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OPTIMAL CONTROL OF A
FINITE-CAPACITY INVENTORY SYSTEM
WITH SETUP COST AND LOST SALES∗
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Abstract One of the most fundamental results in inventory theory is the op-
timality of (s, S) policy for inventory systems with setup cost. This result is
established based on a key assumption of infinite production/ordering capaci-
ty. Several studies have shown that, when there is a finite production/ordering
capacity, the optimal policy for the inventory system is very complicated and
indeed, only partial characterization for the optimal policy is possible. In
this paper, we consider a continuous review inventory system with finite pro-
duction/ordering capacity and setup cost, and show that the optimal control
policy for this system has a very simple structure. We also develop efficient
algorithms to compute the optimal control parameters.
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1. Introduction

One of the most fundamental results in inventory theory is the optimality of (s, S)
policy for inventory systems with setup cost (Veinott [14]). A key assumption in
this result is infinite ordering capacity. That is, regardless of how much is the
ordered, the order will be ready after the fixed leadtime. This assumption is clearly
not satisfied in many applications, especially in production systems; all production
facility has a finite capacity. This problem is closely related to the optimal control
of a production/inventory system.

Several studies have been conducted attempting to extend the analysis of pro-
duction/inventory systems. Gavish and Graves [4] study one-product production/in-
ventory problem with a fixed setup cost under continuous review policy, where the
demand for the product is governed by a Poisson process and is backordered when
it is out of stock, while the service time is deterministic. De Kok [9] deals with a
one-product production/inventory model with lost sales, in which the production
rate can be dynamically adjusted to cope with random fluctuations in demand, and
derives approximations for the switch-over level. Efforts have also been made to
analyze the structure of the optimal production/inventory control policy for the
case with multiple products or production facilities. For example, Zheng and Zip-
kin [16] consider the case when two products competing for a single production
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facility, which can produce only one unit of either product at a time. They com-
pared the first-come first-served(FCFS) discipline and the longest queue(LQ) dis-
cipline and demonstrated that the LQ discipline performs better in a certain sense
than the FCFS discipline. Wein [15], Ha [6], Perez and Zipkin [12] investigate the
production-inventory system with a single production facility to process a variety of
different job classes, satisfy several demand classes or manufacture several products
separately. Benjaafar etc. [1] study the problem of allocating demand in multiple
products with multiple production facilities. They consider two types of demand
allocation and two forms of inventory warehousing. At the same time, they high-
light the effect of these various factors on demand allocation and inventory control
decisions. Zhu etc. [18] investigate a problem of optimizing multi-period central-
ized production and inventory system with waste disposal subjected to uncertain
demands. However, most of them consider the case without setup cost.

The inventory control model studied in this paper is a lost sale model. Inventory
system with positive leadtimes and lost-sales is known to be a notorious difficult
problem to analyze, and has gained momentum in the last several years. In the case
the setup cost is 0, Karlin and Scarf [8]prove that when the lead time is one period,
the optimal policy is not an order-up-to policy and that the optimal order quantity
in any period is a decreasing function of the inventory on hand in that period
and that the rate of decrease is less than 1. Morton [10] generalizes this result to
an arbitrary lead time and shows that the optimal order quantity is a decreasing
function of the state vector, i.e. a vector consisting of the amount of inventory
on hand and the vector of quantities ordered in the past which have still not been
delivered; moreover, the rate of decrease with respect to more recent orders is higher.
Recently, Zipkin [19] has used the concept of L-convexity to provide an elegant
proof for stronger versions of these results. Zipkin [20] reports a computational
investigation on the performance of some of these heuristics. Janakiraman and
Roundy [7] study lost sales inventory models with stochastic lead times with no
order crossing. By focusing on the class of order-up-to policies (that are known
to be sub-optimal), they show that the cost incurred by this system is a convex
function of the order-up-to level used. Our paper also uses the operator algorithm
in differential equation to make a further analysis. The results concerning this area
can be found in works of Zhou [17], Pan and Zhang [11], Guo [5], Cheng and Ren [2].

In this paper, we consider a continuous review inventory control system with
setup cost and lost sales. The production capacity is finite, for the production
facility can only manufacture products one by one, at a given rate. The production
times are random and are assumed to be exponentially distributed. Demand follows
a Poisson process and any demand that arrives during a stockout period is lost. Each
product sold generates a revenue. There is a production cost and a holding cost.
There is also a setup cost every time the machine is set up to produce, but once the
machine is set up, it can produce any number of products non-stop before turning
off the machine or switching the machine for other tasks. This makes the model
different from that of Gallego and Toktay [3], where a setup incurs in every period
the machine produces. Our objective is to dynamically control the production
process to maximize the long run average profit. Though this paper focuses on
lost sale model, we point out that similar results can be obtained for the case with
backlogs.

The main result in this paper is that the optimal policy is determined by two
easily computable parameters r and S. Whenever the inventory drops to r, the
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machine is turned on to produce at the maximum rate, and the machine is turned
off when the inventory level reaches S. The control parameters r and S are the
solutions of a simple concave function g(x). Various characterizations are presented
on this stochastic inventory system. Our analysis is divided into two parts. In the
first part, we focus on a subclass of admissions policies, that is the class of (r, S)
policies, and identify, among this class of policies, the optimal one. Clearly, this
problem is reduced to the search for the two optimal control parameters. Then, we
prove that the policy obtained is actually optimal among all admissible policies.

The rest of this paper is organized as follows. Section 2 presents the problem
formulation and outlines the main results of this paper. Section 3 analyzes the
class of (r, S) policies and the associated auxiliary function, and two algorithms are
developed to compute the optimal control parameters. Section 4 proves the global
optimality of the policy obtained in Section 3 among all admissible policies. Finally,
the paper concludes with a discussion in Section 5.

2. Problem Formulation and Main Results

Consider a make-to-stock production system for a single product with selling price
p. The demand for the product follows a Poisson process with mean rate λ > 0, and
each demand is for one unit of the product. The unit production cost is c, where
c < p, and the production time is random which is exponentially distributed with
mean 1/µ. Turning on the production requires a setup cost K. As indicated in the
introduction, we only consider the case of lost-sales but point out that the analysis
and results can be extended to the backlog case. The finished goods inventory has
a holding cost b per product per unit of time. The goal is to dynamically adjust
the production process to maximize the long run average profit.

