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Abstract In this paper, some mixed problem with third type boundary
value for a semilinear parabolic equation is investigated. Here the solvability
theorems for considered problem and the uniqueness theorem for a model case
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1. Introduction

We consider the problem

% — Au+ g(z,t,u) = h(x,t), (z,t) € Qr =2 x (0,T), (1.1)
w(x,0) =0, z€Q, (1.2)

=p(2',t), (2',t)e T =00 x0,T],T > 0. (1.3)
P

(gz +a(a, t)u)

Here 2 C R™, n > 3, is a bounded domain with sufficiently smooth boundary
n
09Q; A denotes the Laplace operator with n—dimension (A = %);
i=1" ¢

g:Qr xR — R! and a : ¥ — R! are given functions; h and ¢ are given
generalized functions.

In this article we investigate nonhomogenous third type boundary value problem
for equation (1.1) with mapping ¢ in general form. Elliptic part of equation (1.1)
is an Emden-Fowler type equation, since it becomes Emden-Fowler equation for a
special case of mapping g (see [10,11]). Equation (1.1) has been studied mostly in
homogeneous form by taking mapping g in special cases with Dirichlet or Neumann
boundary conditions. For instance, in [6], existence of positive solutions of homoge-
nous form of (1.1) when g(z,t,u) := %~ with initial and homogenous Dirichlet
condition was studied. In [8], global existence of positive solutions of equation (1.1)
by taking g(z,t,u) := — |u|” with initial and Robin boundary condition was studied
in Q x R*. In [7], global existence of solution of homogenous form of equation (1.1)
by taking g(x,t,u) := g(u) with initial and third type boundary value was investi-
gated in a bounded star-shaped region. In [5], existence of global positive solutions
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of homogenous form of (1.1) when g(z, ¢, u) := — |u’~" u for special cases of p with
initial homogenous Dirichlet condition was investigated.

We investigate problem (1.1)-(1.3) in sublinear, linear and super linear cases, by
depending on mapping g, i.e. the form of g creates these cases depending on u. For
the existence of generalized solution of problem (1.1)-(1.3) and for the uniqueness
in a model case, we obtained sufficient conditions for function a and mapping g.
And under these conditions we obtained that problem (1.1)-(1.3) is solvable and we
showed the uniqueness of the solution for a model case in corresponding spaces.

2. Formulation and the main conditions of problem
(1.1)-(1.3)

For problem (1.1)-(1.3), we shall assume h € Lo (0,T; (W3 (2))*)+Ly(Q7) (generally
_1

g>1)and ¢ € Ly(0,T; W, 2(99)).

We consider the following conditions:

(1) gis a Caratheodory function in (Q7 x R!) and there exist a number o > 0 and
functions ¢; € L, (0,T; L, (), co € Ls,(0,T; L,-,(Q)) such that g satisfies
the following inequality for a.e. (z,t) € Q7 and for any £ € R:
l9(2,t, )| < ex(x,8) [€]% + co(x, 1),
(r1, T2, 81, s2 > 1 will be defined later).
(2) a € Loo(0,T; Ly,—1(09)).

We understand the solution of considered problem in the following sense:
Definition 2.1. Let Py := L2(0,T; W3 (2)) N Lot1(Qr) N WA (0,T; (W4 (2))*) N
{u: u(x,0) = ug}. A function u € Py is called generalized solution of problem (1.1)-
(1.3) if it satisfies the equality

T T
f//u%dmdtJr/u(x,T)v(x,T)der//Du.Dvdwdt
0o 0 0o
T T
+//g(z,t,u)vdzdtJr//a(x',t)uvd:r'dt
0o 0 90
T T
://hvda:dt—l—//govdx’dt
0 e 0 90

for all v € La(0,T; Wa(2)) N Lay1(Qr) N Wa(0,T; (W2(Q))*).
We investigate problem (1.1)-(1.3) in three different sections according to the

values of « (see condition (1)): Sublinear Case, Linear Case and Super Linear Case.
3. Solvability of problem (1.1)-(1.3) in sublinear case

