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1. Introduction

We consider the problem

∂u

∂t
−∆u+ g(x, t, u) = h(x, t), (x, t) ∈ QT ≡ Ω× (0, T ), (1.1)

u(x, 0) = 0, x ∈ Ω, (1.2)(
∂u

∂η
+ a(x′, t)u

)∣∣∣∣
ΣT

= φ(x′, t), (x′, t) ∈ ΣT ≡ ∂Ω× [0, T ], T > 0. (1.3)

Here Ω ⊂ Rn, n ≥ 3, is a bounded domain with sufficiently smooth boundary

∂Ω; ∆ denotes the Laplace operator with n−dimension (∆ =
n∑

i=1

∂2

∂x2
i
);

g : QT × R1 −→ R1 and a : ΣT −→ R1 are given functions; h and φ are given
generalized functions.

In this article we investigate nonhomogenous third type boundary value problem
for equation (1.1) with mapping g in general form. Elliptic part of equation (1.1)
is an Emden-Fowler type equation, since it becomes Emden-Fowler equation for a
special case of mapping g (see [10, 11]). Equation (1.1) has been studied mostly in
homogeneous form by taking mapping g in special cases with Dirichlet or Neumann
boundary conditions. For instance, in [6], existence of positive solutions of homoge-
nous form of (1.1) when g(x, t, u) := u

1−u with initial and homogenous Dirichlet
condition was studied. In [8], global existence of positive solutions of equation (1.1)
by taking g(x, t, u) := − |u|p with initial and Robin boundary condition was studied
in Ω×R+. In [7], global existence of solution of homogenous form of equation (1.1)
by taking g(x, t, u) := g(u) with initial and third type boundary value was investi-
gated in a bounded star-shaped region. In [5], existence of global positive solutions
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of homogenous form of (1.1) when g(x, t, u) := − |u|p−1
u for special cases of p with

initial homogenous Dirichlet condition was investigated.
We investigate problem (1.1)-(1.3) in sublinear, linear and super linear cases, by

depending on mapping g, i.e. the form of g creates these cases depending on u. For
the existence of generalized solution of problem (1.1)-(1.3) and for the uniqueness
in a model case, we obtained sufficient conditions for function a and mapping g.
And under these conditions we obtained that problem (1.1)-(1.3) is solvable and we
showed the uniqueness of the solution for a model case in corresponding spaces.

2. Formulation and the main conditions of problem
(1.1)-(1.3)

For problem (1.1)-(1.3), we shall assume h ∈ L2(0, T ; (W
1
2 (Ω))

∗)+Lq(QT ) (generally

q > 1) and φ ∈ L2(0, T ;W
− 1

2
2 (∂Ω)).

We consider the following conditions:

(1) g is a Caratheodory function in (QT ×R1) and there exist a number α ≥ 0 and
functions c1 ∈ Ls1(0, T ;Lr1(Ω)), c0 ∈ Ls2(0, T ;Lr2(Ω)) such that g satisfies
the following inequality for a.e. (x, t) ∈ QT and for any ξ ∈ R1:

|g(x, t, ξ)| ≤ c1(x, t) |ξ|α + c0(x, t),

(r1, r2, s1, s2 > 1 will be defined later).

(2) a ∈ L∞(0, T ;Ln−1(∂Ω)).

We understand the solution of considered problem in the following sense:

Definition 2.1. Let P0 := L2(0, T ;W
1
2 (Ω)) ∩ Lα+1(QT ) ∩ W 1

2 (0, T ; (W
1
2 (Ω))

∗) ∩
{u : u(x, 0) = u0} . A function u ∈ P0 is called generalized solution of problem (1.1)-
(1.3) if it satisfies the equality

−
T∫

0

∫
Ω

u
∂v

∂t
dxdt+

∫
Ω

u(x, T )v(x, T )dx+

T∫
0

∫
Ω

Du.Dvdxdt

+

T∫
0

∫
Ω

g(x, t, u)vdxdt+

T∫
0

∫
∂Ω

a(x′, t)uvdx′dt

=

T∫
0

∫
Ω

hvdxdt+

T∫
0

∫
∂Ω

φvdx′dt

for all v ∈ L2(0, T ;W
1
2 (Ω)) ∩ Lα+1(QT ) ∩W 1

2 (0, T ; (W
1
2 (Ω))

∗).

