SOME MIXED PROBLEMS FOR SEMILINEAR PARABOLIC TYPE EQUATION*

Fatma Gamze Duzgun ${ }^{1, \dagger}$ and Kamal N. Soltanov ${ }^{1}$

Abstract

In this paper, some mixed problem with third type boundary value for a semilinear parabolic equation is investigated. Here the solvability theorems for considered problem and the uniqueness theorem for a model case of the problem are showed.

Keywords Semilinear parabolic equation, third type boundary value problem, existence and uniqueness theorems, sublinear case, linear case, super linear case.

MSC(2000) 35D30, 35K58, 35M12.

1. Introduction

We consider the problem

$$
\begin{align*}
& \frac{\partial u}{\partial t}-\Delta u+g(x, t, u)=h(x, t),(x, t) \in Q_{T} \equiv \Omega \times(0, T) \tag{1.1}\\
& u(x, 0)=0, \quad x \in \Omega \tag{1.2}\\
& \left.\left(\frac{\partial u}{\partial \eta}+a\left(x^{\prime}, t\right) u\right)\right|_{\Sigma_{T}}=\varphi\left(x^{\prime}, t\right), \quad\left(x^{\prime}, t\right) \in \Sigma_{T} \equiv \partial \Omega \times[0, T], T>0 \tag{1.3}
\end{align*}
$$

Here $\Omega \subset \mathbb{R}^{n}, n \geq 3$, is a bounded domain with sufficiently smooth boundary $\partial \Omega ; \Delta$ denotes the Laplace operator with n-dimension $\left(\Delta=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}\right)$;
$g: Q_{T} \times \mathbb{R}^{1} \longrightarrow \mathbb{R}^{1}$ and $a: \Sigma_{T} \longrightarrow \mathbb{R}^{1}$ are given functions; h and φ are given generalized functions.

In this article we investigate nonhomogenous third type boundary value problem for equation (1.1) with mapping g in general form. Elliptic part of equation (1.1) is an Emden-Fowler type equation, since it becomes Emden-Fowler equation for a special case of mapping g (see $[10,11]$). Equation (1.1) has been studied mostly in homogeneous form by taking mapping g in special cases with Dirichlet or Neumann boundary conditions. For instance, in [6], existence of positive solutions of homogenous form of (1.1) when $g(x, t, u):=\frac{u}{1-u}$ with initial and homogenous Dirichlet condition was studied. In [8], global existence of positive solutions of equation (1.1) by taking $g(x, t, u):=-|u|^{p}$ with initial and Robin boundary condition was studied in $\Omega \times \mathbb{R}^{+}$. In [7], global existence of solution of homogenous form of equation (1.1) by taking $g(x, t, u):=g(u)$ with initial and third type boundary value was investigated in a bounded star-shaped region. In [5], existence of global positive solutions

[^0]of homogenous form of (1.1) when $g(x, t, u):=-|u|^{p-1} u$ for special cases of p with initial homogenous Dirichlet condition was investigated.

We investigate problem (1.1)-(1.3) in sublinear, linear and super linear cases, by depending on mapping g, i.e. the form of g creates these cases depending on u. For the existence of generalized solution of problem (1.1)-(1.3) and for the uniqueness in a model case, we obtained sufficient conditions for function a and mapping g. And under these conditions we obtained that problem (1.1)-(1.3) is solvable and we showed the uniqueness of the solution for a model case in corresponding spaces.

2. Formulation and the main conditions of problem (1.1)-(1.3)

For problem (1.1)-(1.3), we shall assume $h \in L_{2}\left(0, T ;\left(W_{2}^{1}(\Omega)\right)^{*}\right)+L_{q}\left(Q_{T}\right)$ (generally $q>1)$ and $\varphi \in L_{2}\left(0, T ; W_{2}^{-\frac{1}{2}}(\partial \Omega)\right)$.
We consider the following conditions:
(1) g is a Caratheodory function in $\left(Q_{T} \times \mathbb{R}^{1}\right)$ and there exist a number $\alpha \geq 0$ and functions $c_{1} \in L_{s_{1}}\left(0, T ; L_{r_{1}}(\Omega)\right), c_{0} \in L_{s_{2}}\left(0, T ; L_{r_{2}}(\Omega)\right)$ such that g satisfies the following inequality for a.e. $(x, t) \in Q_{T}$ and for any $\xi \in \mathbb{R}^{1}$:

$$
|g(x, t, \xi)| \leq c_{1}(x, t)|\xi|^{\alpha}+c_{0}(x, t)
$$

$\left(r_{1}, r_{2}, s_{1}, s_{2}>1\right.$ will be defined later).
(2) $a \in L_{\infty}\left(0, T ; L_{n-1}(\partial \Omega)\right)$.

We understand the solution of considered problem in the following sense:
Definition 2.1. Let $P_{0}:=L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right) \cap L_{\alpha+1}\left(Q_{T}\right) \cap W_{2}^{1}\left(0, T ;\left(W_{2}^{1}(\Omega)\right)^{*}\right) \cap$ $\left\{u: u(x, 0)=u_{0}\right\}$. A function $u \in P_{0}$ is called generalized solution of problem (1.1)(1.3) if it satisfies the equality

$$
\begin{aligned}
& -\int_{0}^{T} \int_{\Omega} u \frac{\partial v}{\partial t} d x d t+\int_{\Omega} u(x, T) v(x, T) d x+\int_{0}^{T} \int_{\Omega} D u \cdot D v d x d t \\
& +\int_{0}^{T} \int_{\Omega} g(x, t, u) v d x d t+\int_{0}^{T} \int_{\partial \Omega} a\left(x^{\prime}, t\right) u v d x^{\prime} d t \\
= & \int_{0}^{T} \int_{\Omega} h v d x d t+\int_{0}^{T} \int_{\partial \Omega} \varphi v d x^{\prime} d t
\end{aligned}
$$

for all $v \in L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right) \cap L_{\alpha+1}\left(Q_{T}\right) \cap W_{2}^{1}\left(0, T ;\left(W_{2}^{1}(\Omega)\right)^{*}\right)$.
We investigate problem (1.1)-(1.3) in three different sections according to the values of α (see condition (1)): Sublinear Case, Linear Case and Super Linear Case.

