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Abstract The aim of this paper is to prove the continuity of exponential
attractors for a hyperbolic perturbed Caginalp system to an exponential at-
tractor for the limit parabolic-hyperbolic Caginalp system. The symmetric
distance between the perturbed and unperturbed exponential attractors in
terms of the perturbation parameter is obtained.
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1. Introduction

The study of the long time behavior of systems arising from mechanics and physics
is important, as it is essential, for practical purposes, to understand and predict the
asymptotic behavior of the systems. Several objects have been introduced for this
study.

A first object is the global attractor, which is a compact invariant set which at-
tracts uniformly the bounded sets of the phase space. The global attractor presents
two major defaults. It can attract the trajectories slowly and it can be sensitive to
perturbations.

In order to overcome these difficulties, Foias, Sell and Temam [14] have intro-
duced the notion of an inertial manifold. An inertial manifold is a smooth, finite
dimensional, hyperbolic (and thus robust) positively invariant manifold which con-
tains the global attractor and attracts exponentially the trajectories. Unfortunately,
all constructions of inertial manifolds are based on a very restrictive condition: the
so-called spectral gap condition. Consequently, the existence of inertial manifolds
is not known for many physically important systems.

Eden, Foias, Nicolaenko and Temam have introduced in [5] the notion of expo-
nential attractor which is an intermediate object between the two ideal objects that
the global attractor and an inertial manifold are. Indeed, an exponential attrac-
tor is a compact positively invariant set which contains the global attractor, has
finite fractal dimension and attracts exponentially the trajectories. An exponential
attractor is more robust under perturbations and numerical approximations than
the global attractor. We note that, contrary to the global attractor, an exponential
attractor is not necessarily unique.
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Exponential attractors have first been constructed for systems in Hilbert spaces
only by using orthogonal projectors with finite rank in order to prove the so-called
squeezing property. Recently, Efendiev, Miranville and Zelik gave in [6] and [7]
a construction of exponential attractors that is no longer based on the squeezing
property and that is valid in a Banach space. So, exponential attractors are as
general as global attractors.

The main goal of this paper is to construct a robust family of exponential at-
tractors which is continuous as the perturbation parameter ϵ goes to 0 when the
unperturbed system is the parabolic-hyperbolic Caginalp system and the perturbed
system is the hyperbolic Caginalp system.

The Caginalp phase-field system has been proposed by Caginalp(see [2]) to mod-
el phase transition phenomena in certain classes of materials. Some generalizations
of the original system have been proposed and studied in bounded domains as well
as in unbounded domains (see for instance Miranville & Quintanilla [12] and [13],
Conti & Gatti [3], Cherfils & Miranville [4]).

We consider the singular perturbation of a Caginalp system in a smooth bounded
domain Ω ⊂ Rn, 1 ≤ n ≤ 3. The perturbed system is hyperbolic with a perturbation
parameter ϵ > 0 and the unperturbed system is parabolic-hyperbolic (ϵ = 0).

The perturbed system reads

ϵ∂2
t u+ ∂tu−∆u+ f(u) = ∂tα, in Ω× (0,∞), (1.1)

∂2
t α− ∂t∆α−∆α = −∂tu, in Ω× (0,∞), (1.2)

u = α = 0, on ∂Ω, (1.3)

u(0, x) = u0, α(0, x) = α0, (1.4)

∂tu|t=0 = u1, ∂tα|t=0 = α1, (1.5)

where u(t, x) is the phase field or order parameter and α(t, x) the thermal displace-
ment variable.

In these systems, u(t, x) and α(t, x) are unknown functions, and f(s) = s3 − s.
Then f is of class C2 and satisfies

− 1 ≤ f ′(s), ∀s ∈ R and (1.6)

− 1 ≤ 4F (s) ≤ f(s)s, ∀s ∈ R, (1.7)

where F (s) =

∫ s

0

f(τ)dτ,

and |f ′(s)| ≤ 3(s2 + 1), ∀s ∈ R. (1.8)

We introduce, for every κ ≥ 0, the standard energy norm

∥ ζv(t) ∥2εκ(ϵ)=∥ v(t) ∥2Hκ+1 +ϵ ∥ ∂tv(t) ∥2Hκ + ∥ ∂tv(t) ∥2Hκ−1 ,

where ζv(t) = [v(t), ∂tv(t)].

Thus, the energy spaces εκ(ϵ) coincide with
[
Hκ+1(Ω) ×Hκ(Ω)

]
∩ {ζ|∂Ω = 0}

for all ϵ > 0 and with [Hκ+1(Ω) × Hκ−1(Ω)] ∩ {ζ|∂Ω = 0} if ϵ = 0, where Hκ(Ω)
denotes the standard Sobolev space, the boundary conditions being added only for
the κ for which they make sense. We will write in the sequel ε(ϵ) instead of ε0(ϵ).

We recall that H1
0 (Ω) ⊂ Lp(Ω) ∀p ≥ 1 if n = 1, 2 and p = 6, if n = 3 , and

f : H1
0 (Ω) → L2(Ω) is Lipschitz continuous on each bounded subset of H1

0 (Ω).
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We denote by (., .) and ∥ . ∥ the usual scalar product and the associated norm in
the Hilbert space L2(Ω). We shall note (., .)X and ∥ . ∥X the scalar product and the
associated norm in the Hilbert space X. The constant c0 is the Poincaré constant
in Ω.

In section 1, we prove the existence of solutions when ϵ = 0 by using classical
arguments, and give some estimates we need in the sequel. In section 2, as above the
existence of solutions is proved and some estimates are given when ϵ > 0. In section
3 we obtain several estimates on the difference of solutions of system (1.1) − (1.5)
with ϵ > 0 and ϵ = 0 which are necessary to construct robust exponential attractors.
Finally, in section 4, we apply the abstract result of Fabrie & Galusinski(see [8])
to construct a continuous (as ϵ −→ 0+) family of exponential attractors for system
(1.1)− (1.5). Two uniform (as ϵ → 0+) estimates on the linear problems are given
in an appendix.

2. The limit parabolic-hyperbolic Caginalp system

In this section, we consider the limit parabolic-hyperbolic system

∂tu−∆u+ f(u) = ∂tα, (2.1)

∂2
t α− ∂t∆α−∆α = −∂tu, (2.2)

u = α = 0 on ∂Ω, (2.3)

u(0, x) = u0, ζα|t=0 = [α0, α1], (2.4)

Theorem 2.1. We assume that (u0, α0, α1) ∈ H1
0 (Ω)×H1

0 (Ω)×L2(Ω). Then, the
system (2.1)-(2.4) possesses at least one solution (u, α) such that u ∈ L∞(R+;H

1
0 (Ω))

∩L2(0, T ;H2(Ω) ∩H1
0 (Ω)), α ∈ L∞(R+;H

1
0 (Ω)), ∂tu ∈ L2(0, T ;L2(Ω)) and ∂tα ∈

L∞(R+;L
2(Ω)) ∩ L2(0, T ;H1

0 (Ω)), ∀T > 0.

Proof. Multiply (2.1) by 2∂tu and (2.2) by 2∂tα, integrate over Ω and sum the
two resulting equations. We obtain

d

dt
E1 + 2 ∥ ∂tu ∥2 +2 ∥ ∂tα ∥2H1= 0, (2.5)

where

E1 =∥ u ∥2H1 + ∥ α ∥2H1 + ∥ ∂tα ∥2 +2(F (u), 1).

The existence of a solution is based on the estimate (2.5) and a standard Galerkin
scheme. Multiplying (2.1) by −2∆u and integrating over Ω, we have

d

dt
∥ u ∥2H1 + ∥ u ∥2H2≤ 2 ∥ u ∥2H1 +2 ∥ ∂tα ∥2H1 , (2.6)

which yields u ∈ L2(0, T ;H2(Ω) ∩H1
0 (Ω)).

Theorem 2.2 (Uniqueness). Let the assumptions of Theorem 2.1 hold. Then, the
system (2.1)−(2.4) possesses unique solution (u, α) such that u, α ∈ L∞(R+;H

1
0 (Ω)),

∂tu ∈ L2(0, T ;L2(Ω)) and ∂tα ∈ L∞(R+;L
2(Ω)) ∩ L2(0, T ;H1

0 (Ω)), ∀T > 0.

Proof. Let (u(1), α(1)) and (u(2), α(2)) be two solutions of (2.1)− (2.4) with initial

data (u
(1)
0 , α

(1)
0 , α

(1)
1 ) and (u

(2)
0 , α

(2)
0 , α

(2)
1 ), respectively, and set u = u(1) − u(2) and
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α = α(1) − α(2). Then (u, α) satisfies

∂tu−∆u+ f(u(1))− f(u(2)) = ∂tα, (2.7)

∂2
t α− ∂t∆α−∆α = −∂tu, (2.8)

We multiply (2.7) by 2∂tu and (2.8) by 2∂tα, integrate over Ω and sum the two
resulting equations to obtain

d

dt

(
∥ u ∥2H1 + ∥ α ∥2H1 + ∥ ∂tα ∥2

)
≤ C(∥ u(1) ∥2H1 + ∥ u(2) ∥2H1 +1) ∥ u ∥2H1 ,

(2.9)
which yields the uniquess, as well as the continuous dependence with respect to the
initial data.

Theorem 2.3. We assume that (u0, α0, α1) ∈ (H2(Ω)∩H1
0 (Ω))×(H2(Ω)∩H1

0 (Ω))×
H1

0 (Ω) . Then, the system (2.1) − (2.4) possesses unique solution (u, α) such that
u, α ∈ L∞(0, T ;H2(Ω)∩H1

0 (Ω)), ∂tu ∈ L2(0, T ;H1
0 (Ω)) and ∂tα ∈ L∞(0, T ;H1

0 (Ω))
∩L2(0, T ;H2(Ω) ∩H1

0 (Ω)), ∂
2
t α ∈ L2(0, T ;L2(Ω)), ∀T > 0.

Proof. Following Theorem 2.1, the system (2.1)-(2.4) possesses one solution (u, α)
such that u ∈ L2(0, T ;H2(Ω) ∩ H1

0 (Ω)). We multiply (2.1) by −2∆∂tu and (2.2)
by −2∆∂tα and integrate over Ω, sum the two resulting equations. We have, using
the fac that u ∈ L2(0, T ;H1

0 (Ω)),

d

dt

(
∥ u ∥2H2 + ∥ α ∥2H2 + ∥ ∂tα ∥2H1

)
+ ∥ ∂tu ∥2H1 +2 ∥ ∂tα ∥2H2≤ C ∥ u ∥2H2 ,

(2.10)
which implies u, α ∈ L∞(0, T ;H2(Ω) ∩ H1

0 (Ω)), ∂tu ∈ L2(0, T ;H1
0 (Ω)) and ∂tα ∈

L∞(0, T ;H1
0 (Ω)) ∩ L2(0, T ;H2(Ω) ∩H1

0 (Ω)).

Corollary 2.1. Under the assumptions of Theorem 2.3, ∂2
t α ∈ L2(0, T ;L2(Ω)).

Proof. We multiply (2.2) by 2∂2
t α and integrate over Ω to find the following

d

dt
∥ ∂tα ∥2H1 + ∥ ∂2

t α ∥2 ≤ 2 ∥ α ∥2H2 +2 ∥ ∂tu ∥2, (2.11)

which implies ∂2
t α ∈ L2(0, T ;L2(Ω)).

The phase spaces have the form Φκ = Hκ+1(Ω) × εκ(1) with κ = 0, 1. The
standard energy norms for the unperturbed system are

∥ (u, ζα) ∥2Φκ
=∥ u ∥2Hκ+1 + ∥ ζα ∥2εκ(1) .

Theorems 2.1 and 2.3 allow to define for κ = 0, 1 the solving semigroup St(0)
associated with system (2.1)-(2.2) by

St(0) : Φκ −→ Φκ

(u0, ζα0) 7−→ (u(t), ζα(t)),

where (u, ζα) is such that (u, α) is the unique solution of (2.1)-(2.4) with initial data
(u0, ζα0) = (u(0), ζα(0)) ∈ Φκ.

Theorem 2.4. Let the assumptions of Theorem 2.1 hold and (u, α) be a solution
of the system (2.1)-(2.4) with initial data (u(0), ζα(0)) ∈ Φ0. Then, the following
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estimate is valid

∥ u(t) ∥2H1 + ∥ ζα(t) ∥2ε(1) +
∫ t

0

e−β(t−s)
(
∥ ∂tu(s) ∥2 +∥∂tα∥2+ ∥ ∂tα(s) ∥2H1

)
ds

≤Q(∥ (u(0), ζα(0)) ∥Φ0)e
−βt + C, (2.12)

where Q is a monotonic function.