We investigate problem (1.1)-(1.3) in three different sections according to the
values of α (see condition (1)): Sublinear Case, Linear Case and Super Linear Case.

3. Solvability of problem (1.1)-(1.3) in sublinear case

Let 0 ≤ α < 1. In this case, since L2(0, T ;W
1
2 (Ω)) ⊂ Lα+1(QT ), then

P0 ≡ L2(0, T ;W
1
2 (Ω)) ∩W 1

2 (0, T ; (W
1
2 (Ω))

∗) ∩ {u : u(x, 0) = 0} .
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We consider the following conditions:

(1)′ Condition (1) is satisfied with nonnegative functions c1, c0 and parameters:
s1 := 2

1−α , r1 := p0q0
p0−αq0

, s2 := 2, r2 := q0, where p0 := 2n
n−2 , q0 := (p0)

′.

(3) There exists a number a0 > 0 such that a(x′, t) ≥ a0 for a.e. (x′, t) ∈ ΣT .

Theorem 3.1. Let conditions (1)′, (2), (3) be fulfilled for 0 ≤ α < 1. Then
problem (1.1)-(1.3) is solvable in P0 for any

(h, φ) ∈ L2(0, T ; (W
1
2 (Ω))

∗)× L2(0, T ;W
− 1

2
2 (∂Ω)).

The proof is based on a general result of Soltanov [9] that is given below:

Theorem 3.2. Let X and Y be Banach spaces with duals X∗ and Y ∗ respectively,
Y be a reflexive Banach space, M0 ⊆ X be a weakly complete ”reflexive” pn-space,
X0 ⊆ M0 ∩ Y be a separable vector topological space. Let the following conditions
be fulfilled:

(i) f : P0 → Lq (0, T ;Y ) is a weakly compact (weakly continuous) mapping, where

P0 ≡ Lp (0, T ;M0) ∩W 1
q (0, T ;Y ) ∩ {x (t) | x (0) = 0} ,

1 < max{q, q′} ≤ p < ∞, q′ = q
q−1 ;

(ii) there is a linear continuous operator A : W s
m (0, T ;X0) → W s

m (0, T ;Y ∗),
s ≥ 0, m ≥ 1 such that A commutes with ∂

∂t and the conjugate operator A∗

has ker(A∗) = {0};
(iii) operators f and A are derivative, in generalized sense, a coercive pair on space

Lp (0, T ;X0), i.e. there exist a number r > 0 and a function Ψ : R1
+ → R1

+

such that Ψ(τ)/τ ↗ ∞ as τ ↗ ∞ and for any x ∈ Lp (0, T ;X0) under
[x]Lp(M0) ≥ r following inequality holds:

T∫
0

⟨f(t, x (t)), Ax (t)⟩dt ≥ Ψ
(
[x]Lp(M0)

)
;

(iv) there exist some constants C0 > 0, C1, C2 ≥ 0, ν > 1 such that the inequalities

T∫
0

⟨ξ (t) , Aξ (t)⟩dt ≥ C0 ∥ξ∥νLq(0,T ;Y ) − C2,

t∫
0

⟨dx
dτ

,Ax (τ)⟩dτ ≥ C1 ∥x∥νY (t)− C2, a.e. t ∈ [0, T ]

hold for any x ∈ W 1
p (0, T ;X0) and ξ ∈ Lp (0, T ;X0).

Assume that conditions (i)-(iv) are fulfilled. Then the Cauchy problem

dx

dt
+ f(t, x (t)) = y (t) , y ∈ Lq (0, T ;Y ) ; x (0) = 0
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is solvable in P0 in the following sense

T∫
0

⟨
dx

dt
+ f(t, x (t)), y∗ (t)

⟩
dt =

T∫
0

⟨y (t) , y∗ (t)⟩ dt, ∀y∗ ∈ Lq′ (0, T ;Y
∗) ,

for any y ∈ Lq (0, T ;Y ) satisfying the inequality

sup

 1

[x]Lp(0,T ;M0)

T∫
0

⟨y (t) , Ax (t)⟩ dt | x ∈ Lp (0, T ;X0)

 < ∞.