Without loss of generality, we can redefine the time unit to assume λ + µ = 1.
We specify a dynamic control policy for the system by a production rate function
µ(t) = µ or 0 for all time t, where µ(t) = µ represents that the machine is on and
µ(t) = 0 off. Let u = {µ(t) : t > 0}, which is said to be non-anticipatory if µ(t)
depends only on information up to t. Let U be the set of all such non-anticipatory
control policies. Under a given policy u ∈ U , let Nu(t) be the cumulative total
demand sold up to time t, Pu(t) the total production by time t,Mu(t) be the
number of setups by time time t, and xu(t) be the finished goods inventory level at
time t. Then, starting from an initial inventory level x, the long run average profit
for a policy u ∈ U is defined to be

Ju(x) = lim sup
T→∞

1

T
E

[ ∫ T

0

(
pdNu(t)− cdPu(t)−KdMu(t)− bxu(t)dt

)∣∣∣xu(0) = x

]
.

(2.1)
A policy u∗ ∈ U is said optimal if it maximizes the above long run average profit,

i.e., it solves the following optimization problem for all x:

Ju∗
(x) = sup

u∈U
Ju(x). (2.2)

In view of Puterman [13], the long-run average profit criterion for this Markovian
decision process can be described by optimality equations. Let (x(t), i(t)) be the
state of the system at time t, where x(t) is the inventory level at time t and i(t) = 0
or 1 indicating whether production is off or on at time t. The production rate µ(t)
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is controllable with action space {0, µ}. When the state is (x, 0), action µ(t) = µ
turns the machine on with a setup cost K and the state is switched to (x, 1), while
µ(t) = 0 keeps the machine in off state. Similarly, when the state is (x, 1), action
µ(t) = µmeans the machine continues to be on, while µ(t) = 0 turns off the machine
and the state is switched to (x, 0). Hence, the optimality equations for the long-
run average profit criterion are that, if there exist functions J(x, i), i = 0, 1 and a
number γ∗ such that they satisfy, for state (x, 0) with x > 0,

0 =− γ∗ − bx+max{λ(J(x− 1, 0)− J(x, 0) + p),

λ(J(x− 1, 1)− J(x, 0) + p−K) + µ(J(x+ 1, 1)− J(x, 0)− c−K)} (2.3)

and with x = 0,

0 = −γ∗+max
{
J(0, 0), λ(J(0, 1)−J(0, 0)−K)+µ(J(1, 1)−J(0, 0)−c−K)

}
, (2.4)

and for state (x, 1) with x > 0,

0 =− γ∗ − bx+max{λ(J(x− 1, 0)− J(x, 1) + p) + µ(J(x, 0)− J(x, 1)),

λ(J(x− 1, 1)− J(x, 1) + p) + µ(J(x+ 1, 1)− J(x, 1)− c)} (2.5)

and with x = 0,

0 = −γ∗ +max{µ(J(0, 0)− J(0, 1)), µ(J(1, 1)− J(0, 1)− c)} (2.6)

then the production rate that optimizes the right-hand sides of (2.3) to (2.6) is an
optimal policy, and in addition, γ∗ is the optimal long-run average profit.

We shall only offer an explanation to (2.3). Due to the exponential service times,
the continuous time semi-Markov decision process is transformed to a discrete time
Markov decision process with time intervals being exponentially distributed with
rate λ+µ = 1. At state (x, 0) with x > 0, the machine is off and the decision can be
either to continue keep the machine off, or to set up the machine at a fixed cost K
and start to produce. The state of the system at the next decision epoch depends
on this decision. If the machine is kept off, the state at the next decision epoch is
either (x − 1, 0) with a revenue p, which happens with probability λ which is due
to arrival, or remains at (x, 0), which happens with probability µ since the machine
is off. On the other hand, if the machine is turned on, it first incurs a fixed cost
K, then the state of the system at the next decision epoch will be either (x− 1, 1)
with probability λ, together with a revenue p, or (x+1, 1) with probability µ which
represents a production completion that incurs a production cost c. Therefore, the
average profit optimality equation is

J(x, 0) =− γ∗ − bx+max{λ(J(x− 1, 0) + p) + µJ(x, 0),

λ(J(x− 1, 1)− J(x, 0) + p) + µ(J(x+ 1, 1)− J(x, 0)− c)−K}

Moving J(x, 0) to the right hand side we obtain (2.3).

In this paper, we obtain the optimal inventory control strategy and show that
it is determined by two threshold parameters, r and S. We also present efficient
computational algorithms for r and S. The main results are summarized in the
following theorems.
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Theorem 2.1. The optimal production control policy is determined by two thresh-
olds: r, S with 0 ≤ r < S. An (r, S) policy manages the finished goods inventory
in the following manner: Whenever the inventory level reaches S, the machine is
turned off, and whenever the inventory drops to or below r, the machine is set up
to produce until the inventory level reaches S.

Theorem 2.2. The optimal control parameters r and S are determined by the
following concave function:

g(x) =


1

β(µ− λ)

(
−γ + λα− b(x+ 1) + (γ − µα)βx+2

)
, λ ̸= µ,

−γ

λ
− γ − λ(p− c)

λ
(x+ 1)− b

2λ
(x+ 2)(x+ 1), λ = µ,

where α = p − c + b/(µ− λ), β = λ/µ, and γ is the optimal average profit to be
calculated. The optimal control parameter r is the smallest nonnegative number such
that g(x) ≥ 0, while S is the smallest number greater than r such that g(x) < 0.

The optimal average profit γ is determined by

S−1∑
x=r

g(x) = K.

Remark 2.1. Theorem 2.2 relies on the concavity of function g(x) in x. This is
clearly true for the case λ = µ. For λ ̸= µ, g(x) has three terms: a constant term, a
linear term, and an exponential term. To see whether g(x) is concave in x we only
need to verify the coefficient of the exponential term, which is

γ − µα

β(µ− λ)
(2.7)

to be non-positive (note that λ can be greater or smaller than µ). It will be shown
in the next section that in the range of interest of γ, (2.7) is always non-positive.
See Proposition 3.4. Due to the quadratic form of g, r and S can be given in closed
form for the case λ = µ, and they are respectively given by

r =

⌈
λ(p− c)− γ − b/2−

√
λ(p− c)− γ − b/2)2 − 2bγ

b
− 1

⌉+

,

S =

⌈
λ(p− c)− γ − b/2 +

√
λ(p− c)− γ − b/2)2 − 2bγ

b
− 1

⌉+

,

where ⌈a⌉+ is the smallest nonnegative integer greater than or equal to a.