3. Solvability of problem (1.1)-(1.3) in sublinear case

Let $0 \leq \alpha<1$. In this case, since $L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right) \subset L_{\alpha+1}\left(Q_{T}\right)$, then

$$
P_{0} \equiv L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right) \cap W_{2}^{1}\left(0, T ;\left(W_{2}^{1}(\Omega)\right)^{*}\right) \cap\{u: u(x, 0)=0\}
$$

We consider the following conditions:
(1) Condition (1) is satisfied with nonnegative functions c_{1}, c_{0} and parameters: $s_{1}:=\frac{2}{1-\alpha}, r_{1}:=\frac{p_{0} q_{0}}{p_{0}-\alpha q_{0}}, s_{2}:=2, r_{2}:=q_{0}$, where $p_{0}:=\frac{2 n}{n-2}, q_{0}:=\left(p_{0}\right)^{\prime}$.
(3) There exists a number $a_{0}>0$ such that $a\left(x^{\prime}, t\right) \geq a_{0}$ for a.e. $\left(x^{\prime}, t\right) \in \Sigma_{T}$.

Theorem 3.1. Let conditions (1)', (2), (3) be fulfilled for $0 \leq \alpha<1$. Then problem (1.1)-(1.3) is solvable in P_{0} for any

$$
(h, \varphi) \in L_{2}\left(0, T ;\left(W_{2}^{1}(\Omega)\right)^{*}\right) \times L_{2}\left(0, T ; W_{2}^{-\frac{1}{2}}(\partial \Omega)\right) .
$$

The proof is based on a general result of Soltanov [9] that is given below:
Theorem 3.2. Let X and Y be Banach spaces with duals X^{*} and Y^{*} respectively, Y be a reflexive Banach space, $\mathcal{M}_{0} \subseteq X$ be a weakly complete "reflexive" pn-space, $X_{0} \subseteq \mathcal{M}_{0} \cap Y$ be a separable vector topological space. Let the following conditions be fulfilled:
(i) $f: P_{0} \rightarrow L_{q}(0, T ; Y)$ is a weakly compact (weakly continuous) mapping, where

$$
P_{0} \equiv L_{p}\left(0, T ; \mathcal{M}_{0}\right) \cap W_{q}^{1}(0, T ; Y) \cap\{x(t) \mid x(0)=0\},
$$

$1<\max \left\{q, q^{\prime}\right\} \leq p<\infty, q^{\prime}=\frac{q}{q-1} ;$
(ii) there is a linear continuous operator $A: W_{m}^{s}\left(0, T ; X_{0}\right) \rightarrow W_{m}^{s}\left(0, T ; Y^{*}\right)$, $s \geq 0, m \geq 1$ such that A commutes with $\frac{\partial}{\partial t}$ and the conjugate operator A^{*} has $\operatorname{ker}\left(A^{*}\right)=\{0\}$;
(iii) operators f and A are derivative, in generalized sense, a coercive pair on space $L_{p}\left(0, T ; X_{0}\right)$, i.e. there exist a number $r>0$ and a function $\Psi: R_{+}^{1} \rightarrow R_{+}^{1}$ such that $\Psi(\tau) / \tau \nearrow \infty$ as $\tau \nearrow \infty$ and for any $x \in L_{p}\left(0, T ; X_{0}\right)$ under $[x]_{L_{p}\left(\mathcal{M}_{0}\right)} \geq r$ following inequality holds:

$$
\int_{0}^{T}\langle f(t, x(t)), A x(t)\rangle d t \geq \Psi\left([x]_{L_{p}\left(\mathcal{M}_{0}\right)}\right) ;
$$

(iv) there exist some constants $C_{0}>0, C_{1}, C_{2} \geq 0, \nu>1$ such that the inequalities

$$
\begin{aligned}
& \int_{0}^{T}\langle\xi(t), A \xi(t)\rangle d t \geq C_{0}\|\xi\|_{L_{q}(0, T ; Y)}^{\nu}-C_{2}, \\
& \int_{0}^{t}\left\langle\frac{d x}{d \tau}, A x(\tau)\right\rangle d \tau \geq C_{1}\|x\|_{Y}^{\nu}(t)-C_{2}, \quad \text { a.e. } t \in[0, T]
\end{aligned}
$$

hold for any $x \in W_{p}^{1}\left(0, T ; X_{0}\right)$ and $\xi \in L_{p}\left(0, T ; X_{0}\right)$.
Assume that conditions (i)-(iv) are fulfilled. Then the Cauchy problem

$$
\frac{d x}{d t}+f(t, x(t))=y(t), \quad y \in L_{q}(0, T ; Y) ; \quad x(0)=0
$$

is solvable in P_{0} in the following sense

$$
\int_{0}^{T}\left\langle\frac{d x}{d t}+f(t, x(t)), y^{*}(t)\right\rangle d t=\int_{0}^{T}\left\langle y(t), y^{*}(t)\right\rangle d t, \quad \forall y^{*} \in L_{q^{\prime}}\left(0, T ; Y^{*}\right)
$$

for any $y \in L_{q}(0, T ; Y)$ satisfying the inequality

$$
\sup \left\{\left.\frac{1}{[x]_{L_{p}\left(0, T ; \mathcal{M}_{0}\right)}} \int_{0}^{T}\langle y(t), A x(t)\rangle d t \right\rvert\, x \in L_{p}\left(0, T ; X_{0}\right)\right\}<\infty
$$