Proof. Multiply (2.1) by 2u and (2.2) by 2α and integrate over Ω. We have the
following estimates:

d

dt
∥ u ∥2 + ∥ u ∥2H1≤ C + c0 ∥ ∂tα ∥2, C > 0, (2.13)

d

dt

(
∥ α ∥2H1 +2(α, ∂tα)

)
+ ∥ α ∥2H1≤ c0 ∥ ∂tu ∥2 +2 ∥ ∂tα ∥2 . (2.14)

Multiplying (2.2) by 2(−∆)−1∂tα and integrating over Ω, we have

d

dt

(
∥ α ∥2 + ∥ ∂tα ∥2H−1

)
+ ∥ ∂tα ∥2≤ C1 ∥ ∂tu ∥2 . (2.15)

Summing (2.5), ϵ1(2.13), ϵ2(2.14) and ϵ3(2.15) where ϵ1, ϵ2 and ϵ3 > 0 are chosen
small enough such that

ϵ3 − 2ϵ2 − ϵ1c0 > 0,

1− ϵ2c0 − ϵ3C1 > 0,

we have
d

dt
E2 + βE2+ ∥ ∂tu ∥2 +ϵ3∥∂tα∥2+ ∥ ∂tα ∥2H1≤ C ′, (2.16)

where β > 0 and

E2 = E1 + ϵ1 ∥ u ∥2 +ϵ2

(
∥ α ∥2H1 +2(α, ∂tα)

)
+ ϵ3

(
∥ α ∥2 + ∥ ∂tα ∥2H−1

)
.

Applying Gronwall’s inequality and the fact that for a sufficiently small ϵ2 > 0 there
exists k2 > 0 such that

k−1
2 (∥ u(t) ∥2H1 + ∥ ζα(t) ∥2ε(1)) ≤ E2(t) ≤ k2(∥ u(t) ∥2H1 + ∥ ζα(t) ∥2ε(1)),

we obtain

∥ u(t) ∥2H1 + ∥ ζα(t) ∥2ε(1) +
∫ t

0

e−β(t−s)
(
∥ ∂tu(s) ∥2 +∂tα∥2+ ∥ ∂tα(s) ∥2H1

)
ds

≤Q(∥ u(0), ζα(0) ∥Φ0)e
−βt + C. (2.17)

This finishes the proof.

Theorem 2.5. Let the assumptions of Theorem 2.3 hold and (u, α) be a solution
of the system (2.1)-(2.4) with initial data (u(0), ζα(0)) ∈ Φ1. Then, the following
estimate is valid

∥ u(t) ∥2H2 + ∥ ζα(t) ∥2ε1(1)

+

∫ t

0

e−β(t−s)
(
∥ ∂tu(s) ∥2H1 + ∥ ∂tα(s) ∥2H2 + ∥ ∂tα(s) ∥2H1

)
ds

≤Q(∥ (u(0), ζα(0)) ∥Φ1)e
−βt + C, (2.18)

where Q is a monotone function.
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Proof. Multiply (2.1) by −2∆u and (2.2) by −2∆α and integrate over Ω. We
have

d

dt
∥ u ∥2H1 + ∥ u ∥2H2≤ C1 + 2 ∥ ∂tα ∥2, C1 > 0, (2.19)

d

dt

(
∥ α ∥2H2 +2(∇α,∇∂tα)

)
+ ∥ α ∥2H2≤∥ ∂tu ∥2 +2 ∥ ∂tα ∥2H1 . (2.20)

Sum (2.16), ϵ4(2.10), ϵ5(2.19) and ϵ6(2.20), where ϵ4, ϵ5 and ϵ6 > 0) are chosen
small enough such that

1− ϵ6 > 0,

ϵ5 − ϵ4C > 0,

1− 2ϵ5c0 − 2ϵ6 > 0,

we have

d

dt
E3 + βE3 + C1 ∥ ∂tu ∥2H1 +C1 ∥ ∂tα ∥2H2 +C4 ∥ ∂tα ∥2H1≤ C ′′, (2.21)

where

E3 =E2 + ϵ4(∥ u ∥2H2 + ∥ α ∥2H2 + ∥ ∂tα ∥2H1) + ϵ5 ∥ u ∥2H1

+ ϵ6

(
∥ α ∥2H2 +2(∇α,∇∂tα)

)
.

Applying Gronwall’s inequality and the fact that for a sufficiently small ϵ6 > 0 there
exists k3 > 0 such that

k−1
3 (∥ u(t) ∥2H2 + ∥ ζα(t) ∥2ε1(1)) ≤ E3(t) ≤ k3(∥ u(t) ∥2H2 + ∥ ζα(t) ∥2ε1(1)), (2.22)

we obtain

∥ u(t) ∥2H2 + ∥ ζα(t) ∥2ε1(1)

+

∫ t

0

e−β(t−s)
(
∥ ∂tu(s) ∥2H1 + ∥ ∂tα(s) ∥2H2 + ∥ ∂tα(s) ∥2H1

)
ds

≤Q(∥ (u(0), ζα(0)) ∥Φ1)e
−βt + C.

Theorem 2.6. The semigroup St(0) associated with system (2.1)-(2.4) is dissipa-
tive in Φ0, i.e., it possesses a bounded absorbing set B0 in Φ0.

Proof. Let B be a bounded subset of Φ0, and R > 0 such that ∥ (u0, ζα0) ∥Φ0≤
R, ∀(ζu0 , ζα0) ∈ B. It follows from (2.12) an inequality of the form

∥ (u(t), ζα(t)) ∥2Φ0
≤ c(R)e−βt + c′′, (2.23)

where c(R) = Q(∥ (u0, ζα0) ∥Φ0) and c′′ is independent of R. Taking t0 = t0(R) =

− 1
β ln

(
c′′

c(R)

)
, we have ∀t ≥ t0,

∥ (u(t), ζα(t)) ∥2Φ0
≤ 2c′′. (2.24)
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Theorem 2.7. The semigroup St(0) associated with system (2.1)-(2.4) possesses a
bounded absorbing set B1 which is bounded in Φ1.

Proof. Let B be a bounded subset of Φ1 and R be such that ∥ (u0, ζα0) ∥2Φ1
≤

R2, ∀(u0, ζα0) ∈ B. Thanks to (2.18), we have ∀t ≥ 0

∥ (u(t), ζα(t)) ∥2Φ1
≤ C +Q(∥(u0, ζα0)∥Φ1).

Hence, BΦ1(0,
√
2C +Q(∥(u0, ζα0)∥Φ1) is a bounded absorbing set in Φ1 for semi-

group St(0).

Theorem 2.8. Under the assumptions of Theorem 2.1, the semigroup St(0) asso-
ciated to (2.1)-(2.4) possesses the global attractor A which is bounded in Φ0.

Proof. We know that St(0) possesses a bounded absorbing set B0 in Φ0. It is
sufficient to decompose the solution (u, α) ∈ B0 in the form

(u, α) = (ν, η) + (ω, ξ),

where (ν, η) solves

∂tν −∆ν = ∂tη, (2.25)

∂2
t η − ∂t∆η −∆η = −∂tν, (2.26)

ν = η = 0 on ∂Ω,

ν|t=0 = u0, ζη|t=0 = ζα(0),

and (ω, ξ) solves

∂tω −∆ω + f(u) = ∂tξ, (2.27)

∂2
t ξ − ∂t∆ξ −∆ξ = −∂tω, (2.28)

ω = ξ = 0 on ∂Ω

ω|t=0 = ζξ|t=0 = 0,

and to show that

∥ (ν(t), ζη(t)) ∥Φ0 tends to 0, as t −→ +∞,

and

∥ (ω(t), ζξ(t)) ∥Φ1 is regularizing, as t −→ +∞.

It follows from the assumptions of the theorem that f ′(u)∇u ∈ L2(0, T ;L2(Ω)n),
∀T > 0, and

∥ f ′(u)∇u ∥L2(0,T ;L2(Ω)n)≤ (T
1
2 + 1)Q(∥ u0 ∥H1 , ∥ α0 ∥H1 , ∥ α1 ∥) (2.29)

for some function Q. Multiplying (2.25) by 2∂tν and (2.26) by 2∂η, integrating over
Ω and summing the two resulting equations, we have

d

dt

(
∥ ν ∥2H1 + ∥ η ∥2H1 + ∥ ∂tη ∥2

)
+ 2 ∥ ∂ν ∥2 +2 ∥ ∂tη ∥2H1= 0. (2.30)
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Multiplying (2.25) by 2ν and (2.26) by 2η, integrating over Ω, we have the two
following estimates

d

dt
∥ ν ∥2 + ∥ ν ∥2H1≤ c0 ∥ ∂η ∥2, (2.31)

d

dt

(
∥ η ∥2H1 +2(∂tη, η)

)
+ ∥ η ∥2H1≤ c0 ∥ ∂tν ∥2 +2 ∥ ∂η ∥2 . (2.32)

Multiply (2.26) by 2(−∆)−1∂tη integrate over Ω. We find

d

dt

(
∥ ∂tη ∥2H−1 + ∥ η ∥2

)
+ ∥ ∂tη ∥2≤ C1 ∥ ∂tν ∥2 . (2.33)

Summing (2.30), ϵ8(2.31), ϵ9(2.32) and ϵ10(2.33), where ϵ8, ϵ9 and ϵ10 > 0 are chosen
small enough such that

1− c20ϵ8 − 2ϵ9c0 > 0,

1− ϵ9c0 − ϵ10C1 > 0,

we have an inequality of the form

d

dt
E4 + k2E4 ≤ 0, (2.34)

where

E4 = ∥ ν ∥2H1 + ∥ η ∥2H1 + ∥ ∂tη ∥2 +ϵ10 ∥ ν ∥2

+ ϵ11

(
∥ η ∥2H1 +2(∂tη, η)

)
+ ϵ12

(
∥ ∂tη ∥2H−1 + ∥ η ∥2

)
.

Applying Gronwall’s inequality to (2.34) and using the fact that for a sufficiently
small ϵ9 > 0 there exists k3 > 0 such that

k−1
3 ∥ (ν(t), ζη(t)) ∥2Φ0

≤ E4(t) ≤ k3 ∥ (ν(t), ζη(t)) ∥2Φ0
,

we have
∥ (ν(t), ζη(t)) ∥2Φ0

≤ Ce−k2t ∥ (u(0), ζη(0) ∥2Φ0
, C > 0. (2.35)

Then, ∥ (ν(t), ζη(t)) ∥Φ0 tends to 0 as t −→ +∞.
Multiplying (2.27) by −2∆∂tω and (2.28) by −2∆∂tξ, integrating over Ω, sum-

ming the two resulting equations, we have

d

dt

(
∥ ω ∥2H2 + ∥ ξ ∥2H2 + ∥ ∂tξ ∥2H1

)
+ ∥ ∂tω ∥2H1 +2 ∥ ∂tξ ∥2H2≤ C1 ∥ f ′(u)∇u ∥2,

C1 > 0. (2.36)

Multiply (2.28) by 2∂tξ and integrate over Ω. We obtain

d

dt

(
∥ ξ ∥2H1 + ∥ ∂tξ ∥2

)
+ ∥ ∂tξ ∥2H1≤ c0 ∥ ∂tω ∥2, C2 > 0. (2.37)

Summing (2.36) and ϵ11(2.37), where ϵ11 > 0 such that

1− c20ϵ11 > 0,
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we have
d

dt
E5 ≤ C1 ∥ f ′(u)∇u ∥2, (2.38)

where

E5 =∥ ω ∥2H2 + ∥ ξ ∥2H2 + ∥ ∂tξ ∥2H1 +ϵ12

(
∥ ξ ∥2H1 + ∥ ∂tξ ∥2

)
satisfies

C ∥ (ω(t), ζξ(t)) ∥2Φ1
≤ E5(t). (2.39)

We thus deduce from (2.29), (2.38) and (2.39) that

∥ (ω(t), ζξ(t)) ∥2Φ1
≤ C(T 2 + 1)Q2(∥ u0 ∥H1 , ∥ α0 ∥H1 , ∥ α1 ∥), t ≥ 0, (2.40)

Then, ∥ (ω(t), ζξ(t)) ∥Φ1 is regularizing, as t −→ +∞.
In order to end this section, we give some lemmas which allow to obtain a

uniform estimate of ∥ ∂2
t u ∥H−1 that we need in the third section.

Lemma 2.1. Let the assumptions of Theorem 2.3 hold and (u, α) be a solution of
(2.1)-(2.4) such that (u(0), ζα(0)) ∈ Φ1. Then, the following estimate

∥u(t)∥2H1+ ∥ ζα(t) ∥2ε(1)

+

∫ t

0

(
∥u(s)∥2H1+ ∥ ∂tu(s) ∥2H−1 +∥∂tα∥2H−1+ ∥ ∂2

t α(s) ∥2H−1

)
e−β(t−s)ds

≤Q(∥ (u(0), ζα(0)) ∥Φ1)e
−βt + C, (2.41)

where Q is a monotonic function, is valid.