In this paper we take the following approach. First, we identify a policy that
maximizes the average profit within the class of (r, S) policies. Then, we prove that
this policy is actually optimal among all admissible policies. For convenience, we
refer to the optimal policy within the class of (r, S) policies the optimal threshold
policy. Therefore, our agenda is to first find the optimal threshold policy, and
then prove that the optimal threshold policy is actually the optimal policy among
all policies. In the following section, we focus on the class of (r, S) policies and
study the properties of this threshold policy. In Section 4, we prove that the policy
obtained in Section 3 is optimal among all admissible policies.
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3. Analysis of Value Function

3.1. Auxiliary Function

In this subsection, we analyze the class of (r, S) policies such that 0 ≤ r < S. Under
an (r, S) policy, whenever the inventory level reaches S, the machine is turned off
and the state becomes (S, 0). Demand arrives and gradually depletes the stock
level. If the system starts from state (x, 1) with x ≥ S, then the system is turned
off immediately, hence the state changes instantly from (x, 1) to (x, 0). When
the inventory level drops to r, the machine is turned on, at a setup cost K, and
production starts. If the system starts from a state (x, 0) with x ≤ r, the machine
is turned on immediately, with a setup cost K, and production process starts right
away, thus state (x, 0) is switched to (x, 1) for x ≤ r. When the production is on,
the inventory level will reach S after a random amount of time∗, then the machine
is turned off and the state is (S, 0) again and a new cycle starts. Therefore, the
process (X(t), I(t)) evolves as a Markov renewal process with renewal point (S, 0).

Let W (x, i) and T (x, i) denote the expected remaining cumulative profit and
expected remaining time until the cycle ends when state is currently (x, i). From
the definition of the (r, S) policy, the machine is turned off as soon as the inventory
level reaches S, thus

W (S, 1) = 0. (3.1)

However, when starting from state (x, 1), 0 < x < S, we need to calculate W (x, 1)
by conditioning on which state the process will reach after exponentially distributed
amount of time with mean 1. Thus

W (x, 1) = −bx+ λ(W (x− 1, 1) + p) + µ(W (x+ 1, 1)− c), 0 < x < S, (3.2)

W (0, 1) = λW (0, 1) + µ(W (1, 1)− c). (3.3)

Similarly, when the state of the system is (x, 0), we have

W (x, 0) = −bx+ λ(W (x− 1, 0) + p) + µW (x, 0), x > r, (3.4)

W (x, 0) = W (x, 1)−K, x ≤ r, (3.5)

where the last equation follows from the fact that, in state (x, 0) with x ≤ r, the
machine is turned on immediately.

The expected time until the end of the cycle, T (x, i), can be similarly derived.

T (S, 1) = 0, (3.6)

T (x, 1) = 1 + λT (x− 1, 1) + µT (x+ 1, 1), 0 < x < S, (3.7)

T (0, 1) = 1 + λT (0, 1) + µT (1, 1); (3.8)

T (x, 0) = 1 + λT (x− 1, 0) + µT (x, 0), x > r (3.9)

T (x, 0) = T (x, 1), x ≤ r. (3.10)

For a given γ, called dummy profit parameter, we define an auxiliary value func-
tion as

lγ(x, i) = W (x, i)− γT (x, i).

∗This is true even if µ ≤ λ due to the lost-sale assumption, but for backlog models, we will
need λ < µ.
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We often drop the subscript γ for convenience.
Applying (3.1) to (3.10), the recursive equations for lγ(x, i) can be derived as

follows:
lγ(S, 1) = 0; (3.11)

for x > r,
0 = −γ − bx+ λ[lγ(x− 1, 0)− lγ(x, 0) + p]; (3.12)

for 0 < x < S,

0 = −γ − bx+ λ[lγ(x− 1, 1)− lγ(x, 1) + p] + µ[lγ(x+ 1, 1)− lγ(x, 1)− c]; (3.13)

and
0 = −γ + µ[lγ(1, 1)− lγ(0, 1)− c]. (3.14)

Finally, the auxiliary value function satisfies

lγ(x, 1) = lγ(x, 0), x ≥ S, (3.15)

lγ(x, 0) = lγ(x, 1)−K, 0 ≤ x ≤ r. (3.16)

To show the dependency of the auxiliary function on the policy parameters r
and S, we sometimes write it as lr,Sγ (x, i) or simply lr,S(x, i).

We first present the following simple result.

Lemma 3.1. A policy (r∗, S∗) is the optimal threshold policy with maximum aver-
age profit γ∗ if and only if

max
(r,S)

lr,Sγ∗ (S, 0) = lr
∗,S∗

γ∗ (S∗, 0) = 0. (3.17)

Proof. If (3.17) is true, then

lr
∗,S∗

γ∗ (S∗, 0) = W (S∗, 0)− γ∗T (S∗, 0) = 0,

and for any (r, S),

lr,Sγ∗ (S, 0) = W (S, 0)− γ∗T (S, 0) ≤ 0.

Thus
W (S, 0)

T (S, 0)
≤ γ∗ =

W (S∗, 0)

T (S∗, 0)
.

This shows that (r∗, S∗) is the optimal threshold policy.

On the other hand, if (r∗, S∗) is the optimal threshold policy, let γ∗ = W (S∗,0)
T (S∗,0) .

We show that (r∗, S∗) maximizes lr,Sγ∗ (S, 0). If this is not true, then for some (r, S)
we have

lr,Sγ∗ (S, 0) > lr
∗,S∗

γ∗ (S∗, 0) = 0,

then
W (S, 0)− γ∗T (S, 0) > 0

and
W (S, 0)

T (S, 0)
> γ∗.
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This shows that the average profit for (r, S) is higher than that of optimal policy
(r∗, S∗), a contradiction.

Lemma 3.1 suggests that, if we can find a γ∗ such that the maximum value of
(3.17) is 0, then the corresponding r and S is the optimal threshold policy. On the
other hand, if

max
r,S

lr,Sγ∗ ̸= 0,

then by successively modifying the dummy profit parameter, we can develop a
computational procedure for obtaining the optimal threshold parameters.

3.2. Optimizing (r, S) Policies through Optimizing Auxiliary
Function

In this subsection, we establish some properties that the optimal thresholds (r∗, S∗)
must satisfy. We denote by lr,S(x, i) the auxiliary value function corresponding to
(r, S) policy and for convenience, define two difference operators as follows: For
i = 0, 1 and x ≥ 0,

∆r
i (x) = lr+1,S(x, i)− lr,S(x, i),

∆S
i (x) = lr,S+1(x, i)− lr,S(x, i).

For a given dummy profit parameter γ, an (r, S) policy is said to be better than
(r′, S′) policy if

lr,S(S, 0) ≥ lr
′,S′

(S′, 0).

The following result will be useful in characterizing the optimal control param-
eters.