Proof. [Proof of Theorem 3.1:] To apply Theorem 3.2 to problem (1.1)-(1.3), firstly we define corresponding mappings and acting spaces for the problem using the spaces that mentioned before:

$$
f=\left\{f_{1}, f_{2}\right\}
$$

such that

$$
\begin{align*}
& f_{1}(u):=-\Delta u+g(x, t, u), \tag{3.1}\\
& f_{2}(u):=\frac{\partial u}{\partial \eta}+a\left(x^{\prime}, t\right) u \tag{3.2}\\
& A \equiv I d \tag{3.3}
\end{align*}
$$

Here,

$$
f: P_{0} \rightarrow L_{2}\left(0, T ;\left(W_{2}^{1}(\Omega)\right)^{*}\right) \times L_{2}\left(0, T ; W_{2}^{-\frac{1}{2}}(\partial \Omega)\right) ; \quad A: P_{0} \rightarrow P_{0}
$$

Now we shall give the following lemmas to see that the conditions of Theorem 3.2 are satisfied:

Lemma 3.1. f is bounded and weakly continuous from P_{0} to $L_{2}\left(0, T ;\left(W_{2}^{1}(\Omega)\right)^{*}\right)$, under the assumptions of Theorem 3.1.
Proof. It is obvious that linear parts of f are bounded. Using condition (1)', we obtain that

$$
\begin{aligned}
& \|g\|_{L_{2}\left(0, T ; L_{q_{0}}(\Omega)\right)} \leq \gamma\left(\|u\|_{L_{2}\left(0, T ; L_{p_{0}}(\Omega)\right)}\right) \\
& \begin{aligned}
\gamma\left(\|u\|_{L_{2}\left(0, T ; L_{p_{0}}(\Omega)\right)}\right)= & c\left[\left\|c_{1}\right\|_{L_{\frac{2}{1-\alpha}}^{2}\left(0, T ; L \frac{p_{0} q_{0}}{p_{0}-\alpha q_{0}}\right.}(\Omega)\right)
\end{aligned}\|u\|_{L_{2}\left(0, T ; L_{p_{0}}(\Omega)\right)}^{2 \alpha} \\
& \left.\quad+\left\|c_{0}\right\|_{L_{2}\left(0, T ; L_{q_{0}}(\Omega)\right)}^{2}\right]^{\frac{1}{2}}
\end{aligned}
$$

$c>0$ is a constant. This means, g is a bounded mapping from P_{0} to $L_{2}\left(0, T ; L_{q_{0}}(\Omega)\right)$, since $P_{0} \subset L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right) \subset L_{2}\left(0, T ; L_{p_{0}}(\Omega)\right)$.

Since linear parts of f are bounded, they are already weakly continuous. It is enough to investigate the nonlinear part of f, i.e. mapping g. Let $\left\{u_{m}\right\} \subset P_{0}$ and $u_{m} \rightharpoonup u_{0}$ in P_{0}. Then $u_{m} \rightharpoonup u_{0}$ in $L_{2}\left(0, T ; L_{p_{0}}(\Omega)\right.$. Since $L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right) \cap$ $W_{2}^{1}\left(0, T ;\left(W_{2}^{1}(\Omega)\right)^{*}\right) \circlearrowleft L_{2}\left(Q_{T}\right)$, then $\exists\left\{u_{m_{l}}\right\} \subset\left\{u_{m}\right\}$ such that $u_{m_{l}} \longrightarrow u_{0}$ almost everywhere in Q_{T}.

Using condition (1) ${ }^{\prime}$ we can say that

$$
g(x, t, \cdot): \mathbb{R}_{1} \longrightarrow \mathbb{R}_{1}
$$

is a continuous function and we also obtained that g is bounded.
Then according to a general result (1. Chapter, 1. Paragraph, Lemma 1.3 of [4]), $\exists\left\{u_{m_{j}}\right\} \subset\left\{u_{m}\right\}$ such that

$$
g\left(x, t, u_{m_{j}}\right) \underset{L_{2}\left(0, T ; L_{q_{0}}(\Omega)\right)}{\stackrel{\rightharpoonup}{x}} g\left(x, t, u_{0}\right)
$$

Thus g is a weakly continuous mapping from P_{0} to $L_{2}\left(0, T ;\left(W_{2}^{1}(\Omega)\right)^{*}\right)$.
Lemma 3.2. Conditions (ii), (iii), (iv) of Theorem 3.2 are satisfied, under the assumptions of Theorem 3.1.

Proof. Since A is an identity mapping, it is obvious that condition (ii) is satisfied. Furthermore, for any $u \in W_{2}^{1}\left(0, T ; W_{2}^{1}(\Omega)\right)$ the following inequalities are satisfied:

$$
\begin{aligned}
& \int_{0}^{T}\langle u, u\rangle_{\Omega} d t=\int_{0}^{T}\|u\|_{L_{2}(\Omega)}^{2} d t \geq c_{6}\|u\|_{L_{2}\left(0, T ;\left(W_{2}^{1}(\Omega)\right)^{*}\right)}^{2} \\
& \int_{0}^{t}\left\langle\frac{\partial u}{\partial \tau}, u\right\rangle_{\Omega} d \tau=\frac{1}{2}\|u\|_{L_{2}(\Omega)}^{2}(t) \geq \frac{1}{2} c_{6}\|u\|_{\left(W_{2}^{1}(\Omega)\right)^{*}}^{2}(t),
\end{aligned}
$$

a.e. $t \in[0, T]\left(c_{6}>0\right.$ is the constant coming from Sobolev's Imbedding Inequality* [1].)

