will be sufficient to show that V m(t) is increasing with respect to t for each
m ≥ 1. This can be done by using induction argument. Let U0 = (a1, · · · , an) and
V m(t) =

(
V m
1 (t), · · · , V m

n (t)
)
. Then by the definition of the operator T and the

function F k(U), we have

V m+1(θ) = ai, θ ∈ [δ − cσ, δ],

V̈ m+1
i (t)− ciV̇

m+1
i (t)− kV m+1

i (t) = −fm
i (t), t ≥ δ.

(2.32)

where

fm
i (t) = F k

i (V
m)(t) = kV m

i (t) +
1

di
Fi

(
V m(t),

∫ 0

−σ

dη(θ)V m(t+ cθ)
)
.

Noticing that V 0(t) ≡ U0, we have

f0
i (t) ≡ kai +

1

di
Fi

(
U0, η

∗U0) ≥ kai, (2.33)

for F (U0, η
∗U0) ≥ 0. Hence, with the application of Lemma 2.3, we conclude that

V̇ 1(t) ≥ 0 for t ≥ δ. Now for m ≥ 1, if V m(t) is an increasing function of t for
t ≥ δ, then fi(t) = F k

i (V
m)(t) is monotone increasing with respect to t ≥ δ and

fi(t) ≥ F k
i (V

0) ≥ kai. Hence again by Lemma 2.3 and (2.32) that V̇ m+1(t) ≥ 0.
Hence V m(t) is increasing for all m.
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3. Proof of Theorem 1.1

We are now in the position to prove Theorem 1.1.
Proof. For each positive integer N with −N < min{t1, · · · , tn}, the Assumptions
(a1) and H4 imply that there is an s > 0 and a strictly positive vector p such that

F (sp, sη∗p) ≥ 0, U(θ) ≥ sp, θ ∈ [−N − cσ,−N ].

If we let U0 = sp and δ = −N , then Corollary 2.7 implies that the equation (2.15)
has a monotone increasing solution UN (t) defined for t ≥ −N − cσ. Moreover,
U0 ≤ UN (t) ≤ E∗. Since UN (t) is increasing and bounded, limt→∞ UN (t) exists
and UN (∞) must be an equilibrium of (1.4). Hence

F (UN (∞), η∗UN (∞)) = 0. (3.1)

It follows from (3.1) and Assumption (a3) that UN (∞) = E∗.
Let UN (t) = (UN

1 (t), . . . , UN
n (t)). Since UN

1 (t0) ≤ U1(t0) < E∗
1 and uN

1 (∞) =
E∗

1 . Without loss of generality we let t0 = 0. So there is a tN > t0 = 0 such that

0 < UN
1 (tN ) = U1(t0) < 1.

If we let
uN (t) = UN (t+ tN ).

Then uN (t) is again a monontone increasing solution of (2.15) defined for t ≥
−(N + tN )− cσ with

uN
1 (0) = U1(0) (3.2)

for all N . It is obvious that the sequence of functions {uN (t) : t ∈ [−(N + tN )] −
cσ,∞)} is uniformly bounded. We also can show that it is equicontinous. Hence,
by Ascoli-Arzela theorem, uN (t) contains a subsequence {uNk(t)} that converges to
a function U c(t) uniformly on any compact subset of R. Thus one easily deduceds
that U c(t) is a solution of (1.4) for t ∈ R. In addition, U c(t) is a monotone increasing
function since uN is monotone increasing for each N . Let

U c(−∞) = E−, U c(∞) = E+.

Then we must have
0 ≤ E− ≤ E+ ≤ E∗.

Also it is apparent that E− and E+ must be equilibrium points of (1.4). We claim
that E− = 0 and E+ = E. First, uN

1 (0) = U1(0) > 0 for all N implies that

U c
1 (0) = U1(0) > 0.

Hence
0 < U c(0) ≤ E+.

So that E+ = E∗ by Assumption (a3). Similarly E− < E∗ yields that E− = 0.
Therefore, U c(t) is a traveling wave solution of (1.2) connecting 0 and E∗.

Remark 3.1. In the proof of Theorem 1.1 we assume that all diffusion coefficients
di’s are strictly positive. This restriction can be released by only assuming some of
coefficients are positive. Without loss of generality, suppose that

di = 0, i = 1, · · · , l < n, dj > 0, j = l + 1, · · · , n.
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Then the equation for Ui, i = 1, · · · , l, in the system (2.15) can be written as

U̇i(t) + kUi = kUi +
1

c
Fi

(
U(t),

∫ 0

−σ

dη(θ)U(t+ cθ)
)
, t ≥ δ,

Ui(θ) = ai, θ ∈ [δ − cσ, δ].

(3.3)

One easily deduces that (3.3) is equivalent to the integral equation

Ui(t) = a
−k(t−δ)
i +

∫ t

δ

e−k(t−s)F k
i (U)(s)ds, t ≥ δ, (3.4)

where

F k
i (U)(t) = kUi +

1

c
Fi

(
U(t),

∫ 0

−σ

dη(θ)U(t+ cθ)
)
. (3.5)

Hence, if for i = 1, · · · , l, we replace the operator Ti defined in (2.19) by the operator

Ti(f) = a
−k(t−δ)
i +

∫ t

δ

e−k(t−s)f(s)ds, t ≥ δ

and redefine the function F k
i in (2.20) by (3.5). Then one is able to verify that all

arguments used to prove Theorem 1.1 remains valid.

Remark 3.2. The Assumption (a3) in Theorem 1.1 can be replaced by a weaker
condition

(a3)’ F (V0, η
∗V0) ̸= 0 for all V0 ∈ IntR (the interior of R) and F (·, η∗·) has at most

finitely many zeros in the boundary of R.
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