Let 0 < a < 1. In this case, since Ly(0,T; W3 (Q2)) C Lay1(Q7), then
Py = Ly(0, T; W3 () N W0, T (W3H(2))*) N {u : u(z,0) =0} .
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We consider the following conditions:

(1)’ Condition (1) is satisfied with nonnegative functions c¢;, ¢g and parameters:

2 . _DPogo - - . _2n — /
$1i= 105, 11 = 00, sg 1= 2, ro 1= qo, where pg := =5, qo := (po)’-

(8) There exists a number ag > 0 such that a(z’,t) > ag for a.e. (2/,t) € Tr.

Theorem 3.1. Let conditions (1), (2), (3) be fulfilled for 0 < a < 1. Then
problem (1.1)-(1.3) is solvable in Py for any

(hy ) € Lo(0, T3 (W(Q))") x La(0, T3 Wy 2 (99)).

The proof is based on a general result of Soltanov [9] that is given below:

Theorem 3.2. Let X and Y be Banach spaces with duals X* and Y* respectively,
Y be a reflexive Banach space, My C X be a weakly complete “reflexive” pn-space,

Xo C MoNY be a separable vector topological space. Let the following conditions
be fulfilled:

(i) f:Py— Ly(0,T;Y) is a weakly compact (weakly continuous) mapping, where
Py=L,(0,T; My) ﬂqu 0, 7;Y)N{z(t)] 2(0) =0},
_4q .
q—1’
(ii) there is a linear continuous operator A : WS (0,T;Xo) — WS (0,T;Y%),
s >0, m > 1 such that A commutes with % and the conjugate operator A*
has ker(A*) = {0};

(iii) operators f and A are derivative, in generalized sense, a coercive pair on space
L, (0,T; Xy), i.e. there exist a number r > 0 and a function ¥ : R, — Rl+
such that U(r)/T S 00 as T S oo and for any x € L, (0,T;X) under
[2]1,(Mo) = 7 following inequality holds:

1 <max{q,¢} <p<oo, ¢ =

(f(t.z (1), Az (t))dt 2 ¥ ([2]1,(rm0)) ;

o~~~

(iv) there exist some constants Cy > 0, C1,Co > 0, v > 1 such that the inequalities

(€, At > Collelly, oy — Co

(%,Az (r))ydr

v

Ch |zly (t) — C2, a.e. t €10,T)

o\a. O\’ﬂ

hold for any x € W}} (0,T;X0) and £ € L, (0,T; Xo).
Assume that conditions (i)-(iv) are fulfilled. Then the Cauchy problem

W)=y, yeLO.TY); 2(0)=0
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1s solvable in Py in the following sense

T T
/<Cfu + ),y <t>>dt =/<y (), y" (D) dt, Wy € Ly (0,T5Y*),
0 0

for anyy € Ly (0,T;Y) satisfying the inequality
T

1
[x]L(OT-/\/l)./@ (t), Az (t)) dt | x € Ly (0,T; Xo) p < o0.
piYH Sy 0 0

sup
Proof. [Proof of Theorem 3.1:] To apply Theorem 3.2 to problem (1.1)-(1.3),
firstly we define corresponding mappings and acting spaces for the problem using
the spaces that mentioned before:

f=A{fi. f2}
such that
fi(w) = —Au+ g(z,t,u), (3.1)
fo(u) == Z—;‘ +a(a, tu, (3.2)
A=Id. (3.3)
Here,

1

[Py — La(0,T; (W3 (2))*) x La(0,T; W, (09)); A: Py — Py.

Now we shall give the following lemmas to see that the conditions of Theorem
3.2 are satisfied: O

Lemma 3.1. f is bounded and weakly continuous from Py to La(0,T; (W3(Q))*),
under the assumptions of Theorem 3.1.