Proof. Multiply (2.1) by 2(−∆)−1∂tu and (2.2) by 2(−∆)−1∂tα , integrate over
Ω and sum the two resulting equations. We have

d

dt

(
∥u∥2 + ∥α∥2 + ∥∂tα∥2H−1

)
+ ∥∂tu∥2H−1 + 2∥∂tα∥2 ≤ C. (2.42)

Multiplying (2.1) by 2u and (2.2) by 2α and integrating over Ω, we obtain

d

dt
∥u∥2H1 + ∥u∥2H1 ≤ C + c0∥∂tα∥2, (2.43)

d

dt

(
∥α∥2H1 + 2(α, ∂tα)

)
+ ∥α∥2H1 ≤ ∥∂tu∥2H−1 + 2∥∂tα∥2. (2.44)

Multiply (2.2) by 2(−∆)−1∂2
t α and integrate over Ω. We obtain

d

dt

(
∥∂tα∥2 + 2(α, ∂tα)

)
+ ∥∂2

t α∥2H−1 ≤ ∥∂tu∥2H−1 + 2∥∂tα∥2. (2.45)

Summing (2.42), ϵ12(2.43), ϵ13(2.44) and ϵ14(2.45) where ϵ12, ϵ13 and ϵ14 > 0 are
chosen small enough such that

1− ϵ13 − ϵ14 > 0.

1− 2ϵ13 − ϵ12c0 − 2ϵ14 > 0,

we have

d

dt
E6 + βE6 +

ϵ12
2
∥u(t)∥2H1 + C2 ∥ ∂tu ∥2H−1 +ϵ14 ∥ ∂2

t α ∥2H−1≤ C, (2.46)
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where

E6 =∥u∥2 + ∥α∥2 + 1

2
∥∂tα∥2H−1 + ϵ12∥u∥2H1

+ ϵ13(∥α∥2H1 + 2(α, ∂tα)) + ϵ14(∥∂tα∥2 + 2(α, ∂tα)).

Moreover, for a sufficiently small ϵ13 and ϵ14, we have

C−1(∥u(t)∥2H1+ ∥ α(t) ∥2H1 + ∥ ∂tα(t) ∥2)
≤E6(t) ≤ C(∥u(t)∥2H1+ ∥ α(t) ∥2H1 + ∥ ∂tα(t) ∥2). (2.47)

Applying Gronwall’s inequality, we have

E6(t) +

∫ t

0

(
∥u(t)∥2H1+ ∥ ∂tu ∥2H−1 + ∥ ∂2

t α ∥2H−1

)
e−β(t−s)ds

≤E6(0)e
−βt + C. (2.48)

Thanks to estimate (2.47), we have

∥u(t)∥2H1+ ∥ α(t) ∥2H1 + ∥ ∂tα(t) ∥2

+

∫ t

0

(
∥u(s)∥2H1+ ∥ ∂tu(s) ∥2H−1 +∥∂tα∥2H−1+ ∥ ∂2

t α(s) ∥2H−1

)
e−β(t−s)ds

≤C +Q(∥(u(0), ζα(0))∥Φ1)e
−βt + C.

Lemma 2.2. Let the assumptions of Theorem 2.3 hold and (u, α) be a solution of
(2.1)-(2.4) with initial data (u(0), ζα(0)) ∈ Φ1. Then the following estimate

∥ α(t) ∥2H1 + ∥ ∂tα(t) ∥2H1 +

∫ t

0

∥∂2
t α(t)∥2e−β(t−s)ds

≤Q(∥ (u(0), ζα(0)) ∥Φ1)e
−βt + C, (2.49)

where Q is a monotonic function, is valid.

Proof. Multiply (2.1) by 2∂tα and integrate over Ω. We have

d

dt

(
∥α∥2H1 + ∥∂tα∥2

)
+ ∥∂tα∥2H1 ≤ c0∥∂tu∥2. (2.50)

Multiplying (2.1) by 2∂2
t α and integrate over Ω. We have

d

dt

(
∥∂tα∥2H1 − 2(∂tα,∆α)

)
+ ∥∂2

t α∥2 ≤ ∥∂tu∥2 + 2∥∂tα∥2H1 . (2.51)

Summing (2.50), ϵ15(2.14), ϵ16(2.51) where ϵ15 and ϵ16 are small enough, we get

d

dt
E7 + βE7 + C3∥∂2

t α∥2 ≤ C4∥∂tu∥2. (2.52)

Applying Gronwall’s inequality, we have

E7(t) +

∫ t

0

∥∂2
t α(s)∥2e−β(t−s)ds ≤ E7(0) +

∫ t

0

∥∂tu(s)∥2e−β(t−s)ds. (2.53)
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There exists C > 0 such that

C−1(∥∂tα(t)∥2H1 + ∥α(t)∥2H1) ≤ E7(t) ≤ C(∥∂tα(t)∥2H1 + ∥α(t)∥2H1). (2.54)

Thanks to above estimate and estimate (2.12), we obtain estimate (2.49).
We differentiate the two equations of system (2.1)-(2.4) with respect to t and

set p(t) = ∂tu and q = ∂tα. Then, (p, q) satisfies the following system

∂tp−∆p+ f ′(u)p = ∂tq, (2.55)

∂2
t q −∆∂tq −∆q = −∂tp. (2.56)

Lemma 2.3. Let the assumptions of Theorem 2.3 hold and (u, α) be a solution of
(2.1)-(2.4) with initial data (u(0), ζα(0)) ∈ Φ1. Then the following estimate

∥∂tu(t)∥2H−1 + ∥∂tα(t)∥2H−1 +

∫ t+1

t

∥∂tu(s)∥2H−1e−β(t−s)ds

≤Q(∥ (u(0), ζα(0)) ∥Φ1)e
−βt + C (2.57)

is valid for t ≥ 1.

Proof. Multiply (2.1) by 2t(∂tu+ ϵ17(−∆)−1∂2
t u) and integrate over Ω. We have

d

dt
(tE8) + βtE8 + Ct∥∂tu∥2 ≤C1t∥u(t)∥2H1 + C2t∥∂tu(t)∥2H−1 + C3t∥∂tα(t)∥2H−1

+ C4t∥∂2
t α(t)∥2H−1 + C5t+ E8,

where

E8(t) =∥u(t)∥2H1 + ϵ16

(
∥∂tu(t)∥2H−1 + 2(u, ∂tu) + 2(f(u)− ∂tα, (−∆)−1∂u)

)
+ 4∥f(u)∥2H−1 + 4∥∂tα(t)∥2H−1 . (2.58)

Applying Gronwall’s inequality, we have

tE8(t) +

∫ t

0

s∥∂tu(s)∥2e−β(t−s)ds

≤C(t+ 1)

∫ t

0

(
1 + ∥∂tu(s)∥2H−1 + C3∥∂tα(s)∥2H−1

+ C4∥∂2
t α(s)∥2H−1

)
e−β(t−s)ds. (2.59)

Thanks to (2.41) and the fact that there exists C > 0 such that

C−1(∥∂tu(t)∥2H−1 + ∥∂tα(t)∥2H−1) ≤ E8(t), (2.60)

(2.59) implies estimate (2.57).

Lemma 2.4. Let the assumptions of Theorem 2.3 hold and (u, α) be a solution of
(2.1)-(2.4) with initial data (u(0), ζα(0)) ∈ Φ1. Then the following estimate

∥ ∂tu(t) ∥2 + ∥ ∂tα(t) ∥2 +∥∂2
t α(t)∥2 + ∥∂2

t α(t)∥2H−1

+

∫ t+1

t

(
∥ ∂2

t u(s) ∥2H−1 +∥∂3
t α(t)∥2H−1

)
e−β(t−s)ds

≤Q(∥ (u(0), ζα(0)) ∥Φ1)e
−βt + C (2.61)

is valid for t ≥ 1.
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Proof. Multiply (2.55) by 2t(−∆)−1∂tp and (2.56) by 2t(−∆)−1∂tq, integrate
over Ω and sum the two resulting equations. We have

t
d

dt

(
∥ p ∥2 +∥∂tq∥2H−1 + ∥q∥2

)
+ t ∥ ∂tp ∥2H−1 +2t∥∂tq∥2 ≤ C1t ∥ p ∥2H−1 . (2.62)

Owing to (2.55), we have

−∆p = −∂tp− f ′(u)p+ ∂tq. (2.63)

Multiply (2.63) par 2(−∆)−1p and integrate over Ω. We have

∥p∥2 ≤ C2∥∂tp∥2H−1 + C3∥p∥2H−1 + C4∥∂tq∥2H−1 . (2.64)

Multiply (2.56) by 2(−∆)−1∂2
t q, and integrate over Ω. We obtain

d

dt

(
∥∂tq∥2 + 2(q, ∂tq)

)
+ ∥∂2

t q∥2H−1 ≤ ∥∂tp∥2H−1 + 2∥∂tq∥2 (2.65)

Multiply (2.56) by 2(−∆)−1q and integrate over Ω. We have

d

dt

(
∥q∥2 + 2(−∆)−1q, ∂tq)

)
+ ∥q∥2 ≤ C2∥∂tp∥2H−1 + 2∥∂tq∥2H−1 . (2.66)

Summing (2.62), ϵ18t(2.65), and ϵ19t(2.66) where ϵ18 and ϵ19 > 0 are small enough,
we have an inequality on the form

d

dt
(tE9) + βtE9 + C1t ∥ ∂tp ∥2H−1 +C3t ∥ ∂2

t q ∥2H−1

≤C5t(∥ p(s) ∥2H−1 + ∥ ∂tq(s) ∥2H−1) + E9,

where

E9 =∥p∥2 + ∥∂tq∥2H−1 + ∥q∥2

+ ϵ18

(
∥∂tq∥2 + 2(q, ∂tq)

)
+ ϵ19

(
∥q∥2 + 2((−∆)−1q, ∂tq)

)
.

Applying Gronwall’s inequality, we get

tE9(t) +

∫ t

0

s(∥ ∂tp(s) ∥2H−1 +t ∥ ∂2
t q(s) ∥2H−1)e−β(t−s)ds

≤
∫ t

0

s ∥ p(s) ∥2H−1 e−β(t−s)ds+

∫ t

0

E9(s)e
−β(t−s)ds. (2.67)

There exists C > 0 such that

C−1
(
∥p∥2 + ∥∂tq∥2 + ∥∂tq∥2H−1 + ∥q∥2

)
≤E9(t) ≤ C

(
∥p∥2 + ∥∂tq∥2 + ∥∂tq∥2H−1 + ∥q∥2

)
.

Thanks to the above estimates, (2.67) can be written as follows

t
(
∥p(t)∥2 + ∥∂tq(t)∥2 + ∥∂tq(t)∥2H−1 + ∥q(t)∥2

)
+

∫ t

0

s(∥ ∂tp(s) ∥2H−1 +t ∥ ∂2
t q(s) ∥2H−1)e−β(t−s)ds

≤
∫ t

0

s(∥ p(s) ∥2H−1 + ∥ ∂tq(s) ∥2H−1)e−β(t−s)ds

+

∫ t

0

(∥p(s)∥2 + ∥∂tq(s)∥2 + ∥∂tq(s)∥2H−1 + ∥q(s)∥2)e−β(t−s)ds,
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which implies

∥p(t)∥2 + ∥∂tq(t)∥2 + ∥∂tq(t)∥2H−1 + ∥q(t)∥2

+

∫ t+1

t

(∥ ∂tp(s) ∥2H−1 +t ∥ ∂2
t q(s) ∥2H−1)e−β(t−s)ds

≤C
t+ 1

t

∫ t

0

(∥p(s)∥2 + ∥∂tq(s)∥2 + ∥∂tq(s)∥2H−1 + ∥q(s)∥2)e−β(t−s)ds. (2.68)

Thanks to estimates (2.12), (2.41) and (2.49), we obtain (2.61).

Lemma 2.5. Let the assumptions of Theorem 2.3 hold and (u, α) be a solution of
(2.1)-(2.4) with initial data (u(0), ζα(0)) ∈ Φ1. Then the following estimate

∥ ∂tu(t) ∥2H1 + ∥ ∂tu(t) ∥2 +

∫ t+1

t

∥ ∂2
t u(s) ∥2 e−β(t−s)ds

≤Q(∥ (u(0), ζα(0)) ∥Φ1 e−βt + C (2.69)

is valid for t ≥ 1.

Proof. Multiplying equation (2.55) by 2∂tp, integrating over Ω, we obtain

d

dt

(
t(∥p∥2H1 + ∥p∥2)

)
+ βt(∥p∥2H1 + ∥p∥2) ≤ C1t∥p∥2H1 + 2t∥∂tq∥2 + ∥p∥2H1 + ∥p∥2.

Applying Gronwall’s inequality, owing to estimates (2.18) and (2.49), we have the
required estimate.

Proposition 2.1. Let the assumptions of Theorem 2.3 hold and (u, α) be a solution
of the system (2.1)-(2.4) with initial data (u(0), ζα(0)) ∈ Φ1. Then the following
estimate

∥ ∂2
t u ∥2H−1 + ∥ ∂2

t α ∥2H−1 +

∫ t

0

∥ (∂3
t u(s) ∥2H−1 e−β(t−s)ds

≤C +Q(∥ (u(0), ζα(0)) ∥Φ1)e
−βt, (2.70)

where Q is a monotone increasing function and t ≥ 2, is valid.