Proof. [Proof of Theorem 3.1:] To apply Theorem 3.2 to problem (1.1)-(1.3),
firstly we define corresponding mappings and acting spaces for the problem using
the spaces that mentioned before:

f = {f1, f2}

such that

f1(u) := −∆u+ g(x, t, u), (3.1)

f2(u) :=
∂u

∂η
+ a(x′, t)u, (3.2)

A ≡ Id. (3.3)

Here,

f : P0 → L2(0, T ; (W
1
2 (Ω))

∗)× L2(0, T ;W
− 1

2
2 (∂Ω)); A : P0 → P0.

Now we shall give the following lemmas to see that the conditions of Theorem
3.2 are satisfied:

Lemma 3.1. f is bounded and weakly continuous from P0 to L2(0, T ; (W
1
2 (Ω))

∗),
under the assumptions of Theorem 3.1.

Proof. It is obvious that linear parts of f are bounded. Using condition (1)′, we
obtain that

∥g∥L2(0,T ;Lq0 (Ω)) ≤ γ(∥u∥L2(0,T ;Lp0 (Ω))),

γ(∥u∥L2(0,T ;Lp0 (Ω))) =c[∥c1∥2L 2
1−α

(0,T ;L p0q0
p0−αq0

(Ω))∥u∥
2α
L2(0,T ;Lp0 (Ω))

+ ∥c0∥2L2(0,T ;Lq0 (Ω))]
1
2 ,

c > 0 is a constant. This means, g is a bounded mapping from P0 to L2(0, T ;Lq0 (Ω)),
since P0 ⊂ L2(0, T ;W

1
2 (Ω)) ⊂ L2(0, T ;Lp0 (Ω)).

Since linear parts of f are bounded, they are already weakly continuous. It is
enough to investigate the nonlinear part of f , i.e. mapping g. Let {um} ⊂ P0

and um ⇀ u0 in P0. Then um ⇀ u0 in L2(0, T ;Lp0 (Ω)). Since L2(0, T ;W
1
2 (Ω)) ∩

W 1
2 (0, T ; (W

1
2 (Ω))

∗) 	 L2(QT ), then ∃ {uml
} ⊂ {um} such that uml

−→ u0 almost
everywhere in QT .

Using condition (1)′ we can say that

g(x, t, �) : R1 −→ R1
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is a continuous function and we also obtained that g is bounded.

Then according to a general result (1. Chapter, 1. Paragraph, Lemma 1.3 of [4]),
∃ {umj} ⊂ {um} such that

g(x, t, umj ) ⇀
L2(0,T ;Lq0 (Ω))

g(x, t, u0).

Thus g is a weakly continuous mapping from P0 to L2(0, T ; (W
1
2 (Ω))

∗).

Lemma 3.2. Conditions (ii), (iii), (iv) of Theorem 3.2 are satisfied, under the as-
sumptions of Theorem 3.1.

Proof. Since A is an identity mapping, it is obvious that condition (ii) is satisfied.
Furthermore, for any u ∈ W 1

2 (0, T ;W
1
2 (Ω)) the following inequalities are satisfied:

T∫
0

⟨u, u⟩Ω dt =

T∫
0

∥u∥2L2(Ω)dt ≥ c6∥u∥2L2(0,T ;(W 1
2 (Ω))∗),

t∫
0

⟨
∂u

∂τ
, u

⟩
Ω

dτ =
1

2
∥u∥2L2(Ω)(t) ≥

1

2
c6∥u∥2(W 1

2 (Ω))∗(t),

a.e. t ∈ [0, T ] (c6 > 0 is the constant coming from Sobolev’s Imbedding Inequality∗

[1].)

This means condition (iv) is also satisfied.

It is enough to see that mapping f is coercive on L2(0, T ;W
1
2 (Ω)) for condition

(iii), since A is an identity mapping:

Using conditions (1)′ and (3) we obtain,

⟨f(u), u⟩QT
≥ Ψ(∥u∥L2(0,T ;W 1

2 (Ω))),

Ψ(∥u∥L2(0,T ;W 1
2 (Ω))) := (θc2 − (c3)

2ε)∥u∥2L2(0,T ;W 1
2 (Ω)) −K,

here θ := min {1, a0} , 0 < ε < θc2
(c3)2

and K > 0 is a constant.

So, Ψ(∥u∥)
∥u∥ ↗ ∞ as ∥u∥L2(0,T ;W 1

2 (Ω)) ↗ ∞.