Lemma 3.2. The following properties are satisfied by any given policy (r, S):

∆S
1 (x) = ∆S

1 (S), x < S, (3.18)

∆r
1(x) = 0, x < S, (3.19)

∆S
0 (x) = ∆S

0 (r), x ≥ r, (3.20)

∆S
0 (r) = ∆S

1 (r), (3.21)

∆r
0(x) = ∆r

0(r + 1), x ≥ r + 1. (3.22)

Proof. Both of the qualities follow from (3.12) and (3.14). Here we offer a proof
based on the sample path argument. At any state (x, 0) with x > r, under both
policies (r, S) and (r, S + 1) the inventory level can only drop and that is due to
demand arrivals. This occurs until the inventory level drops to r, and under both
policies the machine is turned on to produce at rate µ and the state is changed to
(r, 1) at a cost K. Hence the difference of auxiliary value functions for polices (r, S)
and (r, S +1) starting at (x, 0) is the same as that starting from (r, 1). This proves
(3.18). For (3.19), note that starting from state (x, 1), the machine is currently
producing, and independent of r, the production will not stop until the inventory
level reaches S. Thus the sample paths for the two systems operating under (r, S)
and (r + 1, S), when the starting state is (x, 1) with x < S, are same until the end
of the cycle. This proves (3.19). To prove (3.20), note that when starting from
state (x, 0) with x > r, the system operating under (r, S) and (r, S+1) remains the
same until the inventory level drops to r, at which point both systems are turned to
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produce at rate µ. Hence (3.20) follows. The arguments to prove (3.21) and (3.22)
are similar.

To present criteria for finding the optimal S and r, we need the following lemma.
In the subsequently analysis we shall only present the results for the case λ ̸= µ.
The corresponding results for the case λ = µ can be similarly derived.

Lemma 3.3. Given a policy (r, S) and a dummy parameter γ, we have, for all
0 < x < S,

lr,S(x+ 1, 1)− lr,S(x, 1)

=
γ + µc− λp+ bx

µ− λ
− bλ

(µ− λ)2
−
(
γ − µ(p− c)

µ− λ
− µb

(µ− λ)2

)(λ
µ

)x+1

. (3.23)

In particular,

lr,S(S − 1, 1)

=− γ + µc− λp+ b(S − 1)

µ− λ
+

bλ

(µ− λ)2
+

(
γ − µ(p− c)

µ− λ
− µb

(µ− λ)2

)(λ
µ

)S

.

(3.24)

Proof. It follows from successive applications of (3.13) and (3.14) that

lr,S(x+ 1, 1)− lr,S(x, 1)

=
γ + bx+ µc− λp

µ
+

λ

µ

[
lr,S(x, 1)− lr,S(x− 1, 1)

]
=

x−1∑
i=0

γ + µc− λp+ b(x− i)

µ

(λ
µ

)i

+
(λ
µ

)x

(lr,S(1, 1)− lr,S(0, 1))

=
γ + µc− λp

µ

x−1∑
i=0

(λ
µ

)i

+

x−1∑
i=0

(λ
µ

)i b(x− i)

µ
+

γ + ac

µ

(λ
µ

)x

=
γ + µc− λp+ bx

µ− λ
− bλ

(µ− λ)2
−
(
γ − µ(p− c)

µ− λ
− µb

(µ− λ)2

)(λ
µ

)x+1

.

This proves (3.23). The second equation (4.15) follows from (3.23) and the obser-
vation that lr,S(S, 1) = 0. The proof is complete.

The following useful relationship will be used repeatedly in the subsequent anal-
ysis, and it follows from the Lemma 3.3 and the definition of g(x):

g(x) = lr,S(x, 1)− lr,S(x+ 1, 1)− γ + bx− λp

λ
. (3.25)

Proposition 3.1. For given γ, policy (r, S + 1) is better than policy (r, S) if and
only if g(S) ≥ 0.

Proof. We need to prove that lr,S+1(S +1, 0) ≥ lr,S(S, 0) if and only if g(S) ≥ 0.
From (3.12), for (r, S + 1) policy,

0 = −γ − b(S + 1) + λp+ λ[lr,S+1(S, 0)− lr,S+1(S + 1, 0)].



206 B. Yang, Y. Huang & Y. Xu

Hence

lr,S+1(S + 1, 0)− lr,S(S, 0)

=[lr,S+1(S + 1, 0)− lr,S+1(S, 0)] + [lr,S+1(S, 0)− lr,S(S, 0)]

=
−γ − b(S + 1) + λp

λ
+∆S

0 (S)

=
−γ − b(S + 1) + λp

λ
+∆S

1 (r), (3.26)

where the last equality follows from (3.20) and (3.21) of Lemma 3.2.
To determine ∆S

1 (r), applying (3.18) of Lemma 3.2, we have

∆S
1 (r) = ∆S

1 (S) = lr,S+1(S, 1), (3.27)

where we have used the fact that lr,S(S, 1) = 0. Applying (4.15) of Lemma 3.3 for
policy (r, S + 1), we obtain

lr,S+1(S, 1) =
−γ − µc+ λp− bS

µ− λ
+

bλ

(µ− λ)2

+

(
γ − µ(p− c)

µ− λ
− µb

(µ− λ)2

)(λ
µ

)S+1

. (3.28)

Combining (3.26), (3.27) and (3.28), yields

lr,S+1(S + 1, 0)− lr,S(S, 0)

=
−γ − b(S + 1) + λp

λ
+

−γ − µc+ λp− bS

µ− λ
+

bλ

(µ− λ)2

+

(
γ − µ(p− c)

µ− λ
− µb

(µ− λ)2

)(λ
µ

)S+1

=
µ

λ(µ− λ)

[
− γ − b(S + 1) + λ(p− c) +

λb

µ− λ
+
(
γ − µ(p− c)− µb

µ− λ

)(λ
µ

)S+2
]

=g(S).

Thus lr,S+1(S + 1, 0) ≥ lr,S(S, 0) if and only if g(S) ≥ 0.
The next proposition presents a criterion for the optimal parameter r.

Proposition 3.2. For given γ, policy (r + 1, S) is better than policy (r, S) if and
only if g(r) ≤ 0.

Proof. We need to prove that ∆r
0(S) = lr+1,S(S, 0)− lr,S(S, 0) ≥ 0 if and only if

g(r) ≤ 0. Applying (3.22) of Lemma 3.2 and (3.12), we have

∆r
0(S) = ∆r

0(r + 1)

= lr+1,S(r + 1, 0)− lr,S(r + 1, 0) (3.29)

= lr+1,S(r + 1, 0)− lr,S(r, 0) +
γ + b(r + 1)− λp

λ

= lr+1,S(r + 1, 1)− lr,S(r, 1) +
γ + b(r + 1)− λp

λ

= ∆r
1(r + 1) + [lr,S(r + 1, 1)− lr,S(r, 1)] +

γ + b(r + 1)− λp

λ
,
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where the fourth equality follows from lr,S(r, 0) = lr,S(r, 1)−K and lr+1,S(r+1, 0) =
lr,S(r + 1, 1)−K.