This means condition (iv) is also satisfied.
It is enough to see that mapping f is coercive on $L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right)$ for condition (iii), since A is an identity mapping:

Using conditions (1)' and (3) we obtain,

$$
\begin{aligned}
& \langle f(u), u\rangle_{Q_{T}} \geq \Psi\left(\|u\|_{L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right)}\right), \\
& \Psi\left(\|u\|_{L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right)}\right):=\left(\theta c_{2}-\left(c_{3}\right)^{2} \varepsilon\right)\|u\|_{L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right)}^{2}-K,
\end{aligned}
$$

here $\theta:=\min \left\{1, a_{0}\right\}, 0<\varepsilon<\frac{\theta c_{2}}{\left(c_{3}\right)^{2}}$ and $K>0$ is a constant.
So, $\frac{\Psi(\|u\|)}{\|u\|} \nearrow \infty$ as $\|u\|_{L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right)} \nearrow \infty$.
Proof. [Continuation of the Proof of Theorem 3.1:] We can apply Theorem 3.2 to problem (1.1)-(1.3) by virtue Lemma 3.1 and Lemma 3.2. Hence we obtain that problem (1.1)-(1.3) is solvable in P_{0} for any $(h, \varphi) \in L_{2}\left(0, T ;\left(W_{2}^{1}(\Omega)\right)^{*}\right) \times$ $L_{2}\left(0, T ; W_{2}^{-\frac{1}{2}}(\partial \Omega)\right)$ satisfying the following inequality

$$
\sup \left\{\frac{1}{\|u\|_{L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right)}} \int_{0}^{T}\langle h, u\rangle_{\Omega}+\langle\varphi, u\rangle_{\partial \Omega} d t: u \in L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right)\right\}<\infty
$$

If we consider the norm definition of (h, φ) in $L_{2}\left(0, T ;\left(W_{2}^{1}(\Omega)\right)^{*}\right) \times L_{2}\left(0, T ; W_{2}^{-\frac{1}{2}}(\partial \Omega)\right)$, we see that problem (1.1)-(1.3) is solvable in P_{0} for any $(h, \varphi) \in L_{2}\left(0, T ;\left(W_{2}^{1}(\Omega)\right)^{*}\right) \times$ $L_{2}\left(0, T ; W_{2}^{-\frac{1}{2}}(\partial \Omega)\right)$.

$$
{ }^{*} c_{6}\|u\|_{\left(W_{2}^{1}(\Omega)\right)^{*}}^{2} \leq\|u\|_{L_{2}(\Omega)}^{2}
$$

4. Solvability of problem (1.1)-(1.3) in linear case

Let $\alpha=1$ for condition (1). In this case,

$$
P_{0} \equiv L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right) \cap W_{2}^{1}\left(0, T ;\left(W_{2}^{1}(\Omega)\right)^{*}\right) \cap\{u: u(x, 0)=0\}
$$

We consider the following conditions:
$(1)^{\prime \prime}$ Condition (1) is satisfied with nonnegative functions c_{1}, c_{0} and parameters: $s_{1}:=\infty, r_{1}:=\frac{n}{2}, s_{2}:=2, r_{2}:=q_{0}$.
(4) One of the following conditions be satisfied:
I. There exists a number $a_{0}>0$ such that $a\left(x^{\prime}, t\right) \geq a_{0}$ for a.e. $\left(x^{\prime}, t\right) \in \Sigma_{T}$ and $\left\|c_{1}\right\|_{L_{\infty}\left(0, T ; L_{\frac{n}{2}}(\Omega)\right)}<\frac{\min \left\{1, a_{0}\right\} c_{2}}{\left(c_{3}\right)^{2}}$ (here c_{2} is the constant coming from the inequality ${ }^{\dagger}$ [12] and c_{3} is the constant of Sobolev's Imbedding inequality ${ }^{\ddagger}$ [1]).
II. There exist some numbers $k_{0}>0$ and $k_{1} \in \mathbb{R}^{1}$ such that

$$
g(x, t, \xi) \xi \geq k_{0}|\xi|^{2}-k_{1}
$$

for a.e. $(x, t) \in Q_{T}$, for any $\xi \in \mathbb{R}^{1}$ and there exists a number $a_{0}>0$ such that $a\left(x^{\prime}, t\right) \geq-a_{0}$ for a.e. $\left(x^{\prime}, t\right) \in \Sigma_{T}$ and $a_{0}<\frac{\min \left\{1, k_{0}\right\}}{\left(c_{4}\right)^{2}}$ (here c_{4} is the constant of Sobolev's Imbedding inequality ${ }^{\S}$ [1]).

Theorem 4.1. Let conditions (1)", (2), (4) be fulfilled for $\alpha=1$. Then problem (1.1)-(1.3) is solvable in P_{0} for any $(h, \varphi) \in L_{2}\left(0, T ;\left(W_{2}^{1}(\Omega)\right)^{*}\right) \times L_{2}\left(0, T ; W_{2}^{-\frac{1}{2}}(\partial \Omega)\right)$.

Proof. To prove this theorem we again make use of Theorem 3.2. We define corresponding mappings as (3.1), (3.2), (3.3).
Lemma 4.1. f is bounded and weakly continuous from P_{0} to $L_{2}\left(0, T ;\left(W_{2}^{1}(\Omega)\right)^{*}\right)$, under the assumptions of Theorem 4.1.