Proof. We differentiate equation (2.55) with respect to t and set w(t) = ∂tp =
∂2
t u. We obtain

∂tw −∆w − f ′′(u)p2 + f ′(u)w = ∂2
t q.

Multiplying the above equation by 2(t−1)(−∆)−1w and integrating over Ω, we find

d

dt

(
(t− 1)E10)

)
+ β(t− 1)E10 +

t− 1

2
∥∂tw∥2H−1

≤ C1(t− 1)∥p∥4H1 + C3(t− 1)∥w∥2H−1

+ C2(t− 1)∥∂2
t q∥2H−1 + ∥w∥2 + ∥w∥2H−1 , (2.71)

where
E10 = ∥w∥2 + ∥w∥2H−1 .

Thanks to estimate (2.69) which gives a uniform estimate of ∥∂tu∥H1 , we have

(t− 1)∥p∥4H1 ≤ (t+ 1)
(
Q(∥(u(0), ζα(0))∥Φ1)e

−βt + C
)
, (2.72)
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where Q is an appropriate function and t ≥ 1. Inserting above estimate into (2.71)
and applying Gronwall’s inequality, we have

(t− 1)
(
E10(t) +

∫ t+1

t

∥∂tw∥2H−1e−β(t−s)ds
)

≤C(t+ 1)

∫ t

0

(∥w∥2 + ∥∂tw∥2H−1 + ∥∂2
t q∥H−1 + ∥(u(0), ζα(0))∥Φ1)e

−βt

+ C)e−β(t−s)ds.

Thanks to estimates (2.18) and (2.49), we find the required estimate. This finishes
the proof.

3. The perturbed hyperbolic Caginalp system

In this section, we consider the hyperbolic system associated with the system (1.1)-
(1.5) for ϵ > 0. As for the study of the unperturbed system, we give some results
that are needed on order to study the continuity of exponential attractors.

Theorem 3.1 (Existence). We assume that (u0, u1, α0, α1) ∈ H1
0 (Ω) × L2(Ω) ×

H1
0 (Ω)× L2(Ω). Then, the system (1.1)-(1.5) possesses at least one solution (u, α)

such that u, α ∈ L∞(R+;H
1
0 (Ω)) , ∂tu ∈ L∞(R+;L

2(Ω)) ∩ L2(0, T ;L2(Ω)), ∂tα ∈
L∞(R+;L

2(Ω)) ∩ L2(0, T ;H1
0 (Ω)), ∀T > 0.

Proof. Multiply (1.1) by 2∂tu and (1.2) by 2∂tα, integrate over Ω and sum the
two resulting equations. We obtain

d

dt
E11 + 2 ∥ ∂tu ∥2 +2 ∥ ∂tα ∥2H1= 0, (3.1)

where
E11 =∥ u ∥2H1 +ϵ ∥ ∂tu ∥2 + ∥ α ∥2H1 + ∥ ∂tα ∥2 +2(F (u), 1).

The existence of the solution is based on the estimate (3.1) and a standard Galerkin
scheme.

Theorem 3.2 (Uniqueness). Under the assumptions of the Theorem 3.1, the sys-
tem (1.1)-(1.5) possesses a unique solution (u, α) such that u, α ∈ L∞(R+;H

1
0 (Ω)),

∂tu ∈ L∞(R+;L
2(Ω))∩L2(0, T ;L2(Ω)) and ∂tα ∈ L∞(R+;L

2(Ω))∩L2(0, T ;H1
0 (Ω)).

Proof. Let (u(1), α(1)) and (u(2), α(2)) be two solutions of (1.1)− (1.5) with initial

data (u
(1)
0 (0), u

(1)
1 (0), α

(1)
0 (0), α

(1)
1 (0)) and (u

(2)
0 (0), u

(2)
1 (0), α

(2)
0 (0), α

(2)
1 (0)) , respec-

tively, and set u = u(1) − u(2) and α = α(1) − α(2). Then (u, α) satisfies

ϵ∂2
t u+ ∂tu−∆u+ f(u(1))− f(u(2)) = ∂tα (3.2)

∂2
t α−∆∂tα−∆α = −∂tu. (3.3)

Multiplying (3.2) by 2∂tu and (3.3) by 2∂tα, integrating over Ω, summing the two
resulting equations, we have

d

dt

(
∥ u ∥2H1 +ϵ ∥ ∂tu ∥2 + ∥ ∂tα ∥2 + ∥ α ∥2H1

)
≤ C ′′

3 ∥ u ∥2H1 . (3.4)

We have the continuous dependence of the solution on the initial data, which implies
the uniqueness of the solution.
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Theorem 3.3. We assume that (u0, u1, α0, α1) ∈ (H2(Ω) ∩ H1
0 (Ω)) × H1

0 (Ω) ×
(H2(Ω) ∩H1

0 (Ω)) ×H1
0 (Ω). Then, the system (1.1)-(1.5) possesses the unique so-

lution (u, α) such that u, α ∈ L∞(0, T ;H2(Ω) ∩H1
0 (Ω)), ∂tu ∈ L∞(0, T ;H1

0 (Ω)) ∩
L2(0, T ;H1

0 (Ω)), ∂tα ∈ L∞(0, T ;H1
0 (Ω))∩L2(0, T ;H2(Ω)∩H1

0 (Ω)) and ∂2
t u, ∂

2
t α ∈

L2(0, T ;L2(Ω)), ∀T > 0.

Proof. It follows from Theorem 3.1 that the perturbed system possesses a solution
(u, α) such that u ∈ L∞(R+;H

1
0 (Ω)).

Multiply (1.1) by −2∆∂tu and (1.2) by −2∆∂tα, integrate over Ω, and sum the
two resulting equations. We find

d

dt
E12 + 2 ∥ ∂tu ∥2H1 +2 ∥ ∂tα ∥2H2≤ C(∥ u ∥4H1 +1) ∥ u ∥2H2 + ∥ ∂tu ∥2H1 , (3.5)

where
E12 = ϵ∥∂tu∥2H1 + ∥u∥2H2 + ∥α∥2H2 + ∥∂tα∥2H1 . (3.6)

We remark that for n = 2, 3, we have H1 ⊂ L6, so that by Hölder’s inequality,∫
Ω

(|u|2 + 1)|∇u||∇∂tu|dx ≤ C(∥ u ∥2H1 +1) ∥ u ∥H2∥ ∂tu ∥H1 . (3.7)

Thanks to above estimate, (3.5) implies

d

dt
E12 + 2 ∥ ∂tu ∥2H1 +2 ∥ ∂tα ∥2H2≤ C(∥ u ∥4H1 +1) ∥ u ∥2H2 + ∥ ∂tu ∥2H1 , (3.8)

which yields, owing to u ∈ L∞(R+;H
1
0 (Ω)),

d

dt
E12+ ∥ ∂tu ∥2H1 +2 ∥ ∂tα ∥2H2≤ C ∥ u ∥2H2 +C. (3.9)

Applying Gronwall’s inequality, we have u, α ∈ L∞(0, T ;H2(Ω) ∩ H1
0 (Ω)), ∂tu ∈

L∞(0, T ;H2(Ω) ∩ H1
0 (Ω)) ∩ L2(0, T ;H1

0 (Ω)), ∂tα ∈ L∞(0, T ;H1
0 (Ω)) ∩ L2(0, T ;

H2(Ω) ∩H1
0 (Ω)) and ∂2

t α ∈ L∞(0, T ;L2(Ω)), ∀T > 0.
Multiplying (1.1) by 2∂2

t u , integrating over Ω, we obtain an estimate of the
form

d

dt
∥ ∂tu ∥2 +ϵ ∥ ∂2

t u ∥2≤ c9 ∥ u ∥2H2 +c10 ∥ ∂tα ∥2 +c11 ∥ f(u) ∥2, (3.10)

which yields that ∂2
t u ∈ L2(0, T ;L2(Ω)), ∀T > 0.

The phase spaces have the form Φ2+κ = εκ(ϵ) × εκ(1) with κ = 0, 1. The
standard energy norms for the perturbed system are

∥ (ζu(t), ζα(t)) ∥2Φ2+κ
=∥ ζu(t) ∥2εκ(ϵ) + ∥ ζα(t) ∥2εκ(1) .

Thanks to Theorem 3.1 and 3.3, we define the solving semigroup Sϵ(t) associated
with system (1.1)-(1.5) by

St(ϵ) : Φ2+κ −→ Φ2+κ

(ζu0 , ζα0) 7−→ (ζu(t), ζα(t)),

where (ζu(t), ζα(t)) is such that (u, α) is the unique solution of (1.1) − (1.5) with
initial data (ζu(0), ζα(0)) ∈ Φ2+κ for κ = 0, 1. The following lemma allows to give
uniform estimate for ∥ u ∥H1 , ∥ ∂tu ∥ and ∥ ∂tα ∥.
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Theorem 3.4. Let the assumptions of Theorem 3.1 hold and (u, α) be the solution
of the system (1.1)-(1.5) with initial data (ζu(0), ζα(0)) ∈ Φ2. Then, the following
estimate is valid

ϵ ∥ ∂tu ∥2 + ∥ u ∥2H1 + ∥ ∂tα ∥2 + ∥ α ∥2H1

+

∫ t

0

e−β(t−s)
(
∥ ∂tu(s) ∥2 + ∥ ∂tα(s) ∥2H1

)
ds

≤Q(∥ (ζu(0), ζα(0)) ∥Φ2)e
−βt + C, (3.11)

where C and β are independent of ϵ, and Q is a monotonic function.

Proof. Multiplying (1.1) by 2u and integrating over Ω, we obtain

d

dt

(
∥ u ∥2 +2ϵ(∂tu, u)

)
+ ∥ u ∥2H1≤ C ′′ + c0 ∥ ∂tα ∥2 +2ϵ ∥ ∂tu ∥2 . (3.12)

Multiplying (1.2) by 2α and integrating over Ω, we obtain the following estimate

d

dt

(
∥ α ∥2H1 +2(α, ∂tα)

)
+ ∥ α ∥2H1 ≤ c0 ∥ ∂tu ∥2 +2 ∥ ∂tα ∥2 . (3.13)

We sum (3.1), ϵ20(3.12) and ϵ21(3.13) where ϵ20 and ϵ21 > 0 are chosen small enough,
we have an inequality of the form

d

dt
E13 + βE13+ ∥ ∂tu ∥2 + ∥ ∂tα ∥2H1≤ C ′, β, C ′ > 0, (3.14)

where β is independent of ϵ and

E13(t) =E11(t) + ϵ20

(
∥ u(t) ∥2 +2ϵ(∂tu(t), u(t))

)
+ ϵ21

(
∥ α ∥2H1 +2(α(t), ∂tα(t))

)
.

Moreover, for ϵ20 and ϵ21 > 0 sufficiently small, we have, obviously

C−1
1 (ϵ∥∂tu(t)∥2 + ∥u(t)∥2H1 + ∥∂tα(t)∥2 + ∥α(t)∥2H1)

≤ E13(t) ≤ C1(ϵ∥∂tu(t)∥2 + ∥u(t)∥2H1 + ∥∂tα(t)∥2 + ∥α(t)∥2H1),

where the constant C1 is independent of ϵ.
Applying Gronwall’s inequality to (3.14), we obtain (3.11).

Theorem 3.5. We assume that the assumptions of Theorem 3.1 hold and (u, α)
is the solution of the system (1.1)-(1.5) such that (ζu(0), ζα(0)) ∈ Φ2. Then,
(ζu(t), ζα(t)) verifies the following estimate

∥ (ζu(t), ζα(t)) ∥2Φ2
+

∫ t

0

e−β(t−s)
(
∥ ∂tu ∥2 + ∥ ∂tα(s) ∥2H1

)
ds

≤ Q(∥ (ζu(0), ζα(0)) ∥Φ2)e
−βt + C, (3.15)

where the positive constants C and β are independent of ϵ and Q is monotonic a
function.



Hyperbolic Caginalp system 167

Proof. Equation (1.1) is the initial and boundary value problem for the singularly
perturbed damped hyperbolic equation and can be written on the form

ϵ∂2
t u(t)+∂tu(t)−∆u(t) = −f(u(t))+∂tα(t) = hu,α(t), hu,α(t)|∂Ω = u(t)|∂Ω = 0.