Proof. It is obvious that linear parts of f are bounded. Using condition (1)’, we
obtain that

191122 (0,7: L4y (22) < V(l[llLo(0,7:L,, (2)))

7(||U||L2(0,T;Lp0(9))) :C[”Cl”%i(O,T;L Podo (Q))HU||%°;(0,T;L,,O(Q))
I-—a PO — g
1
+ ||00H2L2(0,T;Lq0(9))]§a
¢ > 0is a constant. This means, g is a bounded mapping from Py to L2(0, T; Ly, (£2)),
since Py C Lo(0,T; W3 () C L2(0,T; Ly, (2)).

Since linear parts of f are bounded, they are already weakly continuous. It is
enough to investigate the nonlinear part of f, i.e. mapping g. Let {u,,} C Py
and u;, — ug in Py. Then u,, — ug in La(0,T; Ly, (22)). Since L2 (0,T; W3 (2)) N
W3 (0,T; (WE(Q)*) O La(Qr), then 3 {u,,, } C {un} such that u,,, — ug almost
everywhere in Qr.

Using condition (1)’ we can say that

g(l‘,t,-) : Rl — Rl
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is a continuous function and we also obtained that g is bounded.
Then according to a general result (1. Chapter, 1. Paragraph, Lemma 1.3 of [4]),
3 {tm, } C {tm} such that

t Uy, - tup).
9, t, tm, ) L2(0,T;Lgy () 9lz,t,uo)

Thus g is a weakly continuous mapping from Py to Lo (0, T; (W3(£2))*). O

Lemma 3.2. Conditions (i), (iii), (iv) of Theorem 3.2 are satisfied, under the as-
sumptions of Theorem 3.1.

Proof. Since A is an identity mapping, it is obvious that condition (i) is satisfied.
Furthermore, for any u € W3 (0, T; W34 (£2)) the following inequalities are satisfied:

T
[ twuqde= / oyt > collul o3 ey
0

ou 1, 19 1 9
/ (5evn). dr = hulon(® = Geolulfuany-0)
0

a.e. t€0,T] (cg > 0is the constant coming from Sobolev’s Imbedding Inequality*
1)

This means condition (iv) is also satisfied.

It is enough to see that mapping f is coercive on Ly(0,T; W4 (£2)) for condition
(iii), since A is an identity mapping:

Using conditions (1)" and (3) we obtain,

<f(u)7U>QT 2 lI’(||“||L2(0,T;W21(Q)))’
U(llull oy 0,mm2 () = (B2 = (e3)*)ull, 0wz ) — K-

here § :=min {1, ap},0<e < (232 and K > 0 is a constant.

(||
So, \(|LIL|\”) /oo as ||uHL2(O,T;W21(Q)) /oo O

Proof. [Continuation of the Proof of Theorem 3.1:] We can apply Theorem 3.2

to problem (1.1)-(1.3) by virtue Lemma 3.1 and Lemma 3.2. Hence we obtain
that problem (1.1)-(1.3) is solvable in Py for any (h,¢) € Lo(0,T; (W3(Q))*) x

Ly(0,T5; W, e (09)) satistying the following inequality

T

sup / O, U)o dt 1 u € La(0,T; W3 (Q)) p < o0.
Hu||L2 0,T;W1(Q)) J

If we consider the norm definition of (h, ¢) in L2 (0, T; (W4 (Q))* 2
we see that problem (1.1)-(1.3) is solvable in Py for any (h, ) € La(0,T; (W4 ())*) x

Lo (0, T; W, 2 (992)). 0

X
h
[ V)
=
=
=

T
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4. Solvability of problem (1.1)-(1.3) in linear case
Let o = 1 for condition (1). In this case,
Po = La(0,T; W3 () N W3 (0,13 (W3 (2))) N {u : u(x,0) = 0}
We consider the following conditions:
(1)” Condition (1) is satisfied with nonnegative functions ¢, ¢y and parameters:
81 1= 00, 11 = %, 82 1= 2, 2 := qo-
(4) One of the following conditions be satisfied:

I. There exists a number ag > 0 such that a(z’,t) > ag for a.e. (2/,t) € Bp
and HCl”Loo(O,T;L%(Q)) < % (here ¢y is the constant coming
from the inequality” [12] and c3 is the constant of Sobolev’s Imbedding
inequality* [1]).