By (3.19) of Lemma 3.2 we have ∆r
1(r + 1) = 0. By Lemma 3.3 we have

lr,S(r + 1, 1)− lr,S(r, 1)

=
γ + µc− λp+ br

µ− λ
− bλ

(µ− λ)2
−

(
γ − µ(p− c)

µ− λ
− µb

(µ− λ)2

)(λ
µ

)r+1

(3.30)

Substituting (3.30) into (3.29) we obtain

∆r(S, 0) =
γ + b(r + 1)− λp

λ
+

γ + µc− λp+ br

µ− λ
− bλ

(µ− λ)2

−
(
γ − µ(p− c)

µ− λ
− µb

(µ− λ)2

)(λ
µ

)r+1

=− g(r).

This completes the proof of Proposition 3.2.
The propositions above present criteria for searching for candidate policy param-

eters r and S for given γ. Will such r and S always exist? To answer this question,
first recall that our goal is to find the optimal γ such that, with the corresponding

optimal rγ and Sγ , we have l
rγ ,Sγ
γ (Sγ , 0) = 0. Hence in the search for the optimal

γ, we first reduce the search space for γ by identifying upper and lower bounds for
the optimal γ.

Proposition 3.3. If λ ≤ µ, then an upper bound for the optimal γ is

γmax = λ(p− c),

and a lower bound for the optimal profit is

γmin =
µ(λ(p− c)− b)

λ+ µ
.

If λ > µ, then an upper bound for the optimal γ is

γmax = µ(p− c),

and a lower bound for the optimal profit is

γmin = µ(p− c) +
bµ

µ− λ
.

Proof. We first consider λ ≤ µ. The average number of customers satisfied per
period is bounded from above by the average number of arrivals per period, which
is λ. Each satisfied job generates a revenue of p but costs c. Hence the upper bound
follows.

To find a lower bound, we consider the policy with r = 0 and S = 1. Under this
policy, the inventory level takes two values, 0 and 1, and it stays at each level for
exponentially distributed amount of time, with mean 1/λ and 1/µ respectively. The
stationary probability for the inventory to be 1 is µ/(λ+µ), thus the average revenue
rate is (p−c)λµ/(λ+µ). On the other hand, the average number of inventory is also
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µ/(λ + µ) which gives an average holding cost rate µb/(λ + µ). Thus, the average
profit under this policy is

(p− c)
λµ

λ+ µ
− b

µ

λ+ µ
=

µ(λ(p− c)− b)

λ+ µ
,

which is a lower bound for optimal profit.
We then consider the case λ > µ. Since the number of products produced

per period is bounded from above by µ, the number of customers satisfied is also
bounded by µ. Thus the maximum profit generated cannot be over µ(p−c). To find
a lower bound, consider the policy that processes at all times. That is, never turn
off the machine. The inventory level in the system under this policy is equivalent
to an M/M/1 queue with arrival rate µ and service rate λ. The average inventory
level is therefore µ/(λ− µ), with an average holding cost bµ/(λ− µ). The average
number of customer satisfied per period is µ generating a profit µ(p− c). Hence a
lower bound for the optimal profit is µ(p− c)− bµ/(λ− µ).

Relationship (3.25) can be shown to be satisfied for both λ ̸= µ and λ = µ. For
the latter case, by successive application of (3.25) and (3.13), we obtain by noting
(3.14) that

g(x) = lr,S(x, 1)− lr,S(x+ 1, 1)− γ + bx− λp

λ

= l(0, 1)− l(1, 1)−
x∑

i=1

γ + bi− λ(p− c)

λ
− γ + bx− λp

λ

= −γ

λ
− γ − λ(p− c)

λ
(x+ 1)− b

2λ
(x+ 2)(x+ 1). (3.31)

Proposition 3.4. When γmin ≤ γ ≤ γmax, the function g(x) is concave in x.

Proof. The case λ = µ is easily seen from the quadratic expression (3.31) of g(x).
When λ ̸= µ, it suffices to show that the coefficient of the exponential term of g(x)
is nonpositive, or equivalently (γ − µα)/(µ− λ) ≤ 0.

First suppose λ < µ. In this case it follows from the upper bound of γ that

γ ≤ µ(p− c) ≤ µ
(
p− c+

b

µ− λ

)
= µα.

Hence (γ − µα)/(µ− λ) ≤ 0 when µ > λ.
Then, consider the case λ > µ. In this case it follows from the lower bound for

γ that

γ ≥ µ
(
p− c+

b

µ− λ

)
= µα.

Thus (γ − µα)/(µ− λ) ≤ 0 is also true when µ < λ.
Propositions 3.1 and 3.2 present criteria for the optimal parameters r and S.

We will only be interested in γ with g(x) ≥ 0 for at least some nonnegative x. Let
y∗γ be the maximizer of concave function g(x) on x ≥ 0, and define

Sγ = min{x ≥ 0 : g(x) < 0}, (3.32)

rγ = min{0 ≤ x < S : g(x) ≥ 0}. (3.33)
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Figure 1. Illustration of g(x), rγ and Sγ

Proposition 3.5. On the range γmin ≤ γ ≤ γmax, rγ is increasing in γ and Sγ is
decreasing in γ.

Proof. Write g(x) as gγ(x) and it can be expressed as

gγ(x) = −1− βx+1

β(µ− λ)
γ +

1

β(µ− λ)

(
λα− bx− µαβx+1

)
.

The coefficient of γ is negative either when λ < µ when λ > µ. Hence, when γ
increase to γ′, the concave function gγ′(x) is below gγ(x). Hence by the definition
of rγ and Sγ , we conclude that rγ is increasing in γ and Sγ is decreasing in γ.

3.3. Algorithms for (r, S)

To develop algorithms for computing (r, S), we need the auxiliary function l(x, i).
We solve l(x, i) from equations through (3.12) to (3.14). Define a shift operator D
and its inverse D−1 which satisfy Df(x) = f(x + 1) and D−1f(x) = f(x − 1) for
function f(x) and integer x.

Using the operator D, formula (3.12) at state (x, 0) where x > r can be written
as

γ + bx− λp = λ[D−1 − I]l(x, 0).

Since the characteristic equation y−1 − 1 = 0 has a unique solution y = 1, the
homogeneous solution of the equation is A1, where A1 is a constant to be deter-
mined. Let B1x+ C1x

2 be a particular solution of the equation. Then, comparing
the coefficients between two sides of γ + bx− λp = λ[D−1 − I](B1x+ C1x

2) yields

B1 = p− b

2λ
− γ

λ
, (3.34)

C1 = − b

2λ
. (3.35)

For any x > r, the solution of (3.12) is

l(x, 0) = A1 +

(
p− b

2λ
− γ

λ

)
x− b

2λ
x2. (3.36)
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By operator D, equation (3.13) can be written as

γ + bx+ µc− λp = [λD−1 − (µ+ λ)I + µD]l(x, 1)

for 0 < x < S. Since characteristic equation λy−1 − (µ + λ) + ay = 0 has two
solutions: y1 = 1 and y2 = λ/µ, the homogeneous solution is A2(λ/µ)

x +B2 where
A2 and B2 are to be determined constants. Let C2x+D2x

2 be a particular solution
of the equation. Comparing the coefficients between two sides of γ+ bx+µc−λp =
[λD−1 − (µ+ λ) + µD](C2x+D2x

2) yields

C2 =
γ + µc− λp

µ− λ
− b

2(µ− λ)2
, (3.37)

D2 =
b

2(µ− λ)
. (3.38)

For any 0 < x < S, the solution of equation (3.13) is

l(x, 1) = A2

(
λ

µ

)x

+B2 +

(
g + µc− λp

µ− λ
− b

2(µ− λ)2

)
x+

b

2(µ− λ)
x2. (3.39)

And finally, at x = 0, equation (3.14) can be written as

γ + b(x) + µc = µ[D − 1]l(x, 1).