(3.16)
In order to deduce the uniform energy estimate for the initial and boundary value
problem for a singularly perturbed damped hyperbolic equation (3.16), we apply
estimate (5.37) in the appendix and have an estimate of the form

∥ ζu(t) ∥2ε(ϵ) +
∫ t

0

e−β(t−s) ∥ ∂tu(s) ∥2 ds

≤Ce−βt(∥ ζu(0) ∥2ε(ϵ) + ∥ hu,α(0) ∥2H−1)

+ C
(∫ t

0

e−β(t−s)(∥ ∂th(s) ∥H−1 + ∥ h(s) ∥H−1)ds
)2

, (3.17)

where the positive constants β and C are independent of ϵ. In order to estimate
the last term in the right-hand side of (3.17), we first estimate ∥ hu,α(s) ∥H−1 + ∥
∂thu,α(s) ∥H−1 . Thus, we have

∥ hu,α(s) ∥H−1 + ∥ ∂thu,α(s) ∥H−1≤ ∥ f(u) ∥H−1 + ∥ ∂tα ∥H−1 + ∥ f ′(u)∂tu ∥H−1

+ ∥ ∂2
t α ∥H−1 . (3.18)

Thanks to estimate (3.11), we have uniform estimates for ∥ u ∥H1 , ∥ ∂tu ∥, ∥ α ∥H1

and ∥ ∂tα ∥. Then, for w ∈ H1
0 (Ω), we have

|(f(u), w)| ≤∥ u ∥L4 (∥ u ∥2L4 +1) ∥ w ∥L4

≤∥ u ∥H1 (∥ u ∥2H1 +1) ∥ w ∥H1≤ C ∥ w ∥H1 ,

and, thus
∥ f(u) ∥H−1≤ C, (3.19)

where the constant C is independent of ϵ. For the second term of right-hand side
(3.18), we have

∥ ∂tα ∥H−1≤ C. (3.20)

For the third term of right-hand side (3.18), we have

|(f ′(u)∂tu,w)| ≤ (∥ u ∥2L6 +1) ∥ ∂tu ∥∥ w ∥L6

≤ (∥ u ∥2H1 +1) ∥ ∂tu ∥∥ w ∥H1≤ C ∥ w ∥H1 ,

which yields
∥ f ′(u)∂tu ∥H−1≤ C. (3.21)

From equation (1.2), we have

∥ ∂2
t α ∥H−1≤∥ ∂tα ∥H1 + ∥ α ∥H1 + ∥ ∂tu ∥H−1≤ C (3.22)

Thanks to estimates (3.19)− (3.22), we have

∥ hu,α(s) ∥H−1 + ∥ ∂thu,α(s) ∥H−1≤ C+ ∥ ∂tα ∥H1 , (3.23)

where C is independent of ϵ.
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Inserting (3.23) into the right-hand side of (3.17), we have, owing to (3.11),

∥ ζu(t) ∥2ε(ϵ) +
∫ t

0

e−β(t−s) ∥ ∂tu(s) ∥2 ds ≤ Ce−βt + C, (3.24)

where the positive constants C is independent of ϵ.
In order to obtain the desired estimate for ∥ ζα(t) ∥ε(1), we multiply (1.2) by

2(I + (−∆)−1)∂tα and integrate over Ω. We have

d

dt
(∥ ζα ∥2ε(1) + ∥ α ∥2)+ ∥ ∂tα ∥2H1 + ∥ ∂tα ∥2≤ C ∥ ∂tu ∥2 . (3.25)

Summing (3.25) and ϵ22(3.13) where ϵ22 > 0 is chosen small enough, we have an
inequality of the form

d

dt
E14 + βE14+ ∥ ∂tα ∥2H1≤ C ∥ ∂tu ∥2, (3.26)

where

E14 =∥ ζα ∥2ε(1) + ∥ α ∥2 +ϵ22

(
∥α∥2H1 + 2(α, ∂α)

)
.

Applying Gronwall’s inequality, we obtain

E14(t) +

∫ t

0

∥ ∂tα(s) ∥2H1 e−β(t−s)ds ≤ E14(0) + C

∫ t

0

∥ ∂tu(s) ∥2 e−β(t−s)ds.

Moreover, for ϵ22 > 0 sufficiently small, we have, obviously

C−1
1 ∥ζα(t)∥2ε(1) ≤ E14(t) ≤ C1∥ζα(t)∥2ε(1).

Thanks to the above inequality and estimate (3.11), we have

∥ζα(t)∥2ε(1)+
∫ t

0

∥ ∂tα(s) ∥2H1 e−β(t−s)ds ≤ Q(∥ (ζu(0), ζα(0)) ∥Φ2)e
−βt+C, (3.27)

where the positive constants C,C1 and β are independent of ϵ. Combining (3.24)
and (3.27) we obtain the desired estimate. This finishes the proof.

Theorem 3.6. The semigroup associated with system (2.1)-(2.4) is dissipative in
Φ2, i.e., it possesses a bounded absorbing set B1

R0
(ϵ) in Φ2.

In order to prove this Theorem, use estimate (3.15) and make as in the proof of
Theorem (2.6).

Note

B1
R0

(ϵ) = {(ζu, ζα) ∈ Φ2 :∥ (ζu, ζα) ∥Φ2≤ R0}, (3.28)

the bounded absorbing set for St(ϵ) in phases space ε(ϵ) × ε(1), where R0 is large
enough.

Lemma 3.1. Let the assumptions of Theorem 3.1 hold and (u, α) be the solution
of system (1.1)-(1.5) with initial data (ζu(0), ζα(0)) ∈ B1

R0
∩Φ3. Then, (u(t), α(t))

verifies the following estimate

∥ u(t) ∥2H2 +ϵ ∥ ∂tu(t) ∥2H1 + ∥ α(t) ∥2H2 + ∥ ∂tα(t) ∥H1

+

∫ t

0

(∥ ∂tu(s) ∥2H1 + ∥ ∂tα(s) ∥2H2)e−β(t−s)ds

≤Q(∥ (ζu(0), ζα(0)) ∥Φ3)e
−βt + C, (3.29)
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where the positive constants β and C are independent of ϵ, and Q is a monotonic
function.

Proof. Multiply (1.1) by −2∆u and (1.2) by −2∆α and integrate over Ω. We
have

d

dt

(
∥ u ∥2H1 +2ϵ(∇u,∇∂tu)

)
+ ∥ u ∥H2≤ C1 + c0 ∥ ∂tα ∥2H1 +2ϵ ∥ ∂tu ∥2H1 ,

(3.30)

d

dt

(
∥ α ∥2H2 +2(∇α,∇∂tα)

)
+ ∥ α ∥2H2≤ 2 ∥ ∂tα ∥2H1 + ∥ ∂tu ∥2 . (3.31)

Summing (3.14), ϵ23(3.9), ϵ24(3.30) and ϵ25(3.31) where ϵ23, ϵ24, and ϵ25 > 0 are
chosen small enough such that

1− c0ϵ25 > 0,
ϵ23
2

− 2ϵc0ϵ24 > 0,

1

2
− ϵ24c0 − 2ϵ25 > 0, ϵ24 − ϵ23C > 0,

we have
d

dt
E15(t) + βE15 +

ϵ23
2

∥ ∂tu ∥2H1 +
1

2
∥ ∂tα ∥2H2≤ C, (3.32)

where the positive constants C is independent of ϵ, and

E15 =ϵ23E12 + E13 + ϵ24

(
∥ u ∥2 +2ϵ(u, ∂tu)

)
+ ϵ25

(
∥ α ∥2H2 +2(∇α,∇∂tα)

)
,

is such that for some C > 0, we have

C−1(ϵ ∥ ∂tu(t) ∥2H1 + ∥ u(t) ∥2H2 + ∥ ∂tα(t) ∥2H1 + ∥ α(t) ∥2H2)(t)

≤E15 ≤ C(ϵ ∥ ∂tu(t) ∥2H1 + ∥ u(t) ∥2H2 + ∥ ∂tα(t) ∥2H1 + ∥ α(t) ∥2H2). (3.33)

Applying Gronwall’s inequality to (3.32), owing to (3.33), we obtain the desired
estimate.

Theorem 3.7. Let the assumptions of Theorem 3.1 hold and (u, α) be the solu-
tion of system (1.1)-(1.5) with initial data (ζu(0), ζα(0)) ∈ B1

R0
(ϵ) ∩ B2

R(ϵ). Then,
(ζu(t), ζα(t)) verifies the following estimate

∥ (ζu(t), ζα(t)) ∥2Φ3
+

∫ t

0

(∥ ∂tu(s) ∥2H1 + ∥ ∂tα(s) ∥2H2)e−β(t−s)ds

≤Q(∥ (ζu(0), ζα(0)) ∥Φ3)e
−βt + C, (3.34)

where the positive constants β and C are independent of ϵ, and Q is a monotonic
function.

Proof. We apply estimate (5.28) to deduce the uniform energy estimate for the
initial and boundary value problem for a singularly perturbed damped hyperbolic
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equation (3.16). We have

∥ ζu(t) ∥ε1(ϵ) +
∫ t

0

e−β(t−s) ∥ ∂tu(s) ∥2H1 d

≤Ce−βt(∥ ζu(0) ∥2ε1(ϵ) + ∥ hu,α(0) ∥2)

+ C
(∫ t

0

e−β(t−s)(∥ hu,α(s) ∥2H1 + ∥ ∂thu,α(s) ∥2H−1)ds
)
, (3.35)

where the positive constants C and β are independent of ϵ. In order to estimate
the last term in the right-hand side of (3.35), we first estimate ∥ hu,α(s) ∥2H1 + ∥
∂thu,α(s) ∥2H−1 . We have

∥ hu,α(s) ∥2H1 + ∥ ∂thu,α(s) ∥2H−1≤ ∥ f(u) ∥2H1 + ∥ ∂tα ∥2H1 + ∥ f ′(u)∂tu ∥2H−1

+ ∥ ∂2
t α ∥2H−1 . (3.36)

Thanks to estimate (3.29), we have uniform estimates for ∥ u ∥H2 , ∥ α ∥H2 , ∥
∂tu ∥H1 and ∥ ∂tα ∥H1 . Then, for w ∈ H1

0 (Ω), we have

∥ f(u) ∥H1≤ ∥ u ∥L6 (∥ u ∥2L6 +1)

≤C ∥ u ∥H1 (∥ u ∥2H1 +1) ≤ C ∥ w ∥H1 .

Hence
∥ f(u) ∥H1≤ C, (3.37)

where C depends on R, but is independent of ϵ.
For the third term of right-hand side of (3.35), we have

|(f ′(u)∂tu,w)| ≤(∥ u ∥2L4 +1) ∥ ∂tu ∥L4∥ w ∥L4

≤(∥ u ∥2H1 +1) ∥ ∂tu ∥H1∥ w ∥H1≤ C ∥ w ∥H1 ,

hence
∥ f ′(u)∂tu ∥H−1≤ C, (3.38)

where C depends on R, but is independent of ϵ. For the last term of right-hand
side of (3.36), we have

∥ ∂2
t α ∥H−1≤∥ ∂tα ∥H1 + ∥ α ∥H1 + ∥ ∂tu ∥H−1≤ C, (3.39)

where C depends on R, but is independent of ϵ.
Inserting estimates (3.22) and (3.37)− (3.39) into the right-hand side of (3.36),

we have

∥ hu,α(s) ∥2H1 + ∥ ∂thu,α(s) ∥2H−1≤ C, (3.40)

where C depends on R, but is independent of ϵ. Inserting estimate (3.40) into the
right-hand side of (3.35), we have

∥ ζu(t) ∥ε1(ϵ) +
∫ t

0

e−β(t−s) ∥ ∂tu(s) ∥2H1 ds ≤ Ce−βt + C. (3.41)

In order to obtain the desired estimate for ∥ ζα(t) ∥ε1(1), we multiply (1.2) by
2(I −∆)∂tα and integrate over Ω. We have

d

dt

(
∥ ζα(t) ∥2ε1(1) + ∥ α(t) ∥2H1

)
+ ∥ ∂tα ∥2H1 + ∥ ∂tα ∥2H2≤ C ∥ ∂tu ∥2 . (3.42)
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Summing (3.42) and ϵ26(3.31) where ϵ26 > 0 is small enough such that

1− 2ϵ26 > 0,

we have

d

dt
E16(t) + βE16(t)+ ∥ ∂tα(t) ∥2H2≤ C ∥ ∂tu(t)∥2,

where C1 > 0 and

E16 =∥ ζα(t) ∥2ε1(1) + ∥ α(t) ∥2H1 +ϵ26

(
∥ α ∥2H2 +2(∇α,∇∂tα)

)
. (3.43)

Applying Gronwall’s inequality to above estimate, we obtain

E16(t) +

∫ t

0

∥ ∂tα(s) ∥2H2 e−β(t−s)ds ≤ C

∫ t

0

∥ ∂tu(s) ∥2 e−β(t−s)ds. (3.44)

There exists also C2 > 0 such that

C−1
2 ∥ζα(t)∥2ε(1) ≤ E16(t) ≤ C2 ∥ ζα(t) ∥2ε1(1), (3.45)

where the constant C2 is independent of ϵ. Thanks to estimates (3.45) and (3.11),
we have

∥ ζα(t) ∥1ε1(1) +
∫ t

0

∥ ∂tα(s) ∥2H2 e−β(t−s)ds

≤Q(∥ (ζu(0), ζα(0)) ∥Φ3)e
−βt + C, (3.46)

where the positive constants C and C1 are independent of ϵ and Q is a monotonic
function. Combining (3.46) and (3.41) we obtain the desired estimate. This finishes
the proof.

Theorem 3.8. The semigroup St(ϵ) associated with system (1.1)-(1.5) possesses a
bounded absorbing set in Φ3.