II. There exist some numbers kg > 0 and k; € R! such that

g($7t,§)£ Z kO |£|2 - kl

for a.e. (z,t) € Qr, for any ¢ € R! and there exists a number ag > 0
such that a(a/,t) > —ay for a.e. (2/,t) € S and ag < ™lkod (here

(ca)?

¢4 is the constant of Sobolev’s Imbedding inequality ¥ [1]).
Theorem 4.1. Let conditions (1), (2), (4) be fulfilled for « = 1. Then problem
T1
(1.1)-(1.8) is solvable in Py for any (h,p) € La(0,T; (W3 (Q))*)x L2 (0, T; W, 2 (99)).

Proof. To prove this theorem we again make use of Theorem 3.2. We define
corresponding mappings as (3.1), (3.2), (3.3).

Lemma 4.1. f is bounded and weakly continuous from Py to La(0,T; (W4 (Q))*),
under the assumptions of Theorem 4.1.

Proof. It is enough to show that g : Py C L2(0,T; Ly, (©2)) — L2(0,T; Ly, ()
is a bounded mapping for a = 1:
Using condition (1)” we obtain,
191122 (0,7: L4y (22)) < V(l[llLo(0,7:L,, (2)))
7(||U||L2(0.,T;Lm(ﬂ))) :E[||01||%N(O,T;L%(Q))HUH%Q(O,T;LPO ()
1
+ ||COH2LZ(0,T;L%(Q))]2,
¢ > 01is a constant. The rest of this proof is similar with the proof of Lemma 3.1.
O

Lemma 4.2. Conditions (it), (iii), (iv) of Theorem 3.2 are satisfied, under the as-
sumptions of Theorem 4.1.

2 2 2
feo Il Ly 0mwi) < UDulLy @ + Iullz,sp))
i”u”LQ(O,T;LPO(Q)) < es llull Ly, 1w @)
Slull by g7y < eallull Ly 075w ()
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Proof. This proof is similar with the proof of Lemma 3.2. As a different part, we
show that f is coercive on L (0, T; W3 (Q)):
If we consider conditions (1)” and (4)-I, we obtain,

(f(u),w) g, = Cllull Lyo,mwae))
V(lull 0. mwp ) =02 = (3)%e = (e3)*llerll Lo oriLy )L 0,7w3 )

_K’

Oca—(c3)?lle1ll Lo (0,75 n (2))
2

here 6 := min {1, ap}, 0 <e < )2 and K > 0 is a constant.
If we consider condition (4)-II., we obtain,

(Fu),w) g, = ¥(llull L, 0,mwi @)

\IJ(HUHLQ(O,T;WZI(Q))) = (0 - (04)2(10)Hu”iz(QT;Wzl(Q)) — ki,

here § := min {1, ko}.
So, W oo as ||uHL2(O,T;W21(Q)) oo, O

Continuation of the Proof of Theorem 4.1. We can apply Theorem 3.2 to prob-
lem (1.1)-(1.3) by virtue Lemma 4.1 and Lemma 4.2. Hence we obtain that problem

(1.1)-(1.3) is solvable in Py for any (h, @) € La(0, T; (W3 (2))*)  La (0, T; W, 2 (992).
0

5. Solvability of problem (1.1)-(1.3) in super linear
case

Let a > 1. In this case,
Py = Ly(0,T; W5 (Q) N Lat1(Qr) N W3 (0,75 (W3 (2))*) N {u : u(z,0) = 0}.
We consider the following conditions:

(1) Condition (1) is satisfied with a positive function ¢;, a nonnegative function

co and parameters: s; := 00, 1y := 00, Sg := ‘XT'H, ro 1= C“T'H

5) There exist some numbers ky > 0 and k; € R! such that
(

g, t,€)E > ko €2 — Iy

for a.e. (x,t) € Qr, for any £ € RL.
(6) There exists a number ag > 0such that a(2’,t) > —ag fora.e. (2/,t) € ¥ and

ap < % (here c, is the constant of Sobolev’s Imbedding inequality ¥ [1]).