Since y = 1 is the unique solution of characteristic equation y− 1 = 0, the homoge-
neous solution of the equation is A3 which is to be determined. Let B3x+C3x

2 be
a particular solution of the equation. Comparing the coefficients between two sides
of γ + µc+ bx = µ[D − 1](B3x+ C3x

2) yields

B3 =
γ + µc

µ
− b

2µ
, (3.40)

C3 =
b

2µ
. (3.41)

At x = 0,

l(x, 1) = A3 +
(γ + µc

µ
− b

2µ

)
x+

b

2µ
x2. (3.42)

Now we determine coefficients Ai, i = 1, 2, 3 and B2 in (3.36)-(3.40) by the
boundary conditions. Consider both l(x, 1) is continuous at x = 0, S and d

dx l(x, 1)
at x = 0 respectively, as well as conditions l(r, 0)+K = l(r, 1) and lg(S, 1) = 0. We
obtain the following system.

A2 ln
(λ
µ

)
= B3 − C2,

B2 +A2

(λ
µ

)S

= −C2S −D2S
2,

A3 −A2 −B2 = 0,

A1 −A2

(λ
µ

)r

−B2 = (C2 −B1)r + (D2 − C1)r
2 −K.
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These equations are easily solved to obtain

A2 = (B3 − C2)/ ln
(λ
µ

)
,

B2 = −C2S −D2S
2 −A2

(λ
µ

)S

,

A3 = A2 +B2,

A1 = A2

(λ
µ

)r

+B2 + (C2 −B1)r + (D2 − C1)r
2 −K.

Thus we have obtained closed form solution for l(x, i) for all x ≥ 0 and i = 1, 2.
Since the difference equations for T (x, i) can be obtained by that of l(x, i) after

letting

γ = −1, b = c = p = K = 0,

we conclude that the same formula for l(i, i) can be applied to compute T (i, 0).
The previous analysis leads to the following procedures for the optimal param-

eters r and S.

Algorithm 1. (Successive Improvement Algorithm)

0. Let γ = γmin.

1. If l
rγ ,Sγ
γ (Sγ , 0) ≤ 0, go to Step 2. Otherwise, let

γ := γ +
lγ(S, 0)

T (S, 0)
(3.43)

and repeat Step 1.

2. Terminate the procedure with the maximum profit γ and optimal threshold
(r, S).

Algorithm 2. (Bi-Section Algorithm)

0. Start with a lower bound and an upper bound, γmin and γmax. Let γ =
γmax+γmin

2 .

1. If l
rγ ,Sγ
γ (Sγ , 0) = 0, go to Step 2. Otherwise, if l

rγ ,Sγ
γ (Sγ , 0) > 0 then set

γmin := γ and if l
rγ ,Sγ
γ (Sγ , 0) < 0 then set γmax := γ. Repeat Step 1.

2. Terminate the procedure with the maximum profit γ and optimal threshold
(r, S).

Theorem 3.1. Both Algorithms 1 and 2 give the optimal control parameters after
finite iterations.

Proof. First consider Algorithm 1. Since γ is the profit of a feasible strategy, say
(r0, S0) if

max
r,S

lr,S(S, 0) = W (S, 0)− γT (S, 0) ≤ 0,

then
W (S, 0)

T (S, 0)
≤ γ
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for all policy (r, S). Because lr0,S0(S0, 0) = 0, it follows from Lemma 3.1 this policy
is optimal.

If maxr,S lr,S(S, 0) > 0, then the updated γ in (3.43), denoted by γ′, is greater
than the original γ. By Proposition 3.5, we have Sγ′ ≤ Sγ , and it can be checked

that l
r,Sγ

γ′ (Sγ , 0) = 0. Therefore, if Sγ′ = Sγ then l
r,Sγ′

γ′ (Sγ′ , 0) = 0 and the optimal
policy has been found, and otherwise Sγ′ < Sγ and we have reduced the feasible
region by at least one. Since the starting feasible region for optimal S is finite and
each step either stop or strictly reduce the feasible region, the Algorithm 1 must
stop after a finite number of steps.

The convergence of Algorithm 2 follows from the fact that l
rγ∗ ,Sγ∗
γ (Sγ∗ , 0) is

piece-wise linear in γ. Here the proof is omitted.

4. Global Optimality of (r, S) Policy

In the section, we prove that the optimal threshold policy identified in the last
section, which is optimal among the class of (r, S) policies, is optimal among all
admissible policies. The optimality proof is based on some properties that are
satisfied by the value function of the threshold policy obtained in Section 3. In the
following analysis, l(x, i) represent the value function corresponding to the optimal
threshold policy (r, S). We shall only consider the case of λ ̸= µ.

Lemma 4.1. For all x < S,

l(x+ 1, 1)− l(x, 1)− c = −λ

µ
g(x− 1). (4.1)

Proof. From (3.13), we have

l(x+ 1, 1)− l(x, 1)− c =
1

µ

[
(γ + bx− λp) + λ(l(x, 1)− l(x− 1, 1))

]
.

By (3.25), we have

g(x− 1) =
1

λ

[
λ(l(x− 1, 1)− l(x, 1))− (γ + bx− λp)

]
.

Thus the desired result follows.

Lemma 4.2. There holds that

i) l(x+ 1, 1)− l(x, 1) ≥ c for x ≤ r,

ii) l(x+ 1, 1)− l(x, 1) ≤ c for r < x < S and

iii) l(x+ 1, 1)− l(x, 1) < c on x ≥ S.

Proof. By Proposition 3.2, we have g(x− 1) ≤ 0 for x ≤ r. Hence,

l(x+ 1, 1)− l(x, 1)− c = −λ

µ
g(x− 1) ≥ 0.