Proof. Let B be a bounded subset of Φ3 and R be such that ∥ (ζu0 , ζα0) ∥Φ3≤ R,
∀(ζu0 , ζα0) ∈ B. Owing to estimate (3.34), we have ∀t ≥ 0

∥ (ζu, ζα) ∥2Φ3
≤ C ′, (3.47)

which implies that St(ϵ) possesses a bounded absorbing set in Φ3.
In the sequel, we will also need more regular solution of system (1.1)-(1.5). To

this end, we introduce the set B2
R(ϵ) as follows

B2
R(ϵ) = {(ζu, ζα) ∈ Φ3 :∥ (ζu(t), ζα(t)) ∥Φ3≤ R}.

Theorem 3.9. Under the assumptions of Theorem 3.1, the semigroup Sϵ(t) asso-
ciated to (1.1)-(1.5) possesses the global attractor Aϵ which is bounded in Φ2.

Proof. To prove this Theorem, we proceed as in the proof of the Theorem 2.8.
We decompose the solution (u, α) ∈ B1

R0
(ϵ) in the form

(u, α) = (ν, η) + (ω, ξ),
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where (ν, η) solves

ϵ∂2
t ν + ∂tν −∆ν = ∂tη (3.48)

∂2
t η − ∂t∆η −∆η = −∂tν (3.49)

ν = η = 0 on Ω

ζν |t=0 = [u0, u1], ζη|t=0 = [α0, α1],

and (ω, ξ) solves

ϵ∂2
t ω + ∂tω −∆ω + f(u) = ∂tξ (3.50)

∂2
t ξ − ∂t∆ξ −∆ξ = −∂tω (3.51)

ω = ξ = 0 on Ω

ζω|t=0 = ζξ|t=0 = 0,

and we shall show that

∥ (ζν(t), ζη(t)) ∥Φ2 tends to 0 as t −→ +∞,

and

∥ (ζω(t), ζξ(t)) ∥Φ3 is regularizing, as t −→ +∞.

Multiply (3.48) to 2∂tν and (3.49) by 2∂tη, integrate over Ω, and sum the two
resulting equations. We have

d

dt

(
ϵ∥∂tν∥2 + ∥ν∥2H1 + ∥∂tη∥2 + ∥η∥2H1

)
+ 2∥∂tν∥2 + 2∥∂tη∥2H1 = 0. (3.52)

Multiplying (3.48) to 2(−∆)−1∂2
t ν and (3.49) by 2(−∆)−1∂tη and integrating over

Ω, we have

d

dt

(
∥∂tν∥2H−1 + 2(ν, ∂tν)

)
+ ϵ∥∂2

t ν∥2H−1 ≤ 2∥∂tν∥2 + C1∥∂tη∥2, (3.53)

d

dt

(
∥∂tη∥2H−1 + ∥η∥2

)
+ ∥∂tη∥2H−1 ≤ C2∥∂tν∥2. (3.54)

Multiply (3.48) to 2ν and (3.49) by 2η and integrate over Ω. We have

d

dt

(
∥ν∥2 + 2ϵ(ν, ∂tν)

)
+ ∥ν∥2H1 ≤ 2ϵ∥∂tν∥2 + C3∥∂tη∥2, (3.55)

∂

∂t

(
∥η∥2H1 + 2(η, ∂tη)

)
+ ∥η∥2H1 ≤ C4∥∂tν∥2 + 2∥∂tη∥2. (3.56)

Multiply (3.48) to 2(∆)−1∂tν and integrate over Ω. We have

d

dt

(
ϵ∥∂tν∥2H−1 + ∥ν∥2

)
+ ∥∂tν∥2H−1 ≤ C5∥∂tη∥2. (3.57)

Summing (3.52), ϵ27(3.53), ϵ28(3.54), ϵ29(3.55), ϵ30(3.56) and ϵ31(3.57) where ϵ27,
ϵ28, ϵ29, ϵ30 and ϵ31 > 0 such that

2

c0
− ϵ27C1 − ϵ29C3 − 2ϵ30 − C5ϵ31 > 0, (3.58)

2− 2ϵ27 − ϵ28 − 2ϵϵ29 − C4ϵ30 > 0, (3.59)
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we obtain

d

dt
E17(t) + kE17(t) ≤ 0, (3.60)

where

E17(t) =ϵ∥∂tν∥2 + ∥ν∥2H1 + ∥∂tη∥2 + ∥η∥2H1 + ϵ27

(
∥∂tν∥2H−1 + 2(ν, ∂tν)

)
+ ϵ28

(
∥∂tη∥2H−1 + ∥η∥2)

)
+ ϵ29

(
∥ν∥2 + 2ϵ(ν, ∂tν)

)
+ ϵ30

(
∥η∥2H1 + 2(η, ∂tη)

)
+ ϵ31

(
ϵ∥∂tν∥2H−1 + ∥ν∥2

)
+ ∥∂tν∥2H−1 .

Choosing ϵ27, ϵ29 and ϵ30 small enough, we have C5 and C6 > 0, and there exist k
and C > 0 such that

C−1∥(ζν(t), ζη(t))∥2Φ2
≤ E17(t) ≤ C∥(ν(t), η(t))∥2Φ2

. (3.61)

Applying Gronwall inequality to (3.60), we have

E17(t) ≤ E17(0)e
−kt,

which implies, owing to (3.61)

∥(ζν(t), ζη(t))∥2Φ2
≤ C2∥(ζν(0), ζη(0))∥2Φ2

e−kt.

Then, ∥(ζν(t), ζη(t))∥Φ2 tends to 0, as t −→ +∞.
It remains to prove that

∥ (ζω(t), ζξ(t)) ∥Φ3 is regularizing, as t −→ +∞.

Multiplying (3.52) by −2∆∂tω and (3.53) by −2∆∂tξ, integrating over Ω, and sum-
ming the two resulting equalities, we obtain

d

dt

(
ϵ∥∂tω∥2H1 + ∥ω∥2H2 + 2∥∂tξ∥2H1 + ∥ξ∥2H2

)
+ ∥∂tω∥2H1 + ∥∂tξ∥2H2 ≤ ∥f ′(u)∇u∥2.

(3.62)
Multiply (3.52) by 2∂2

t ω and (3.53) by 2∂tξ and integrate over Ω. We obtain

d

dt

(
∥∂tω∥2 + 2(∇ω,∇∂tω)

)
+ ϵ∥∂2

t ω∥2 ≤ 2∥∂tω∥2H1 + ∥∂tξ∥2 + C5, (3.63)

d

dt

(
∥∂tξ∥2 + ∥ξ∥2H1

)
+ ∥∂tξ∥2H1 ≤ C6∥∂tω∥2H1 . (3.64)

Summing (3.62), ϵ32(3.63) and ϵ33(3.65) where ϵ31 and ϵ32 > 0 such that

1− 2ϵ32 − C6ϵ33 > 0,

ϵ32 − 2c0ϵ31 > 0,

we have

d

dt
E18 + C1∥∂tω∥2H1 + C2∥∂tξ∥2H1 + ϵ32∥∂tξ∥2H2 ≤ ∥f ′(u)∇u∥2 + C7. (3.65)
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where

E18 =ϵ∥∂tω∥2H1 + ∥ω∥2H2 + ∥∂tξ∥2H1 + ∥ξ∥2H2

+ ϵ32

(
∥∂tω∥2 + 2(∇ω,∇∂tω)

)
+ ϵ33

(
∥∂tξ∥2 + ∥ξ∥2H1

)
Choosing ϵ32 > 0 small enough, there exists C > 0 such that

C−1 ∥ (ζω(t), ζξ(t)) ∥2Φ3
≤ E18(t) ≤ C ∥ (ζω(t), ζξ(t)) ∥2Φ3

. (3.66)

Thanks to (3.66), integrate (3.65), we have

∥ (ζω(t), ζξ(t)) ∥2Φ3
≤ C(T 2 + 1)Q(∥u0∥H2 , ∥u1∥H1 , ∥α0∥H2 , ∥α1∥H1).

Then, ∥ (ζω(t), ζξ(t)) ∥Φ3 is regularizing, as t −→ +∞.

4. Estimates on the difference of solutions

In this section, we first establish estimates of the difference between two solutions of
the hyperbolic system (1.1)−(1.5), before giving estimates of the difference between
the solution (uϵ, αϵ) of the hyperbolic system (1.1)− (1.5) and the solution (u0, α0)
of the limit parabolic-hyperbolic system (2.1)− (2.4).

Theorem 4.1. Let the assumptions of Theorem 3.3 hold, ϵ ≤ 1 and (u1, α1) and
(u2, α2) be two solutions of the system (1.1)-(1.5) with initial data belonging to
B1

R(ϵ). Then, the following estimate is valid

∥ (ζu1(t)− ζu2(t), ζα1(t)− ζα2(t)) ∥2Φ2

≤+

∫ t

0

(
∥ u(s) ∥2H1 + ∥ ∂tu(s) ∥2 +ϵ ∥ ∂2

t u(s) ∥2H−1

+ ∥ α(s) ∥2H1 + ∥ ∂tα(s) ∥2H1 + ∥ ∂2
t α(s) ∥2H−1

)
ds

C ∥ (ζu1(0)− ζu2(0), ζα1(0)− ζα2(0)) ∥2Φ2
eKt, (4.1)

where the positive constants C and K depend on R, but they are independent of ϵ.

Proof. We set u = u1 − u2 and α = α1 − α2. Then, (u, α) verifies the following
system

ϵ∂2
t u(t) + ∂tu(t)−∆u(t) = −f(u1(t)) + f(u2(t)) + ∂tα(t), (4.2)

∂2
t α(t)− ∂t∆α(t)−∆α(t) = −∂tu(t), (4.3)

where the first equation is the initial and boundary value problem for the singularly
perturbed damped hyperbolic equation.

Multiplying (4.2) by 2∂tu and (4.3) by 2∂tα, integrating over Ω and summing
the two resulting equations, we have

d

dt
E19(t)+ ∥ ∂tu(t) ∥2 + ∥ ∂tα(t) ∥2H1≤ C ∥ u(t) ∥2H1 , (4.4)

where

E19(t) = ϵ ∥ ∂tu(t) ∥2 + ∥ u(t) ∥2H1 + ∥ ∂tα(t) ∥2 + ∥ α(t) ∥2H1 .
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Multiply (4.2) by 2u and (4.3) by 2α and integrate over Ω, we find

d

dt

(
∥ u ∥2 +2ϵ(u, ∂tu)

)
+ ∥ u ∥2H1≤ 2 ∥ u ∥2 +c0 ∥ ∂tα ∥2 +2ϵ ∥ ∂tu ∥2, (4.5)

d

dt

(
∥ α ∥2H1 +2(α, ∂tα)

)
+ ∥ α ∥2H1≤ c0 ∥ ∂tu ∥2 +2 ∥ ∂tα ∥2 . (4.6)

Adding (4.4), ϵ34(4.5) and ϵ35(4.6) where ϵ34 and ϵ35 > 0 are such that

1− 2ϵ34ϵ− ϵ35c0 > 0,

we have

d

dt
E20 + C1 ∥ ∂tu ∥2 +C2 ∥ u ∥2H1 +C3 ∥ α ∥2H1 +C4 ∥ ∂tα ∥2H1≤ KE20, (4.7)

where Ci and K are independent of ϵ and

E20 =ϵ ∥ ∂tu ∥2 + ∥ u ∥2H1 + ∥ ∂tα ∥2 + ∥ α ∥2H1

+ ϵ34

(
∥ u ∥2 +2ϵ(u, ∂tu)

)
+ ϵ35

(
∥ α ∥2H1 +2(α, ∂tα)

)
.

Moreover, for sufficient small values of ϵ34 et ϵ35 > 0 , there exist C > 0 such that

C−1(ϵ ∥ ∂tu(t) ∥2 + ∥ u(t) ∥2H1 + ∥ ∂tα(t) ∥2 + ∥ α(t) ∥2H1)

≤E20(t) ≤ C(ϵ ∥ ∂tu(t) ∥2 + ∥ u(t) ∥2H1 + ∥ ∂tα(t) ∥2 + ∥ α(t) ∥2H1).

Applying Gronwall’s inequality (4.7), owing to the above estimate, we have

ϵ ∥ ∂tu(t) ∥2 + ∥ u(t) ∥2H1 + ∥ ∂tα(t) ∥2 + ∥ α(t) ∥2H1

+

∫ t

0

(∥ u(s) ∥2H1 + ∥ ∂tu(s) ∥2 + ∥ α(s) ∥2H1 + ∥ ∂tα(s) ∥2H1)ds

≤ ∥ (ζu1−u2(0), ζα1−α2(0)) ∥2Φ2
eKt + C. (4.8)

Multiplying (4.2) by 2(−∆)−1∂2
t u and integrating over Ω, we obtain

d

dt
E21 + 2ϵ∥∂2

t u∥2H−1 ≤ C1∥∂tu∥2 + C2∥u∥2H1 + ∥∂2
t α∥2H−1 , (4.9)

where

E21 = ∥∂tu∥2H−1 + 2(u, ∂tu) + 2(f(u1)− f(u2)− ∂tα, (−∆)−1∂tu).