Proof. It is enough to show that $g: P_{0} \subset L_{2}\left(0, T ; L_{p_{0}}(\Omega)\right) \longrightarrow L_{2}\left(0, T ; L_{q_{0}}(\Omega)\right)$ is a bounded mapping for $\alpha=1$:

Using condition (1)" we obtain,

$$
\begin{aligned}
&\|g\|_{L_{2}\left(0, T ; L_{q_{0}}(\Omega)\right)} \leq \gamma\left(\|u\|_{L_{2}\left(0, T ; L_{p_{0}}(\Omega)\right)}\right) \\
& \gamma\left(\|u\|_{L_{2}\left(0, T ; L_{p_{0}}(\Omega)\right)}\right)= \tilde{c}\left[\left\|c_{1}\right\|_{L_{\infty}\left(0, T ; L_{\frac{n}{2}}(\Omega)\right)}\|u\|_{L_{2}\left(0, T ; L_{p_{0}}(\Omega)\right)}^{2}\right. \\
&\left.\quad+\left\|c_{0}\right\|_{L_{2}\left(0, T ; L_{q_{0}}(\Omega)\right)}^{2}\right]^{\frac{1}{2}}
\end{aligned}
$$

$\tilde{c}>0$ is a constant. The rest of this proof is similar with the proof of Lemma 3.1.

Lemma 4.2. Conditions (ii), (iii), (iv) of Theorem 3.2 are satisfied, under the assumptions of Theorem 4.1.

```
\({ }^{\dagger} c_{2}\|u\|_{L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right)}^{2} \leq\left(\|D u\|_{L_{2}\left(Q_{T}\right)}^{2}+\|u\|_{L_{2}\left(\Sigma_{T}\right)}^{2}\right)\)
\({ }^{\ddagger}\|u\|_{L_{2}\left(0, T ; L_{p_{0}}(\Omega)\right)} \leq c_{3}\|u\|_{L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right)}\)
\({ }^{\S}\|u\|_{L_{2}\left(\Sigma_{T}\right)} \leq c_{4}\|u\|_{L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right)}\)
```

Proof. This proof is similar with the proof of Lemma 3.2. As a different part, we show that f is coercive on $L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right)$:

If we consider conditions (1) ${ }^{\prime \prime}$ and (4)-I, we obtain,

$$
\begin{aligned}
&\langle f(u), u\rangle_{Q_{T}} \geq \Psi\left(\|u\|_{L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right)}\right) \\
& \Psi\left(\|u\|_{L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right)}\right):=\left(\theta c_{2}-\left(c_{3}\right)^{2} \varepsilon-\left(c_{3}\right)^{2}\left\|c_{1}\right\|_{L_{\infty}\left(0, T ; L_{\frac{n}{2}}(\Omega)\right)}\right)\|u\|_{L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right)}^{2} \\
& \quad-K,
\end{aligned}
$$

here $\theta:=\min \left\{1, a_{0}\right\}, 0<\varepsilon<\frac{\theta c_{2}-\left(c_{3}\right)^{2}\left\|c_{1}\right\|_{L_{\infty}\left(0, T ; L_{\frac{n}{2}}(\Omega)\right)}}{\left(c_{3}\right)^{2}}$ and $K>0$ is a constant.
If we consider condition (4)-II., we obtain,

$$
\begin{aligned}
& \langle f(u), u\rangle_{Q_{T}} \geq \Psi\left(\|u\|_{L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right)}\right) \\
& \Psi\left(\|u\|_{L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right)}\right):=\left(\tilde{\theta}-\left(c_{4}\right)^{2} a_{0}\right)\|u\|_{L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right)}^{2}-k_{1},
\end{aligned}
$$

here $\tilde{\theta}:=\min \left\{1, k_{0}\right\}$.
So, $\frac{\Psi(\|u\|)}{\|u\|} \nearrow \infty$ as $\|u\|_{L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right)} \nearrow \infty$.
Continuation of the Proof of Theorem 4.1. We can apply Theorem 3.2 to problem (1.1)-(1.3) by virtue Lemma 4.1 and Lemma 4.2. Hence we obtain that problem (1.1)-(1.3) is solvable in P_{0} for any $(h, \varphi) \in L_{2}\left(0, T ;\left(W_{2}^{1}(\Omega)\right)^{*}\right) \times L_{2}\left(0, T ; W_{2}^{-\frac{1}{2}}(\partial \Omega)\right.$.

5. Solvability of problem (1.1)-(1.3) in super linear case

Let $\alpha>1$. In this case,

$$
P_{0}:=L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right) \cap L_{\alpha+1}\left(Q_{T}\right) \cap W_{2}^{1}\left(0, T ;\left(W_{2}^{1}(\Omega)\right)^{*}\right) \cap\{u: u(x, 0)=0\}
$$

We consider the following conditions:
$(1)^{\prime \prime \prime}$ Condition (1) is satisfied with a positive function c_{1}, a nonnegative function c_{0} and parameters: $s_{1}:=\infty, r_{1}:=\infty, s_{2}:=\frac{\alpha+1}{\alpha}, r_{2}:=\frac{\alpha+1}{\alpha}$.
(5) There exist some numbers $k_{0}>0$ and $k_{1} \in \mathbb{R}^{1}$ such that

$$
g(x, t, \xi) \xi \geq k_{0}|\xi|^{\alpha+1}-k_{1}
$$

for a.e. $(x, t) \in Q_{T}$, for any $\xi \in \mathbb{R}^{1}$.
(6) There exists a number $a_{0}>0$ such that $a\left(x^{\prime}, t\right) \geq-a_{0}$ for a.e. $\left(x^{\prime}, t\right) \in \Sigma_{T}$ and $a_{0}<\frac{\min \left\{1, k_{0}\right\}}{\left(c_{4}\right)^{2}}$ (here c_{4} is the constant of Sobolev's Imbedding inequality ${ }^{\text {a }}$ [1]).