This implies that for x ≤ r,

l(x+ 1, 1)− l(x, 1)− c ≥ 0.
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So, i) is proved.
By Propositions 3.1 and 3.2, we have g(x− 1) ≥ 0 for r < x < S. This implies

that

l(x+ 1, 1)− l(x, 1)− c = −λ

µ
g(x− 1) ≤ 0

holds for r < x < S. This proves ii).
By Lemma 3.1, the best (r, S) policy should satisfy both g(S) < 0 and g(S−1) ≥

0, i.e.,

−γ + λα− b(S + 1) + (γ − µα)βS+2 < 0,

−γ + λα− bS + (γ − µα)βS+1 ≥ 0. (4.2)

These deduce to
b+ (γ − µα)(1− β)βS+1 > 0. (4.3)

From (3.12), we have

l(S + 1, 1)− l(S, 1) = l(S + 1, 0)− l(S, 0)

= p− γ + b(S + 1)

λ
.

Hence, l(S +1, 1)− l(S, 1) < c is equivalent to γ− λ(p− c) + b(S +1) > 0. By (4.3)
and definition α = p− c+ b/(µ− λ), we obtain

γ − λ(p− c) + b(S + 1) >
λb

µ− λ
+ (γ − µα)βS+2

=
λ

µ− λ

(
b+ (γ − µα)(1− β)βS+1

)
(4.4)

> 0,

which implies l(S + 1, 1)− l(S, 1) < c. For x > S, we have, by (3.12) and (3.15),

l(x+ 1, 1)− l(x, 1)− c = l(x+ 1, 0)− l(x, 0)− c

=
1

λ

[
− γ − b(x+ 1) + λ(p− c)

]
≤ 1

λ

[
− γ − b(S + 1) + λ(p− c)

]
< 0.

We finish the proof of iii).

Lemma 4.3. For r ≤ x < S, there holds that

l(x, 1)− l(x, 0) =

S−1∑
i=x

g(i). (4.5)

In particular,

S−1∑
i=r

g(i) = K. (4.6)
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Proof. Since l(S, 1) = l(S, 0) = 0, we have, by (3.12), that for any r ≤ x ≤ S,

l(x, 0) =
S−1∑
i=x

[l(i, 0)− l(i+ 1, 0)] =
S−1∑
i=r

γ + b(i+ 1)− λp

λ
,

l(x, 1) =
S−1∑
i=x

[l(i, 1)− l(i+ 1, 1)].

Hence the result follows from (3.25).
That (4.6) holds follows from (4.5) and that l(r, 1)− l(r, 0) = K.
We are now ready to prove the main results of this paper, Theorem 2.1 and 2.2.

Proof of Theorems 2.1 and 2.2. By the optimality equations (2.3) to (2.6),
to prove that the optimal threshold policy (r, S) is optimal among all admissible
policies, it suffices to prove that the value function of this policy l(x, i), and the
threshold (r, S) policy, satisfies (2.3) to (2.6). More specifically, we want to verify
the following four inequalities:

1) For x > r, we have

λ[l(x− 1, 0)− l(x− 1, 1) +K] + µ[l(x, 0)− l(x+ 1, 1) + c+K] ≥ 0. (4.7)

2) For x ≤ r, we have

λ[l(x− 1, 0)− l(x− 1, 1) +K] + µ[l(x, 0)− l(x+ 1, 1) + c+K] ≤ 0. (4.8)

3) For x ≥ S,

λ[l(x− 1, 0)− l(x− 1, 1)] + µ[l(x, 0)− l(x+ 1, 1) + c] ≥ 0. (4.9)

4) And finally, for x < S, we have

λ[l(x− 1, 0)− l(x− 1, 1)] + µ[l(x, 0)− l(x+ 1, 1) + c] ≤ 0. (4.10)

If 1) is satisfied, then the first term in the maximum {., .} of (2.3) is larger, implying
that when the state is (x, 0), that is when the machine is off with inventory level
x > r, it is optimal to keep the machine idle; when 2) is satisfied, then the second
term in the maximum {., .} of (2.3) is larger, implying that when the inventory level
drops to r it is optimal to turn on the machine and to start producing. Similarly, it
can be seen from 3) and 4) that, when the machine is on and the inventory level is
less than S, it is optimal to continue producing, and one should turn off the machine
as soon as the inventory level reaches S.

For convenience let

L(x) = λ[l(x− 1, 0)− l(x− 1, 1)] + µ[l(x, 0)− l(x+ 1, 1) + c] (4.11)

for x > 0 and L(0) = µ[l(0, 0)− l(1, 1) + c]. Then, 1) to 4) can be rewritten as:

a) L(x) ≤ −K for 0 ≤ x ≤ r;

b) −K ≤ L(x) ≤ 0 for r < x < S;

c) L(x) ≥ 0 for x ≥ S.
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We first prove a). By (3.15) and (3.16), we have

l(x, 1)− l(x, 0) = K (4.12)

for x ≤ r. By (3.13) and Lemma 4.1, for x ≤ r we have

l(x+ 1, 1)− l(x, 0) = [l(x+ 1, 1)− l(x, 1)− c] +K + c

= −λ

µ
g(x− 1) +K + c

≥ K + c, (4.13)

where the last inequality follows from g(x−1) ≤ 0 for x ≤ r. Combining (4.12) and
(4.13) we obtain a).

We then proceed to prove b). It follows from Lemma 4.3 and (3.12) we obtain
that for r < x < S,

l(x+ 1, 1)− l(x, 0) = [l(x+ 1, 1)− l(x+ 1, 0)] + [l(x+ 1, 0)− l(x, 0)]

=
S−1∑

i=x+1

g(i) +
−γ − b(x+ 1) + λp

λ
.

Since g(x) ≥ 0 on r < x < S, we conclude that l(x+ 1, 1)− l(x, 0) is decreasing of
x in r < x < S. Furhtermore, it follows from ii) of Lemma 4.2 and Lemma 4.3 that

l(r + 2, 1)− l(r + 1, 0) = [l(r + 2, 1)− l(r + 1, 1)] + [l(r + 1, 1)− l(r + 1, 0)]

≤ c+
S−1∑

i=r+1

g(i) < c+
S−1∑
i=r

g(i)

= c+K.

This shows that for all r < x < S we have

l(x, 1)− l(x+ 1, 0) + c ≥ −K. (4.14)

In addition, it follows from Lemma 4.3 and g(i) ≥ 0 for any r ≤ i < S that

0 ≤ l(x, 1)− l(x, 0) ≤ K (4.15)

holds for any r ≤ x < S. Combining (4.14) and (4.15) we obtain b).
We finally prove c). If x > S, then by l(x− 1, 0) = l(x− 1, 0) we obtain

L(x) = µ[l(x, 0)− l(x+ 1, 1) + c] = µ(l(x, 1)− l(x+ 1, 1) + c] ≥ 0,

where the inequality follows from iii) of Lemma 4.2. For x = S, it follows from
Lemma 4.3, l(S + 1, 1) = l(S + 1, 0) and (3.12) that

L(S) = λ[l(S − 1, 0)− l(S − 1, 1)] + µ[l(S, 0)− l(S + 1, 1) + c]

= −λg(S − 1) +
µ

λ
[γ + b(S + 1)− λ(p− c)]

≥ −λg(S − 1) +
µ

µ− λ

[
b+ (γ − µα)(1− β)βS+1

]
= −λg(S − 1) + λ(g(S − 1)− g(S))

= −λg(S),
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where the inequality follows from (4.4), and the third equality follows from

g(S − 1)− g(S) =
µ

λ(µ− λ)

(
b+ (γ − µα)(1− β)βS+1

)
.