Multiply (4.2) by 2(−∆)−1∂2
t α and integrate over Ω. We obtain

d

dt
∥∂tα∥2 + ∥∂2

t α∥2H−1 ≤ C3∥α∥2H1 + C4∥∂tu∥2. (4.10)

Add (4.9) and ϵ36(4.10) where ϵ36 > 0 is such that

1− ϵ36C3 > 0,

we obtain

d

dt
E22 + 2ϵ36ϵ∥∂2

t u∥2H−1 + C4∥∂2
t α∥2H−1 ≤ C5(∥∂tu∥2 + ∥u∥2H1 + ∥α∥2H1), (4.11)
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where

E22 = ∥∂tα∥2 + ϵ36E21.

Integrate (4.11) from 0 to t, we obtain, thanks to estimate (4.8)

∥∂tα(t)∥2

+ ϵ36

(
∥∂tu(t)∥2H−1 + 2(u, ∂tu(t)) + 2(f(u1(t))− f(u2(t))− ∂tα(t), (−∆)−1∂tu(t))

)
+ C

∫ t

0

(ϵ∥∂2
t u(s)∥2H−1 + ∥∂2

t α(s)∥2H−1)ds ≤ C ∥ (ζu1−u2(0), ζα1−α2(0)) ∥2Φ2
eKt.

This implies

∥∂tu(t)∥2H−1 +

∫ t

0

(ϵ∥∂2
t u(s)∥2H−1 + ∥∂2

t α(s)∥2H−1)ds

≤C ∥ (ζu1−u2(0), ζα1−α2(0)) ∥2Φ2
eKt.

Combining the above estimate and estimate (4.8) , we have

∥ζu(t)∥2ε(ϵ) +
∫ t

0

(
ϵ∥∂2

t u(s)∥2H−1 + ∥∂tu(s)∥2

+ ∥u∥2H1 + ∥∂2
t α(s)∥2H−1 + ∥∂tα(s)∥2H1 + ∥α∥2H1

)
ds

≤C ∥ (ζu1−u2(0), ζα1−α2(0))) ∥2Φ2
eKt. (4.12)

Multiply (4.3) by 2(−∆)−1∂tα, integrate over Ω, we have

d

dt

(
∥ α ∥2 + ∥ ∂tα ∥2H−1

)
+ ∥ ∂tα ∥2 ≤ C1 ∥ ∂tu ∥2 . (4.13)

Integrate (4.13) from 0 to t, we find, owing to estimate (4.8)

∥ α(t) ∥2 + ∥ ∂tα(t) ∥2H−1 +

∫ t

0

∥ ∂tα(s) ∥2 ds

≤C ∥ (ζu1−u2(0), ζα1−α2(0)) ∥2Φ2
)eKt.

Combining the above estimate and estimate (4.8), we obtain

∥ζα(t)∥2ε(1) +
∫ t

0

(
ϵ∥∂2

t u(s)∥2H−1 + ∥∂tu(s)∥2 + ∥u∥2H1

+ ∥∂2
t α(s)∥2H−1 + ∥∂tα(s)∥2H1 + ∥α∥2H1

)
ds

≤C ∥ (ζu1−u2(0), ζα1−α2(0)) ∥2Φ2
eKt. (4.14)

Combining estimates (4.12) and (4.14), we obtain the result.
We now show an asymptotic smoothing property for the difference of solutions of

system (1.1)− (1.5). To this end, we split the solution (u, α) of system (4.2)− (4.3)
as follows

(u, α) = (v1, w1) + (v2, w2),
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where (v1, w1) solves

ϵ∂2
t v

1 + ∂tv
1 −∆v1 = ∂tw

1, (4.15)

∂2
tw

1 −∆∂tw
1 −∆w1 = −∂tv

1, (4.16)

ζv1 = w1 = 0 on ∂Ω

ζv1 |t=0 = ζu(0), ζw1 |t=0 = ζα(0),

and (v2, w2) solves

ϵ∂2
t v

2 + ∂tv
2 −∆v2 + f(u1)− f(u2)u = ∂tw

2, (4.17)

∂2
tw

2 −∆∂tw
2 −∆w2 = −∂tv

2, (4.18)

v2 = w2 = 0 on ∂Ω,

ζv2 |t=0 = ζw2 |t=0 = 0.

Theorem 4.2. Let the assumptions of Theorem 3.1 hold and let (v1, w1) and
(v2, w2) be two solutions of systems (4.15)-(4.16) and (4.17)-(4.18), respectively
with initial data belonging to B1

R(ϵ). Then, the solutions (v1, w1) and (v2, w2) sat-
isfy the following estimates

∥ (ζv1(t), ζw1(t)) ∥2Φ2
≤ K1e

−βt ∥ (ζv1(0), ζw1(0)) ∥2Φ2
, (4.19)

∥ (ζv2(t), w2(t)) ∥2Φ3
≤ CeKt ∥ (ζv1(0), ζw1(0)) ∥2Φ2

. (4.20)

where the positive constants K1, β,K and C depend on R, but are independent of ϵ.

Proof. Multiplying (4.15) by 2∂tv
1 and (4.16) by 2∂tw

1, integrating over Ω, and
summing the two resulting equations, we have the following estimate

d

dt

(
ϵ ∥ ∂tv

1 ∥2 + ∥ v1 ∥2H1 + ∥ ∂tw
1 ∥2 + ∥ w1 ∥2H1

)
+ 2 ∥ ∂tv

1 ∥2 +2 ∥ ∂tw
1 ∥2H1= 0. (4.21)

We multiply (4.15) by 2v1 and (4.16) by 2w1 et integrate over Ω. We obtain

d

dt

(
∥ v1 ∥2 +2ϵ(∂tv

1, v1)
)
+ ∥ v1 ∥2H1≤ 2ϵ ∥ ∂tv

1 ∥2 +c0 ∥ ∂tw
1 ∥2, (4.22)

d

dt

(
∥ w1 ∥2H1 +2(w1, ∂tw

1)
)
+ ∥ w1 ∥2H1≤ c0 ∥ ∂tv

1 ∥2 +2 ∥ ∂tw
1 ∥2 . (4.23)

Summing (4.21), ϵ37(4.22) and ϵ38(4.23) where ϵ37, and ϵ38 > 0 are chosen small
enough such that

1− 2ϵϵ37 − ϵ38c0 > 0,

1− ϵ37c
2
0 − 2c0ϵ38 > 0,

we have an inequality of the form

d

dt
E23 + βE23 ≤ 0, (4.24)

where the positive constant β is independent of ϵ, and

E23 =ϵ ∥ ∂tv
1 ∥2 + ∥ v1 ∥2H1 + ∥ ∂tw

1 ∥2 + ∥ w1 ∥2H1 +ϵ37

(
∥ v1 ∥2 +2ϵ(∂tv

1, v1)
)

+ ϵ38

(
∥ w1 ∥2H1 +2(w1, ∂tw

1)
)
.
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Moreover, for a sufficiently ϵ38 > 0, there exists C > 0 such that

C−1(ϵ ∥ ∂tv
1(t) ∥2 + ∥ v1(t) ∥2H1 + ∥ ∂tw

1(t) ∥2 + ∥ w1(t) ∥2H1)

≤E23(t) ≤ C(ϵ ∥ ∂tv
1(t) ∥2 + ∥ v1(t) ∥2H1 + ∥ ∂tw

1(t) ∥2 + ∥ w1(t) ∥2H1). (4.25)

Applying Gronwall’s inequality to (4.24), owing to (4.25), we obtain the following
estimate

ϵ ∥ ∂tv
1(t) ∥2 + ∥ v1(t) ∥2H1 + ∥ ∂tw

1(t) ∥2 + ∥ w1(t) ∥2H1

≤ ∥ (ζv1(0), ζw1(0)) ∥2Φ2
e−βt, (4.26)

where β is independent of ϵ. In order to prove estimate (4.19), we first deduce the
required estimate of ∥ ζv1(t) ∥ε(ϵ). Equation (4.15) can be written as follows

ϵ∂2
t v

1 + ∂tv
1 −∆v1 = ∂tw

1 = hw1(t), hw1 |∂Ω = 0. (4.27)

Applying estimate (5.37) to the initial and boundary value problem for the singu-
larly perturbed damped hyperbolic equation (4.27), we have

∥ ζv1(t) ∥2ε(ϵ) +
∫ t

0

e−β(t−s) ∥ ∂tv
1(s) ∥2 ds

≤Ce−βt
(
∥ ζv1(0) ∥2ε(ϵ) + ∥ ∂tw

1(0) ∥2H−1

)
+

∫ t

0

e−β(t−s)(∥ ∂tw
1(s) ∥2H−1 + ∥ ∂2

tw
1(s) ∥2H−1)ds, (4.28)

where β and C are independent of ϵ. In order to estimate ∥ ∂2
tw

1 ∥H−1 , we use
equation (4.16) which implies

∥ ∂2
tw

1 ∥H−1≤∥ ∂tw
1 ∥H1 + ∥ w1 ∥H1 + ∥ ∂tv

1 ∥H−1 . (4.29)

Inserting (4.29) into the right-hand side of (4.28), owing to (4.26), we have

∥ ζv1(t) ∥2ε(ϵ) +
∫ t

0

e−β(t−s) ∥ ∂tv
1(s) ∥2 ds ≤ C ∥ (ζv1(0), ζw1(0)) ∥2Φ2

e−βt, (4.30)

where the positive constant C is independent of ϵ. In order to deduce the required
estimate of ∥ ζw1(t) ∥ε(1), we multiply (4.28) by 2(I + (−∆)−1)∂tw

1 and integrate
over Ω. We obtain

d

dt

(
∥ ζw1 ∥2ε(1) + ∥ w1 ∥2

)
+ ∥ ∂tw

1 ∥2H1 + ∥ ∂tw
1 ∥2≤ C ∥ ∂tv

1 ∥2 . (4.31)

Summing (4.31) and ϵ39(4.23) where ϵ39 > 0 is small enough such that

1− 2ϵ39 > 0,

we have

d

dt
E24(t) + βE24(t)+ ∥ ∂tw

1(t) ∥2H1≤ C ∥ ∂tv
1(t) ∥2, (4.32)

where β and C are independent of ϵ, and

E24(t) =∥ ζw1(t) ∥2ε(1) + ∥ w1(t) ∥2 +ϵ39

(
∥ w1(t) ∥2H1 +2(w1(t), ∂tw

1(t))
)
. (4.33)
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Applying Gronwall’s inequality, we have

E24(t) +

∫ t

0

∥ ∂tw
1(s) ∥2H1 e−β(t−s)ds ≤ E24(0) + C

∫ t

0

∥ ∂tv
1(s) ∥2 e−β(t−s)ds.

(4.34)
Using estimate (4.30) and the fact that for ϵ39 > 0 small enough there exists C2 > 0
such that

C−1
2 ∥ζα(t)∥2ε(1) ≤ E23(t) ≤ C2∥ζα(t)∥2ε(1), (4.35)

estimate (4.34) implies

∥ζα(t)∥2ε(1) +
∫ t

0

∥ ∂tw
1(s) ∥2H1 e−β(t−s)ds ≤ C ∥ (ζv1(0), ζw1(0)) ∥2Φ2

e−βt. (4.36)

Combining (4.28) and (4.36), we obtain estimate (4.19).
Multiply (4.17) by −2∆∂tv

2 and (4.18) by −2∆∂tw
2 and integrate over Ω, sum

the two resulting equations. We have

d

dt
E25+ ∥ ∂tv

2 ∥2H1 +2 ∥ ∂tw
2 ∥2H2≤ C1(∥ v2 ∥2H1 + ∥ v1 ∥2H1), (4.37)

where the positive constant C1 is independent of ϵ and

E25 = ϵ ∥ ∂tv
2 ∥2H1 + ∥ v2 ∥2H2 + ∥ w2 ∥2H2 + ∥ ∂tw

2 ∥2H1 .

Multiply (4.18) by 2∂tw
2 and integrate over Ω. We have

d

dt

(
∥ v2 ∥2H1 +2(w2, ∂tw

2)
)
+ ∥ w2 ∥2H1≤ c0 ∥ ∂tv

2 ∥2 +2 ∥ ∂tw
2 ∥2 . (4.38)

Summing (4.37) and ϵ40(4.38) where ϵ40 > 0, we have

d

dt
E26+ ∥ ∂tv

2 ∥2H1 +2 ∥ ∂tw
2 ∥2H2 +ϵ40 ∥ w2 ∥2H1 ≤ KE23 + C1 ∥ v1 ∥2H1 ,

where the positive constants K and C1 are independent of ϵ and

E26 =ϵ ∥ ∂tv
2 ∥2H1 + ∥ v2 ∥2H2 + ∥ w2 ∥2H2 + ∥ ∂tw

2 ∥2H1

+ ϵ40

(
∥ v2 ∥2H1 +2(w2, ∂tw

2)
)
.