Proof. [Continuation of the Proof of Theorem 3.1:] We can apply Theorem 3.2
to problem (1.1)-(1.3) by virtue Lemma 3.1 and Lemma 3.2. Hence we obtain
that problem (1.1)-(1.3) is solvable in P0 for any (h, φ) ∈ L2(0, T ; (W

1
2 (Ω))

∗) ×
L2(0, T ;W

− 1
2

2 (∂Ω)) satisfying the following inequality

sup

 1

∥u∥L2(0,T ;W 1
2 (Ω))

T∫
0

⟨h, u⟩Ω + ⟨φ, u⟩∂Ω dt : u ∈ L2(0, T ;W
1
2 (Ω))

 < ∞.

If we consider the norm definition of (h, φ) in L2(0, T ; (W
1
2 (Ω))

∗)×L2(0, T ;W
− 1

2
2 (∂Ω)),

we see that problem (1.1)-(1.3) is solvable in P0 for any (h, φ) ∈ L2(0, T ; (W
1
2 (Ω))

∗)×
L2(0, T ;W

− 1
2

2 (∂Ω)).

∗c6 ∥u∥2(W1
2 (Ω))∗ ≤ ∥u∥2L2(Ω)
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4. Solvability of problem (1.1)-(1.3) in linear case

Let α = 1 for condition (1). In this case,

P0 ≡ L2(0, T ;W
1
2 (Ω)) ∩W 1

2 (0, T ; (W
1
2 (Ω))

∗) ∩ {u : u(x, 0) = 0} .

We consider the following conditions:

(1)′′ Condition (1) is satisfied with nonnegative functions c1, c0 and parameters:
s1 := ∞, r1 := n

2 , s2 := 2, r2 := q0.

(4) One of the following conditions be satisfied:

I. There exists a number a0 > 0 such that a(x′, t) ≥ a0 for a.e. (x′, t) ∈ ΣT

and ∥c1∥L∞(0,T ;Ln
2
(Ω)) < min{1, a0}c2

(c3)2
(here c2 is the constant coming

from the inequality† [12] and c3 is the constant of Sobolev’s Imbedding
inequality‡ [1]).

II. There exist some numbers k0 > 0 and k1 ∈ R1 such that

g(x, t, ξ)ξ ≥ k0 |ξ|2 − k1

for a.e. (x, t) ∈ QT , for any ξ ∈ R1 and there exists a number a0 > 0

such that a(x′, t) ≥ −a0 for a.e. (x′, t) ∈ ΣT and a0 < min{1, k0}
(c4)2

(here

c4 is the constant of Sobolev’s Imbedding inequality § [1]).

Theorem 4.1. Let conditions (1)′′, (2), (4) be fulfilled for α = 1. Then problem

(1.1)-(1.3) is solvable in P0 for any (h, φ) ∈ L2(0, T ; (W
1
2 (Ω))

∗)×L2(0, T ;W
− 1

2
2 (∂Ω)).

Proof. To prove this theorem we again make use of Theorem 3.2. We define
corresponding mappings as (3.1), (3.2), (3.3).

Lemma 4.1. f is bounded and weakly continuous from P0 to L2(0, T ; (W
1
2 (Ω))

∗),
under the assumptions of Theorem 4.1.

Proof. It is enough to show that g : P0 ⊂ L2(0, T ;Lp0(Ω)) −→ L2(0, T ;Lq0(Ω))
is a bounded mapping for α = 1:

Using condition (1)′′ we obtain,

∥g∥L2(0,T ;Lq0 (Ω)) ≤ γ(∥u∥L2(0,T ;Lp0 (Ω))),

γ(∥u∥L2(0,T ;Lp0 (Ω))) =
∼
c [∥c1∥2L∞(0,T ;Ln

2
(Ω))∥u∥

2
L2(0,T ;Lp0 (Ω))

+ ∥c0∥2L2(0,T ;Lq0 (Ω))]
1
2 ,

∼
c > 0 is a constant. The rest of this proof is similar with the proof of Lemma 3.1.

Lemma 4.2. Conditions (ii), (iii), (iv) of Theorem 3.2 are satisfied, under the as-
sumptions of Theorem 4.1.