Theorem 5.1. Let conditions (1) ${ }^{\prime \prime \prime}$, (2), (5), (6) be fulfilled for $\alpha>1$. Then problem (1.1)-(1.3) is solvable in P_{0} for any $(h, \varphi) \in\left[L_{2}\left(0, T ;\left(W_{2}^{1}(\Omega)\right)^{*}\right)+L_{\frac{\alpha+1}{\alpha}}\left(Q_{T}\right)\right]$ $\times L_{2}\left(0, T ; W_{2}^{-\frac{1}{2}}(\partial \Omega)\right)$.

[^1]Proof. To prove this theorem we again make use of Theorem 3.2. We define corresponding mappings as (3.1), (3.2), (3.3).
Lemma 5.1. f is bounded and weakly continuous from P_{0} to $L_{2}\left(0, T ;\left(W_{2}^{1}(\Omega)\right)^{*}\right)+$ $L_{\frac{\alpha+1}{\alpha}}\left(Q_{T}\right)$, under the assumptions of Theorem 5.1.
Proof. It is enough to see that mapping g is bounded and weakly continuous from P_{0} to $L_{2}\left(0, T ;\left(W_{2}^{1}(\Omega)\right)^{*}\right)+L_{\frac{\alpha+1}{\alpha}}\left(Q_{T}\right)$. Using condition (1) $)^{\prime \prime \prime}$, we obtain that

$$
\begin{aligned}
& \|g\|_{L_{\frac{\alpha+1}{\alpha}}\left(Q_{T}\right)} \leq \gamma\left(\|u\|_{L_{\alpha+1}\left(Q_{T}\right)}\right) \\
& \gamma\left(\|u\|_{L_{\alpha+1}\left(Q_{T}\right)}\right)=c\left[\left\|c_{1}\right\|_{L_{\infty}\left(Q_{T}\right)}\|u\|_{L_{\alpha+1}\left(Q_{T}\right)}^{\alpha+1}+\left\|c_{0}\right\|_{L_{\frac{\alpha+1}{\alpha}\left(Q_{T}\right)}^{\frac{\alpha+1}{\alpha}}}^{\frac{\alpha}{\alpha+1}}\right.
\end{aligned}
$$

$c>0$ is a constant. So, g is a bounded mapping from P_{0} to $L_{\frac{\alpha+1}{\alpha}}\left(Q_{T}\right)$, since $P_{0} \subset L_{\alpha+1}\left(Q_{T}\right)$.

Let $\left\{u_{m}\right\} \subset P_{0}$ and $u_{m} \rightharpoonup u_{0}$ in P_{0}. Then $u_{m} \rightharpoonup u_{0}$ in $L_{\alpha+1}\left(Q_{T}\right)$. Since $L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right) \cap W_{\frac{\alpha+1}{\alpha}}^{1}\left(0, T ;\left(W_{2}^{1}(\Omega)\right)^{*}+L_{\frac{\alpha+1}{\alpha}}(\Omega)\right) \circlearrowleft L_{2}\left(Q_{T}\right), \exists\left\{u_{m_{l}}\right\} \subset\left\{u_{m}\right\}$ such that $u_{m_{l}} \longrightarrow u_{0}{ }^{\alpha}$ almost everywhere in Q_{T}. Using condition (1) ${ }^{\prime \prime \prime}$ we can say that

$$
g(x, t, \cdot): \mathbb{R}_{1} \longrightarrow \mathbb{R}_{1}
$$

is a continuous function and we obtained that g is bounded. Then according to a general result (1. Chapter, 1. Paragraph, Lemma 1.3 of [4]), $\exists\left\{u_{m_{j}}\right\} \subset\left\{u_{m}\right\}$ such that

$$
g\left(x, t, u_{m_{j}}\right) \underset{L_{\frac{\alpha+1}{\alpha}}\left(Q_{T}\right)}{\rightharpoonup} g\left(x, t, u_{0}\right) .
$$

This means g is a weakly continuous mapping from P_{0} to $L_{2}\left(0, T ;\left(W_{2}^{1}(\Omega)\right)^{*}\right)+$ $L_{\frac{\alpha+1}{\alpha}}\left(Q_{T}\right)$.

Lemma 5.2. Conditions $(i i),(i i i),(i v)$ of Theorem 3.2 are satisfied, under the assumptions of Theorem 5.1.

Proof. Since A is an identity mapping, it is obvious that condition (ii) is satisfied. Furthermore, for any $u \in W_{2}^{1}\left(0, T ; W_{2}^{1}(\Omega)\right) \cap W_{\alpha+1}^{1}\left(0, T ; L_{\alpha+1}(\Omega)\right)$ the following inequalities are satisfied:

$$
\begin{aligned}
& \int_{0}^{T}\langle u, u\rangle_{\Omega} d t=\int_{0}^{T}\|u\|_{L_{2}(\Omega)}^{2} d t \geq c_{6}\|u\|_{L_{2}\left(0, T ;\left(W_{2}^{1}(\Omega)\right)^{*}\right)+L_{\frac{\alpha+1}{\alpha}}^{2}\left(Q_{T}\right)}^{2} \\
& \int_{0}^{t}\left\langle\frac{\partial u}{\partial \tau}, u\right\rangle_{\Omega} d \tau=\frac{1}{2}\|u\|_{L_{2}(\Omega)}^{2}(t) \geq \frac{1}{2} c_{6}\|u\|_{\left(W_{2}^{1}(\Omega)\right)^{*}}^{2}(t)
\end{aligned}
$$

a.e. $t \in[0, T]\left(c_{6}>0\right.$ is the constant coming from Sobolev's Imbedding Inequality ${ }^{\|}$ [1])