Theorem 5.1. Let conditions (1)", (2), (5), (6) be fulfilled for o > 1. Then
problem (1.1)-(1.8) is solvable in Py for any (h, p) € [L2(0, T; (W3(Q2))*)+Lat1 (Qr)]

% La(0,T; Wy 2 (9)).

Wullzysr) < callellzy omwg )
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Proof. To prove this theorem we again make use of Theorem 3.2. We define
corresponding mappings as (3.1), (3.2), (3.3). O

Lemma 5.1. f is bounded and weakly continuous from Py to Lo(0,T; (Wy (2))*) +
La+1(Qr), under the assumptions of Theorem 5.1.

Proof. It is enough to see that mapping g is bounded and weakly continuous from
Py to La(0,T; (W3 (2))*) + Lat1 (Qr). Using condition (1)", we obtain that

19012 asr (@r) < V([llLair@r)s

atl
Hllzss i) = elllenliz @ lulS g + ool oy ()75,

¢ > 0 is a constant. So, g is a bounded mapping from Py to La+1(Qr), since
Py C La+1(QT).

Let {u,} C Py and u,, — up in Py. Then w, — ug in Lyt1(Qr). Since
LQ(OaT; WQI(Q)) n W@ (OvT; (W21(Q))* + LQT“(Q)) ©) LQ(QT)v 3 {uml} c {um}
such that u,,, — ug almost everywhere in Qr. Using condition (1)"” we can say
that

g(l‘,t,-) : Rl — Rl
is a continuous function and we obtained that g is bounded. Then according to a

general result (1. Chapter, 1. Paragraph, Lemma 1.3 of [4]), 3 {tm,} C {un} such
that
Tty Uy, - x,t,ug).
o D 1 ian I

This means g is a weakly continuous mapping from Py to Lo (0, T; (W3 (2))*) +
Losr (Qr).

Lemma 5.2. Conditions (i), (ii1), (iv) of Theorem 3.2 are satisfied, under the as-
sumptions of Theorem 5.1.

Proof. Since A is an identity mapping, it is obvious that condition (i) is satisfied.
Furthermore, for any u € W3 (0,T; W3 () N Wi, 1(0,T; Lo41(£2)) the following
inequalities are satisfied:

St~

T
2 2
(gt = [l @yt = collul, w3 @)+ 0ps nr
0

t
ou 1. 5 1 9
/<8T’u>ﬂd7 = 5”“”1:2(9)(15) z 506||U||(W21(Q))*(t)a
0

a.e. t € [0,T] (cg > 0 is the constant coming from Sobolev’s Imbedding Inequalityl
1))

This means condition (iv) is also satisfied.

It is enough to see that mapping f is coercive on Lo (0, T; W3 (2)) N Lat1(Qr)
for condition (iii), since A is an identity mapping;:
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If we consider conditions (5)and (6) we obtain,

(f(u),w) g, = Cllull Lyo,mwi (@) Lass (@)

‘I’(”“HL2(0,T;W;(Q))mLa+1(QT)) = i(e_(64)20’0)||uH%2(07T;W£(Q))QLQ+1(QT) — K, here
0 := min{l ko} and K > 0 is a constant.
So, Ml 7 00 as [|ull 1, (0 2w )Ly (@r) 7 O O

Continuation of the Proof of Theorem 5.1. We can apply Theorem 3.2 to
problem (1.1)-(1.3) from Lemma 5.1 and Lemma 5.2. Hence we obtain that problem
(1.1)-(1.3) is solvable in Py for any (h,¢) € [L2(0,T; (Ws(2))*) + Lat1 (Qr)] X

Ly(0,T; Wz_% (09)) satisfying the following inequality

T
sup /
{ ||U\|L2(o T;WHQ))NLa+1(Qr) )

+ (@, u) g dt - u € Ly(0,T; WQI(Q)) N La+1(QT)} < 00.