†c2 ∥u∥2L2(0,T ;W1
2 (Ω))

≤ (∥Du∥2L2(QT ) + ∥u∥2L2(ΣT ))
‡∥u∥L2(0,T ;Lp0 (Ω)) ≤ c3 ∥u∥L2(0,T ;W1

2 (Ω))
§∥u∥L2(ΣT ) ≤ c4 ∥u∥L2(0,T ;W1

2 (Ω))



Some mixed problems for semilinear parabolic type equation 277

Proof. This proof is similar with the proof of Lemma 3.2. As a different part, we
show that f is coercive on L2(0, T ;W

1
2 (Ω)):

If we consider conditions (1)′′ and (4)-I, we obtain,

⟨f(u), u⟩QT
≥ Ψ(∥u∥L2(0,T ;W 1

2 (Ω))),

Ψ(∥u∥L2(0,T ;W 1
2 (Ω))) :=(θc2 − (c3)

2ε− (c3)
2∥c1∥L∞(0,T ;Ln

2
(Ω)))∥u∥2L2(0,T ;W 1

2 (Ω))

−K,

here θ := min {1, a0}, 0 < ε <
θc2−(c3)

2∥c1∥L∞(0,T ;Ln
2

(Ω))

(c3)2
and K > 0 is a constant.

If we consider condition (4)-II., we obtain,

⟨f(u), u⟩QT
≥ Ψ(∥u∥L2(0,T ;W 1

2 (Ω))),

Ψ(∥u∥L2(0,T ;W 1
2 (Ω))) := (

∼
θ − (c4)

2a0)∥u∥2L2(0,T ;W 1
2 (Ω)) − k1,

here
∼
θ := min {1, k0}.

So, Ψ(∥u∥)
∥u∥ ↗ ∞ as ∥u∥L2(0,T ;W 1

2 (Ω)) ↗ ∞.

Continuation of the Proof of Theorem 4.1. We can apply Theorem 3.2 to prob-
lem (1.1)-(1.3) by virtue Lemma 4.1 and Lemma 4.2. Hence we obtain that problem

(1.1)-(1.3) is solvable in P0 for any (h, φ) ∈ L2(0, T ; (W
1
2 (Ω))

∗)×L2(0, T ;W
− 1

2
2 (∂Ω).

5. Solvability of problem (1.1)-(1.3) in super linear
case

Let α > 1. In this case,

P0 := L2(0, T ;W
1
2 (Ω)) ∩ Lα+1(QT ) ∩W 1

2 (0, T ; (W
1
2 (Ω))

∗) ∩ {u : u(x, 0) = 0} .

We consider the following conditions:

(1)′′′ Condition (1) is satisfied with a positive function c1, a nonnegative function
c0 and parameters: s1 := ∞, r1 := ∞, s2 := α+1

α , r2 := α+1
α .

(5) There exist some numbers k0 > 0 and k1 ∈ R1 such that

g(x, t, ξ)ξ ≥ k0 |ξ|α+1 − k1

for a.e. (x, t) ∈ QT , for any ξ ∈ R1.

(6) There exists a number a0 > 0 such that a(x′, t) ≥ −a0 for a.e. (x
′, t) ∈ ΣT and

a0 < min{1, k0}
(c4)2

(here c4 is the constant of Sobolev’s Imbedding inequality¶ [1]).

Theorem 5.1. Let conditions (1)′′′, (2), (5), (6) be fulfilled for α > 1. Then
problem (1.1)-(1.3) is solvable in P0 for any (h, φ) ∈ [L2(0, T ; (W

1
2 (Ω))

∗)+Lα+1
α

(QT )]

×L2(0, T ;W
− 1

2
2 (∂Ω)).

¶∥u∥L2(ΣT ) ≤ c4 ∥u∥L2(0,T ;W1
2 (Ω))
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Proof. To prove this theorem we again make use of Theorem 3.2. We define
corresponding mappings as (3.1), (3.2), (3.3).

Lemma 5.1. f is bounded and weakly continuous from P0 to L2(0, T ; (W
1
2 (Ω))

∗)+
Lα+1

α
(QT ), under the assumptions of Theorem 5.1.