This means condition (iv) is also satisfied.
It is enough to see that mapping f is coercive on $L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right) \cap L_{\alpha+1}\left(Q_{T}\right)$ for condition (iii), since A is an identity mapping:

$$
\left\|_{C_{6}}\right\| u\left\|_{\left(W_{2}^{1}(\Omega)\right)^{*}}^{2} \leq\right\| u \|_{L_{2}(\Omega)}^{2}
$$

If we consider conditions (5) and (6) we obtain,

$$
\langle f(u), u\rangle_{Q_{T}} \geq \Psi\left(\|u\|_{L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right) \cap L_{\alpha+1}\left(Q_{T}\right)}\right)
$$

$\Psi\left(\|u\|_{L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right) \cap L_{\alpha+1}\left(Q_{T}\right)}\right):=\frac{1}{4}\left(\tilde{\theta}-\left(c_{4}\right)^{2} a_{0}\right)\|u\|_{L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right) \cap L_{\alpha+1}\left(Q_{T}\right)}^{2}-K$, here $\tilde{\theta}:=\min \left\{1, k_{0}\right\}$ and $K>0$ is a constant.

So, $\frac{\Psi(\|u\|)}{\|u\|} \nearrow \infty$ as $\|u\|_{L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right) \cap L_{\alpha+1}\left(Q_{T}\right)} \nearrow \infty$.
Continuation of the Proof of Theorem 5.1. We can apply Theorem 3.2 to problem (1.1)-(1.3) from Lemma 5.1 and Lemma 5.2. Hence we obtain that problem (1.1)-(1.3) is solvable in P_{0} for any $(h, \varphi) \in\left[L_{2}\left(0, T ;\left(W_{2}^{1}(\Omega)\right)^{*}\right)+L_{\frac{\alpha+1}{\alpha}}\left(Q_{T}\right)\right] \times$ $L_{2}\left(0, T ; W_{2}^{-\frac{1}{2}}(\partial \Omega)\right)$ satisfying the following inequality

$$
\begin{aligned}
& \sup \left\{\frac{1}{\|u\|_{L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right) \cap L_{\alpha+1}\left(Q_{T}\right)}} \int_{0}^{T}\langle h, u\rangle_{\Omega}\right. \\
& \left.+\langle\varphi, u\rangle_{\partial \Omega} d t: u \in L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right) \cap L_{\alpha+1}\left(Q_{T}\right)\right\}<\infty .
\end{aligned}
$$

If we consider the norm definition of (h, φ) in $\left[L_{2}\left(0, T ;\left(W_{2}^{1}(\Omega)\right)^{*}\right)+L_{\frac{\alpha+1}{\alpha}}\left(Q_{T}\right)\right] \times$ $L_{2}\left(0, T ; W_{2}^{-\frac{1}{2}}(\partial \Omega)\right)$, we see that problem (1.1)-(1.3) is solvable in P_{0} for any $(h, \varphi) \in$ $\left[L_{2}\left(0, T ;\left(W_{2}^{1}(\Omega)\right)^{*}\right)+L_{\frac{\alpha+1}{\alpha}}\left(Q_{T}\right)\right] \times L_{2}\left(0, T ; W_{2}^{-\frac{1}{2}}(\partial \Omega)\right)$.

6. Uniqueness theorem for a model case of problem (1.1)-(1.3)

In this section for problem (1.1)-(1.3), we define mapping g as

$$
\begin{equation*}
g(x, t, u):=d(x, t)|u|^{\rho-1} u+b(x, t) u, \rho>0 \tag{6.1}
\end{equation*}
$$

Theorem 6.1. Let (6.1) and the following conditions be fulfilled for problem (1.1)(1.3):
$\left(U_{1}\right)$

$$
d \in \begin{cases}L_{\infty}\left(Q_{T}\right), & \rho>1 \\ L_{\infty}\left(0, T ; L_{\frac{n}{2}}(\Omega)\right), & \rho=1 \\ L_{\frac{2}{1-\rho}}\left(0, T ; L_{\frac{p_{0}}{p_{0}-\rho-1}}(\Omega)\right), & \rho<1\end{cases}
$$

and $d(x, t) \geq 0$ for a.e. $(x, t) \in Q_{T}$.
$\left(U_{2}\right) a \in L_{\infty}\left(0, T ; L_{n-1}(\partial \Omega)\right)$ and $b \in L_{\infty}\left(0, T ; L_{\frac{n}{2}}(\Omega)\right)$ satisfy one of the following conditions:
a. If there exists a number $a_{0}>0$ such that $a\left(x^{\prime}, t\right) \geq a_{0}$ for a.e. $\left(x^{\prime}, t\right) \in$ Σ_{T}, then there exists a number $b_{0}>0$ such that

$$
b(x, t) \geq-b_{0} \quad \text { for a.e. }(x, t) \in Q_{T} \text { and } b_{0}<\frac{\min \left\{1, a_{0}\right\} c_{2}}{\left(c_{7}\right)^{2}}
$$

(here c_{2} is the constant coming from the inequality** [12] and c_{7} is the constant of Sobolev's Imbedding inequality ${ }^{\dagger \dagger}$ [1]).
b. If there exists a number $b_{0}>0$ such that $b(x, t) \geq b_{0}$ for a.e. $(x, t) \in Q_{T}$, then there exists a number $a_{0}>0$ such that

$$
a\left(x^{\prime}, t\right) \geq-a_{0} \quad \text { for a.e. }\left(x^{\prime}, t\right) \in \Sigma_{T} \text { and } a_{0}<\frac{\min \left\{1, b_{0}\right\}}{\left(c_{4}\right)^{2}}
$$