If we consider the norm definition of (h, ) in [La(0, T; (Wa(Q))*)+ Lat1 (Qr)] X

Ly(0,T; W;% (09)), we see that problem (1.1)-(1.3) is solvable in Py for any (h, ¢) €
[L2(0, T3 (W3 ())*) + Lt (Qr)] x L2(0,T5 W, *(09)). O

6. Uniqueness theorem for a model case of problem
(1.1)-(1.3)

In this section for problem (1.1)-(1.3), we define mapping g as

g(z,t,u) = d(z,t) [u]”" u+ bz, t)u, p> 0. (6.1)
Theorem 6.1. Let (6.1) and the following conditions be fulfilled for problem (1.1)-
(1.3):
(U1)
LOO(QT) p > ]-7
de{ Lw(0,T;Ln(0)), p=1,
L 2 (()TL __po (Q)), p <l
po—p—1

and d(z,t) > 0 for a.e. (x,t) € Qr.

(Uz2) a € Loo(0,T5 Ln—1(09)) and b € Loo(0,T5 L= (2)) satisfy one of the following
conditions:

a. If there exists a number ag > 0 such that a(x’,t) > ag for a.e. (2',t) €
Y7, then there exists a number by > 0 such that

min{l, a0}02

b(x,t) > —by for a.e.(z,t) € Qr and by < (c)?
7
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(here ¢y is the constant coming from the inequality™ [12] and c; is the
constant of Sobolev’s Imbedding inequality'™ [1]).

b. If there exists a number by > 0 such that b(z,t) > by for a.e. (x,t) € Qr,
then there exists a number ag > 0 such that

min {1, bo}
(ca)?

(here ¢4 is the constant of Sobolev’s Imbedding inequality™ [1]).

a(z',t) > —ag for a.e.(z',t) € Xr and ag <

Then the solution of problem (1.1)-(1.3) is unique if it exists in
Py = Ly(0,T; W3 () N L1 (Qr) N W3 (0, T35 (W (2))*) N {u : u(z,0) = 0},
q=q(p) > 1.

Proof. Let u, v € P; be two different solutions of (1.1)-(1.3) (P; is defined ac-
cording to number p). If we consider (3.1) and (3.2), we have

{ fi(uw) = fi(v) =
f2(u) = fa(v) =

Let w := u — v, then

T

T
Oz//—wdxdt—i—//Dw.Dwdmdt

0o
// x,t) \u|p ! —\v|p71v} [u —v] dxdt

o
S

0
T

+//bxtwdmdt+// a(z',t) w2da' dt.
0 0

T
If we use condition (Uy) and if we consider [ <%ﬁ’,w>ﬂ dt = %||w||%2(9) (T) >0, we
0

T T
0> ||Dw||2LQ(QT) —I—//b(x,t)demdt +//a(m’,t)w2dx’dt. (6.2)
0o 0 90

Now if we consider condition (Us) for inequality (6.2), we obtain contradiction of
0> 0.

Hence, the solution of problem (1.1)-(1.3) is unique if it exists. O

have

Corollary 6.1. If g satisfies condition (1) for sublinear case, conditions (1)", (4)
for linear case and conditions (1), (5) for super linear case, then the solution of
(1.1)-(1.3) exists and it is unique.

2 2 2
“er Ul o rarscy < 10U 3o@py + Ilysm)
Mullzyr < o7 lullyo,0wa )
Fllullzyer) < eallullzz o @)
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