Proof. It is enough to see that mapping g is bounded and weakly continuous from
P0 to L2(0, T ; (W

1
2 (Ω))

∗) + Lα+1
α

(QT ). Using condition (1)′′′, we obtain that

∥g∥Lα+1
α

(QT ) ≤ γ(∥u∥Lα+1(QT )),

γ(∥u∥Lα+1(QT )) = c[∥c1∥L∞(QT )∥u∥α+1
Lα+1(QT ) + ∥c0∥

α+1
α

Lα+1
α

(QT )]
α

α+1 ,

c > 0 is a constant. So, g is a bounded mapping from P0 to Lα+1
α

(QT ), since

P0 ⊂ Lα+1(QT ).
Let {um} ⊂ P0 and um ⇀ u0 in P0. Then um ⇀ u0 in Lα+1(QT ). Since

L2(0, T ;W
1
2 (Ω)) ∩ W 1

α+1
α

(0, T ; (W 1
2 (Ω))

∗ + Lα+1
α

(Ω)) 	 L2(QT ), ∃ {uml
} ⊂ {um}

such that uml
−→ u0 almost everywhere in QT . Using condition (1)′′′ we can say

that

g(x, t, �) : R1 −→ R1

is a continuous function and we obtained that g is bounded. Then according to a
general result (1. Chapter, 1. Paragraph, Lemma 1.3 of [4]), ∃ {umj} ⊂ {um} such
that

g(x, t, umj ) ⇀
Lα+1

α
(QT )

g(x, t, u0).

This means g is a weakly continuous mapping from P0 to L2(0, T ; (W
1
2 (Ω))

∗) +
Lα+1

α
(QT ).

Lemma 5.2. Conditions (ii), (iii), (iv) of Theorem 3.2 are satisfied, under the as-
sumptions of Theorem 5.1.

Proof. Since A is an identity mapping, it is obvious that condition (ii) is satisfied.
Furthermore, for any u ∈ W 1

2 (0, T ;W
1
2 (Ω)) ∩ W 1

α+1(0, T ;Lα+1(Ω)) the following
inequalities are satisfied:

T∫
0

⟨u, u⟩Ω dt =

T∫
0

∥u∥2L2(Ω)dt ≥ c6∥u∥2L2(0,T ;(W 1
2 (Ω))∗)+Lα+1

α
(QT ),

t∫
0

⟨
∂u

∂τ
, u

⟩
Ω

dτ =
1

2
∥u∥2L2(Ω)(t) ≥

1

2
c6∥u∥2(W 1

2 (Ω))∗(t),

a.e. t ∈ [0, T ] (c6 > 0 is the constant coming from Sobolev’s Imbedding Inequality∥

[1])
This means condition (iv) is also satisfied.
It is enough to see that mapping f is coercive on L2(0, T ;W

1
2 (Ω)) ∩ Lα+1(QT )

for condition (iii), since A is an identity mapping:

∥c6 ∥u∥2(W1
2 (Ω))∗ ≤ ∥u∥2L2(Ω)
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If we consider conditions (5)and (6) we obtain,

⟨f(u), u⟩QT
≥ Ψ(∥u∥L2(0,T ;W 1

2 (Ω))∩Lα+1(QT )),

Ψ(∥u∥L2(0,T ;W 1
2 (Ω))∩Lα+1(QT )) :=

1
4 (

∼
θ−(c4)

2a0)∥u∥2L2(0,T ;W 1
2 (Ω))∩Lα+1(QT )

−K, here
∼
θ := min {1, k0} and K > 0 is a constant.

So,Ψ(∥u∥)
∥u∥ ↗ ∞ as ∥u∥L2(0,T ;W 1

2 (Ω))∩Lα+1(QT ) ↗ ∞.

Continuation of the Proof of Theorem 5.1. We can apply Theorem 3.2 to
problem (1.1)-(1.3) from Lemma 5.1 and Lemma 5.2. Hence we obtain that problem
(1.1)-(1.3) is solvable in P0 for any (h, φ) ∈ [L2(0, T ; (W

1
2 (Ω))

∗) + Lα+1
α

(QT )] ×

L2(0, T ;W
− 1

2
2 (∂Ω)) satisfying the following inequality

sup

{
1

∥u∥L2(0,T ;W 1
2 (Ω))∩Lα+1(QT )

T∫
0

⟨h, u⟩Ω

+ ⟨φ, u⟩∂Ω dt : u ∈ L2(0, T ;W
1
2 (Ω)) ∩ Lα+1(QT )

}
< ∞.