(here c_{4} is the constant of Sobolev's Imbedding inequality ${ }^{\ddagger \ddagger}$ [1]).
Then the solution of problem (1.1)-(1.3) is unique if it exists in

$$
\begin{aligned}
& P_{1}:=L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right) \cap L_{\rho+1}\left(Q_{T}\right) \cap W_{2}^{1}\left(0, T ;\left(W_{2}^{1}(\Omega)\right)^{*}\right) \cap\{u: u(x, 0)=0\} \\
& q=q(\rho)>1
\end{aligned}
$$

Proof. Let $u, v \in P_{1}$ be two different solutions of (1.1)-(1.3) (P_{1} is defined according to number ρ). If we consider (3.1) and (3.2), we have

$$
\left\{\begin{array}{l}
f_{1}(u)-f_{1}(v)=0 \\
f_{2}(u)-f_{2}(v)=0
\end{array}\right.
$$

Let $w:=u-v$, then

$$
\begin{aligned}
0= & \int_{0}^{T} \int_{\Omega} \frac{\partial w}{\partial t} w d x d t+\int_{0}^{T} \int_{\Omega} D w \cdot D w d x d t \\
& +\int_{0}^{T} \int_{\Omega} d(x, t)\left[|u|^{\rho-1} u-|v|^{\rho-1} v\right][u-v] d x d t \\
& +\int_{0}^{T} \int_{\Omega} b(x, t) w^{2} d x d t+\int_{0}^{T} \int_{\partial \Omega} a\left(x^{\prime}, t\right) w^{2} d x^{\prime} d t
\end{aligned}
$$

If we use condition $\left(U_{1}\right)$ and if we consider $\int_{0}^{T}\left\langle\frac{\partial w}{\partial t}, w\right\rangle_{\Omega} d t=\frac{1}{2}\|w\|_{L_{2}(\Omega)}^{2}(T)>0$, we have

$$
\begin{equation*}
0>\|D w\|_{L_{2}\left(Q_{T}\right)}^{2}+\int_{0}^{T} \int_{\Omega} b(x, t) w^{2} d x d t+\int_{0}^{T} \int_{\partial \Omega} a\left(x^{\prime}, t\right) w^{2} d x^{\prime} d t \tag{6.2}
\end{equation*}
$$

Now if we consider condition $\left(U_{2}\right)$ for inequality (6.2), we obtain contradiction of $0>0$.

Hence, the solution of problem (1.1)-(1.3) is unique if it exists.
Corollary 6.1. If g satisfies condition (1)' for sublinear case, conditions (1)", (4) for linear case and conditions $(1)^{\prime \prime \prime}$, (5) for super linear case, then the solution of (1.1)-(1.3) exists and it is unique.

$$
\begin{aligned}
& { }^{* *} c_{2}\|u\|_{L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right)}^{2} \leq\left(\|D u\|_{L_{2}\left(Q_{T}\right)}^{2}+\|u\|_{L_{2}\left(\Sigma_{T}\right)}^{2}\right) \\
& { }^{\dagger}\|u\|_{L_{2}\left(Q_{T}\right)} \leq c 7\|u\|_{L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right)} \\
& \ddagger \ddagger\|u\|_{L_{2}\left(\Sigma_{T}\right)} \leq c_{4}\|u\|_{L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right)}
\end{aligned}
$$

References

[1] R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
[2] A. Dall'Aglio, D. Giachetti, I. Peral and S. S. Leon, Global existence for some slightly super-linear parabolic equations with meauser data, J. Math. Anal. Appl. 345 (2008), 892-902.
[3] J.L. Lions, Quelques methodes de resolution des problemes aux Limities non lineaires, Dunod, Gauthier-Villars, Paris 1969.
[4] J.L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Volume 1, Springer-Verlag, Berlin, Heidelberg, New York, 1972.
[5] L. Ma, Boundary Value Problem for a Classical Semilinear Parabolic Equation, arXiv:1012.5861v1 [math.AP], 2010.
[6] P. J. Martinez-Aparicio, F. Petitta, Parabolic equations with nonlinear singularities, Nonlinear Analysis 74 (2011), 114-131.
[7] L.E. Payne, G.A. Philippin and S.V. Piro, Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition, I, Z. Angew. Math. Phys. 61 (2010), 999-1007.
[8] J.F. Rault, The Fujita phenomenon in exterior domains under the Robin boundary conditions, C. R. Acad. Sci. Paris, Ser. 1 (2011), 1059-1061.
[9] K.N. Soltanov, On some modification on Navier-Stokes equations, Nonlinear Analysis- Theory Methods and Applications, 52(3) (2003), 769-793.
[10] K.N. Soltanov, Some boundary problem for Emden-Fowler type equations, function spaces, Differential Operators and Nonlinear Analysis, FSDONA 2004 Svratka, Czech Republic, (2005), 311-318.
[11] K.N. Soltanov and F.G. Düzgün, On some Emden-Fowler type equations, Numerical Analysis and Applied Mathematics, Vols 1 and 2, AIP Conference Proceedings Volume: 1168 (2009), 256-259.
[12] M. Struwe, Variational Methods Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, Barcelona, 1990.

[^0]: ${ }^{\dagger}$ Email address: gamzeduz@hacettepe.edu.tr(F.G. Duzgun)
 ${ }^{1}$ Department of Mathematics, Hacettepe Uni., 06800, Beytepe, Ankara, Turkey
 ${ }^{*}$ This research is supported by 110T558-project of TUBITAK.

[^1]: ${ }^{\mathbf{T}}\|u\|_{L_{2}\left(\Sigma_{T}\right)} \leq c_{4}\|u\|_{L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right)}$