Since g(S) ≤ 0, we have proved that L(S) ≥ 0. This completes the proof of c) and
optimality of the (r, S) policy among all admissible policies.

Theorem 2.2 follows from the proof of Theorem 2.1 and (4.6) of Lemma 4.3.

5. Numerical examples

In this section, we review a number of numerical experiments for the case of a single
product make-to-stock queue, in order to study the effects of parameters, such as the
setup cost, the selling price, demand arrival rate and production rate, on optimal
control strategy and maximum average profit.

In the subsequent numerical experiments , we use the following base settings:
the production cost for each product is c = 2, while the selling price is p = 10
with the demand arrival rates λ = 0.4. According to our previous assumption, the
production rate is µ = 1−λ = 0.6. The setup cost is K = 10. The holding cost per
product is b = 0.01.

In particular, we consider different demand functions. There are two special
cases of the function D(p). One is D(p) = β − αp (α > 0,β > 0) in the additive
case and the other is D(p) = αp−β (α > 0,β > 1) in the multiplicative case. In
Petruzzi and Data(1999), both are common in the economics literature. According
to the definition of the demand functions, we assume the basic additive demand
function we study is λ = 1− 0.06p, while the basic multiplicative demand function
is λ = 40p−2.

5.1. Effects of K

In this subsection, we illustrate the optimal (r, S) policy for different values of K.
The results are shown in Figure 2, where the x-axis is setup cost K and y-axis
displays the optimal r and S. The value of K goes from 0 to 20, with the increment
of 1. It is shown that S is increasing when K rises up, while r is decreasing.
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Figure 2. Optimal r and S for different K

Figure 3 shows the maximum average profit when K is different, while λ and
p are under the same additive demand function λ = 1 − 0.06p. In this figure, the



Inventory system with setup cost 217

x-axis is K and y-axis displays the maximum average profit γ∗. The value of K goes
from 0 to 20 with the increment of 1. Figure 4 shows the maximum average profit
γ∗ when K is different, while λ and p are under the same multiplicative demand
function λ = 40p−2. In this figure, the x-axis is K and y-axis displays the maximum
average profit. The value of K goes from 0 to 20 with the increment of 1.

From the two figures, the main conclusion is γ∗ is decreasing on K. Moreover,
when λ < 0.5, which means µ = 1 − λ is greater than 0.5, the maximum average
profit γ∗ drops more rapidly than the γ∗ when λ > 0.5. The main result is that
when λ > 0.5, it means the production rate µ is less than the demand arrival rate
λ. Then the frequency of shutting down the machine decreases, which means less
setup costs need to be covered. Hence, the effect of setup cost K on the maximum
average profit is weakened.
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Figure 3. Optimal profit for differ-
ent K when λ = 1− 0.06p

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

K

 γ
*

 

 
 λ=0.625,p=8
 λ=0.4,p=10
 λ=0.2778,p=12

Figure 4. Maximum average profit
for different K when λ = 40p−2

5.2. Effects of p

Then we examine the effects of p in optimal (r, S) policy and compare the maximum
average profit under different demand functions.

First of all, we compute r and S for different values of p under additive demand
function. The results are shown in Figure 5, where the x-axis is p and y-axis displays
the optimal r and S. The value of p goes from 5 to 15, with the increment of 1.
Moreover, we compare different maximum average profit under different additive
demand functions. Figure 6 shows the results, where the x-axis is p and y-axis
displays the maximum average profit γ∗. The value of p goes from 5 to 15, with
the increment of 1. It is shown that both r and S are decreasing on p, while γ∗ is
concave on p.

When the demand function is multiplicative, we compute r and S for different
values of p. The results are shown in Figure 7, where the x-axis is p and y-axis
displays the optimal r and S. The value of p goes from 7 to 20, with the increment
of 1. Moreover, we compare different maximum average profit under different mul-
tiplicative demand functions. Figure 8 shows the results, where the x-axis is p and
y-axis displays the maximum average profit γ∗. The value of p goes from 8 to 20,
with the increment of 1. It is also shown that both r and S are decreasing on p.
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Figure 5. Optimal r and S for different p when λ1 = 1− 0.06p1
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Figure 6. Maximum average profit for different p under additive demand functions

Although γ∗ is not concave on p, it still exists thatγ∗ will rise up when p is small.
When p is great enough, γ∗ will also drop.

6. Conclusion

It is well known that the when there is a finite production/ordering capacity, (s, S)
policy is no longer optimal. In this paper we consider a continuous review inventory
system with finite production capacity and lost-sales, and show that the optimal
control policy for the system still has a very simple structure of (r, S). We also
develop simple algorithms to compute the optimal parameters.

From the numerical tests, we obtain more results. When other parameters are
fixed, the shut down point S is increasing on setup cost K, while shut on point r is
decreasing on K. At the same time, the maximum average profit γ∗ is decreasing
on K. Moreover, when λ < 0.5, the maximum average profit γ∗ drops more rapidly
than the γ∗ when λ > 0.5.

When the selling price p is decision variable, it would be more complicate, for
the selling price will influence both the demand arrival rate λ and the production
rate µ. It is shown that both r and S are decreasing on p no matter what kind of the
demand function is. However, when the demand function is additive, the maximum
average profit γ∗ is concave on p. When the demand function is multiplicative, γ∗

will rise up when p is small enough, while γ∗ will drop when p is large.
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Figure 7. Optimal r and S for different p1 when λ1 = 1.8p−1.5
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Figure 8. Maximum average profit for different p under multiplicative demand
functions

The model considered in this paper is clearly rather simplistic and it will be of
interest to explore more general systems for which a simple policy remains optimal.
Extensions of the model studied in this paper include arbitrary production time
distribution, and batch Poisson demand processes. An important question to answer
is, given that the optimal control policy for finite capacity production/inventory
system with setup cost is known to not have a simple form, which classes of systems
still inherit the special simple structure of the optimal control policy? In other
words, it would be particularly interesting to characterize the inventory systems
that have finite capacity and setup cost but nevertheless, the simple (s, S) type of
policy remains optimal. We leave this as a future research topic.
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