If we consider the norm definition of (h, φ) in [L2(0, T ; (W
1
2 (Ω))

∗)+Lα+1
α

(QT )]×

L2(0, T ;W
− 1

2
2 (∂Ω)), we see that problem (1.1)-(1.3) is solvable in P0 for any (h, φ) ∈

[L2(0, T ; (W
1
2 (Ω))

∗) + Lα+1
α

(QT )]× L2(0, T ;W
− 1

2
2 (∂Ω)).

6. Uniqueness theorem for a model case of problem
(1.1)-(1.3)

In this section for problem (1.1)-(1.3), we define mapping g as

g(x, t, u) := d(x, t) |u|ρ−1
u+ b(x, t)u, ρ > 0. (6.1)

Theorem 6.1. Let (6.1) and the following conditions be fulfilled for problem (1.1)-
(1.3):

(U1)

d ∈


L∞(QT ), ρ > 1,

L∞(0, T ;Ln
2
(Ω)), ρ = 1,

L 2
1−ρ

(0, T ;L p0
p0−ρ−1

(Ω)), ρ < 1.

and d(x, t) ≥ 0 for a.e. (x, t) ∈ QT .

(U2) a ∈ L∞(0, T ;Ln−1(∂Ω)) and b ∈ L∞(0, T ;Ln
2
(Ω)) satisfy one of the following

conditions:

a. If there exists a number a0 > 0 such that a(x′, t) ≥ a0 for a.e. (x′, t) ∈
ΣT , then there exists a number b0 > 0 such that

b(x, t) ≥ −b0 for a.e.(x, t) ∈ QT and b0 <
min {1, a0} c2

(c7)2
,
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(here c2 is the constant coming from the inequality∗∗ [12] and c7 is the
constant of Sobolev’s Imbedding inequality†† [1]).

b. If there exists a number b0 > 0 such that b(x, t) ≥ b0 for a.e. (x, t) ∈ QT ,
then there exists a number a0 > 0 such that

a(x′, t) ≥ −a0 for a.e.(x′, t) ∈ ΣT and a0 <
min {1, b0}

(c4)2
,

(here c4 is the constant of Sobolev’s Imbedding inequality‡‡ [1]).

Then the solution of problem (1.1)-(1.3) is unique if it exists in

P1 := L2(0, T ;W
1
2 (Ω)) ∩ Lρ+1(QT ) ∩W 1

2 (0, T ; (W
1
2 (Ω))

∗) ∩ {u : u(x, 0) = 0} ,
q = q(ρ) > 1.

Proof. Let u, v ∈ P1 be two different solutions of (1.1)-(1.3) (P1 is defined ac-
cording to number ρ). If we consider (3.1) and (3.2), we have{

f1(u)− f1(v) = 0,
f2(u)− f2(v) = 0.

Let w := u− v, then

0 =

T∫
0

∫
Ω

∂w

∂t
wdxdt+

T∫
0

∫
Ω

Dw.Dwdxdt

+

T∫
0

∫
Ω

d(x, t)
[
|u|ρ−1

u− |v|ρ−1
v
]
[u− v] dxdt

+

T∫
0

∫
Ω

b(x, t)w2dxdt+

T∫
0

∫
∂Ω

a(x′, t)w2dx′dt.

If we use condition (U1) and if we consider
T∫
0

⟨
∂w
∂t , w

⟩
Ω
dt = 1

2∥w∥
2
L2(Ω)(T ) > 0, we

have

0 > ∥Dw∥2L2(QT ) +

T∫
0

∫
Ω

b(x, t)w2dxdt+

T∫
0

∫
∂Ω

a(x′, t)w2dx′dt. (6.2)

Now if we consider condition (U2) for inequality (6.2), we obtain contradiction of
0 > 0.

Hence, the solution of problem (1.1)-(1.3) is unique if it exists.

Corollary 6.1. If g satisfies condition (1)′ for sublinear case, conditions (1)′′, (4)
for linear case and conditions (1)′′′, (5) for super linear case, then the solution of
(1.1)-(1.3) exists and it is unique.

∗∗c2 ∥u∥2L2(0,T ;W1
2 (Ω))

≤ (∥Du∥2L2(QT ) + ∥u∥2L2(ΣT ))
††∥u∥L2(QT ) ≤ c7 ∥u∥L2(0,T ;W1

2 (Ω))
‡‡∥u∥L2(ΣT ) ≤ c4 ∥u∥L2(0,T ;W1

2 (Ω))
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