Applying Gronwall’s inequality, thanks to estimate (4.19), we have

ϵ ∥ ∂tv
2(t) ∥2H1 + ∥ v2(t) ∥2H2 + ∥ w2(t) ∥2H2 + ∥ ∂tw

2(t) ∥2H1

+

∫ t

0

(
∥ ∂tv

2(s) ∥2H1 + ∥ w2(s) ∥2H1 +2 ∥ ∂tw
2(s) ∥2H2

)
ds

≤C ∥ (ζv1(0), ζw1(0)) ∥2Φ2
eKt, (4.39)

where the positive constant C is independent of ϵ.
In order to deduce the estimate of ∥ ζv2(t) ∥ε(ϵ), equation (4.17) can be written

as follows

ϵ∂2
t v

2 + ∂tv
2 −∆v2 = −l(t)u+ ∂tw

2 = hv1,v2,w2(t), hv1,v2,w2 |∂Ω = 0. (4.40)
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Applying estimate (5.28) to the initial and boundary value problem for singularly
perturbed damped hyperbolic equation (4.40) in order to deduce the uniform energy
estimate, we find

∥ ζv2(t) ∥2ε1(ϵ) +
∫ t

0

∥ ∂tv
2(s) ∥2H1 ds

≤Ce−βt(∥ hv1,v2,w2(0) ∥2) +
∫ t

0

e−β(t−s)
(
∥ l(t)u ∥2H1 + ∥ ∂tw

2 ∥2H1

+ ∥ ∂t[l(t)u] ∥2H−1 + ∥ ∂2
tw

2 ∥2H−1

)
ds. (4.41)

Following estimate (4.37), v2, w2 and ∂tw
2 ∈ H2(Ω) ∩ H1

0 (Ω) and ∂tv
2 ∈ H1

0 (Ω),
which implies

∥ hv1,v2,w2(0) ∥2≤ C ′eKt(∥ ζv1(0) ∥2ε(ϵ) + ∥ ζw1(0) ∥2ε(1)), (4.42)

∥ l(t)u ∥H1≤ C ∥ u ∥H1≤ C1, (4.43)

∥ ∂t[l(t)u(t)] ∥H−1≤ C2. (4.44)

In order to estimate ∥ ∂tw
2 ∥H−1 , we use equation (4.18) which implies

∥ ∂2
tw

2 ∥H−1≤∥ ∂tw
2 ∥2H1 + ∥ w2 ∥2H1 + ∥ ∂tv

2 ∥H−1 . (4.45)

Inserting estimates (4.42)− (4.45) into the right-hand side of (4.41), using estimate
(4.39), we find

∥ ζv2(t) ∥2ε1(ϵ) +
∫ t

0

∥ ∂tv
2(s) ∥2H1 ds ≤ CeKt ∥ (ζv2(0), ζw2(0)) ∥2Φ3

. (4.46)

In order to deduce the desired estimate of ∥ ζw2(t) ∥ε1(1), we multiply (4.18) by
2(I −∆)∂tw

2 and integrate over Ω. We have

d

dt

(
∥ ζw2 ∥2ε1(1) + ∥ w2 ∥2

)
+ ∥ ∂tw

2 ∥2H2 + ∥ ∂tw
2 ∥2H1≤ C ∥ ∂tv

2 ∥2H1 . (4.47)

Integrating over [0, t], owing to estimate (4.39), we have

∥ ζw2(t) ∥2ε1(1) +
∫ t

0

(
∥ ∂tw

2(s) ∥2H2 + ∥ ∂tw
2(s) ∥2H1

)
ds

≤C1 ∥ (ζv1(0) ζw1(0)) ∥2Φ2
eKt, (4.48)

where the positive constant C1 is independent of ϵ. Combining estimates (4.46) and
(4.48), we obtain the result. This finishes the proof.

In order to find the estimate between the difference of the solution of the
perturbed system (1.1) − (1.5) and the solution of the to unperturbed system
(2.1)− (2.4), we need the first term of asymptotic expansions of (uϵ, αϵ) near t = 0
with respect ϵ. Following the general scheme (see Lyusternik & Vishik [10], Babin
& Vishik [1], Fabrie & Galusinski [8] and Grasselli & Miranville [9]), we seek for
asymptotic expansions of the form

uϵ(t) = u0(t) + ϵũ1(
t

ϵ
) + ϵR(t), αϵ(t) = α0(t) + ϵP(t), (4.49)



Hyperbolic Caginalp system 181

where (u0, α0) solves the limit system parabolic-hyperbolic system (2.1)−(2.4) with
initial data (u0(0), α0(0)) = (uϵ(0), αϵ(0)), the boundary layer term ũ1 satisfies the
following equation:

∂2
τ ũ

1 + ∂τ ũ
1 = 0, ∂τ ũ

1(0) = ∂tu
0(0)− ∂tu

ϵ(0) and lim
τ→+∞

ũ1(τ) = 0, (4.50)

and (R(t),P(t)) is the remainder. Solving (4.50), we have

ũ1(τ) = e−τθuϵ,αϵ(0), where θuϵ,αϵ(t) = −∂tu
ϵ(t)+∆uϵ(t)−f(uϵ(t))+αϵ(t). (4.51)

Following the construction of the asymptotic expansion, the remainder (R(t),P(t))
verifies the following equations

ϵ∂2
tR(t) + ∂tR(t)−∆R(t) = hR,P(t) ζR|t=0 = (−θu,α(0), 0), (4.52)

∂2
tP(t)− ∂t∆P(t)−∆P(t) = −∂tR(t)− ∂tũ

1(
t

ϵ
), ζP |t=0 = 0, (4.53)

where

hR,P(t) =
1

ϵ
[f(u0(t))− f(uϵ(t))] + ∂tP(t) + ∆ũ1(

t

ϵ
)− ∂2

t u
0(t). (4.54)

The next theorem gives an estimate of ∥ (ζR(t), ζP(t)) ∥2Φ2
.

Theorem 4.3. Let the assumptions of Theorem 3.3 hold, ϵ < 1 and (uϵ, αϵ)
be the solution of the hyperbolic system (1.1)-(1.5) with initial data belonging to
B1

R0
(ϵ) ∩ B2

R(ϵ). Then, the remainder (R(t),P(t)) in the asymptotic expressions
(4.49) satisfies the following estimate

∥ (ζR(t), ζP(t)) ∥2Φ2
≤ CeKt, (4.55)

where the constants C and K depend on ∥ ζR(0) ∥ε(ϵ), but are independent of ϵ.

Proof. According to the explicit expression (4.50) of the boundary layer term, we
have the following estimates

∥ ũ1(
t

ϵ
) ∥H1≤ Ce

−t
ϵ , (4.56)

∥ ∂tũ
1(
t

ϵ
) ∥H1≤ Cϵ−1e

−t
ϵ , (4.57)

∥ ũ1(
t

ϵ
) ∥H−1≤ Ce

−t
ϵ , (4.58)

where the positice constant C is independent of ϵ.
Applying estimate (5.37) to the initial and boundary value problem for the

singularly perturbed damped hyperbolic equation (4.53), we deduce

∥ ζR(t) ∥2ε(ϵ) +
∫ t

0

e−β(t−s) ∥ ∂tR(s) ∥2 ds

≤Ce−βt(∥ ζR(0) ∥2ε(ϵ) + ∥ hR,P(0) ∥2H−1) (4.59)

+ C1(

∫ t

0

e−β(t−s)(∥ hR,P(s) ∥H−1 + ∥ ∂thR,P(s) ∥H−1)ds)2, (4.60)
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where the positive constants β, C and C1 are independent of ϵ.
In order to estimate the last term of the right-hand side of (4.60), we first

estimate ∥ hR,P(s) ∥H−1 and ∥ ∂thR,P(s) ∥H−1 .Thanks to (4.54), we have

∥ hR,P(s) ∥H−1≤ 1

ϵ
∥f(u0)− f(uϵ)∥H−1 + ∥∂tP∥H−1 + ∥ũ1∥H1 + ∥∂2

t u
0∥H−1 ,

∥ ∂thR,P(s) ∥H−1≤ 1

ϵ
∥f ′(u0)∂tu∥H−1 +

1

ϵ
∥[f ′(u0)− f ′(uϵ)]∂tu

ϵ∥H−1 + ∥∂2
tP∥H−1

+ ∥∂tũ1∥H1 + ∥∂3
t u

0∥H−1 .

We have for all w ∈ H1(Ω),

|(f(u0)− f(uϵ), w)| ≤(∥u0∥2L4 + ∥uϵ∥2L4 + 1)∥u∥L4∥w∥L4

≤C(∥u0∥2H1 + ∥uϵ∥2H1 + 1)ϵ(∥R∥H1 + ∥ũ1∥H1)∥w∥H1

≤Cϵ(∥R∥H1 + ∥ũ1∥H1)∥w∥H1 ,

which implies
∥f(u0)− f(uϵ)∥H−1 ≤ Cϵ(∥R∥H1 + ∥ũ1∥H1), (4.61)

and, owing to (2.70),

∥ hR,P(s) ∥H−1≤ C(∥R∥H1 + ∥∂tP∥H−1 + ∥ũ1∥H1 + 1), (4.62)

where the positive constant C is independent of ϵ. We have also for all w ∈ H1(Ω),

∥f ′(u0)∂tu,w)∥H−1 ≤∥∂tu∥H−1∥((u0)2 + 1)w∥H1

≤∥∂tu∥H−1

(
(∥u0∥2L∞ + 1)∥∇w∥+ (∥u0∥L6∥∇u0∥L6 + 1)∥w∥L6

)
≤C∥∂tu∥H−1∥w∥H1 ,

which implies

∥f ′(u0)∂tu∥H−1 ≤ Cϵ(∥∂tR∥H−1+ ∥ ∂tũ
1 ∥H−1), (4.63)

where the positive constant is independent of ϵ, and

|([f ′(u0)− f ′(uϵ)]∂tu
ϵ, w)| ≤(∥u0∥L6 + ∥uϵ∥L6 + 1)∥u∥L6∥∂tuϵ∥∥w∥L6

≤Cϵ(∥u0∥H1 + ∥uϵ∥H1 + 1)(∥R∥H1 + ∥ũ1∥H1)

× ∥∂tuϵ∥∥w∥H1

≤Cϵ(∥R∥H1 + ∥ũ1∥H1)∥w∥H1 ,

which implies

∥[f ′(u0)− f ′(uϵ)]∂tu
ϵ∥H−1 ≤ Cϵ(∥R∥H1 + ∥ũ1∥H1). (4.64)

We have, owing to (4.53),

∥ ∂2
tP ∥H−1 ≤ ∥ ∂tP ∥H1 + ∥ P ∥H1 + ∥ ∂tR ∥H−1 + ∥ ∂tũ

1 ∥H−1 . (4.65)

Thanks to estimates (4.63)− (4.65), we have

∥ ∂thR,P ∥H−1≤C(∥ R ∥H1 + ∥ ∂tR ∥H−1 + ∥ ∂tP ∥H1 + ∥ P ∥H1 +∥ũ1∥H1

+ ∥∂tũ1∥H1 + ∥∂3
t u

0∥H−1), (4.66)
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where the positive constant C is independent of ϵ. Inserting estimate (4.62) and
(4.66) into the right-hand side of (4.60), we have

∥ ζR(t) ∥2ε(ϵ) +
∫ t

0

e−β(t−s) ∥ ∂tR(s) ∥2 ds

≤Ce−βt + C
(∫ t

0

(∥ ζR(s) ∥2ε(ϵ) +
∫ t

0

(∥ P(s) ∥2H1 + ∥ ∂tP(s) ∥2H1)ds

+ (

∫ t

0

[∥ũ1∥H1 + ∥∂tũ1∥H1 ]ds)2 +

∫ t

0

ds+

∫ t

0

e−β(t−s)∥∂3
t u

0∥2H−1ds
)
.

(4.67)

It remains to estimate ∥P∥2H1 and the integral of ∥∂tP∥2H1 . Multiply (4.53) by 2∂tP
and (4.52) by 2∂tR, integrate over Ω and sum the two resulting equations. After
transformation, using the fact that

(ũ1, ∂2
tP) = (ũ1,∆∂tP) + (ũ1,∆P)− (ũ1, ∂tR)− (ũ1, ∂tũ

1),

and owing to (2.70), we obtain

d

dt
Γ1+ ∥ ∂tR ∥2 + ∥ ∂tP ∥2H1≤ K(∥ R ∥2H1 + ∥ P ∥2H1) + C(1 + e

−2t
ϵ ), (4.68)

where

Γ1 =∥ R ∥2H1 +ϵ ∥ ∂tR ∥2 + ∥ P ∥2H1 + ∥ ∂tP ∥2 +2(ũ1, ∂tP) + ∥ũ1∥2.

Applying Gronwall’s inequality to (4.68), we have

ϵ ∥ ∂tR(t) ∥2 + ∥ R(t) ∥2H1 + ∥ ∂tP(t) ∥2 + ∥ P(t) ∥2H1

+

∫ t

0

(∥ ∂tR(s) ∥2 + ∥ ∂tP(s) ∥2H1)ds ≤ CeKt. (4.69)

Using (4.69) in the right-hand side of (4.67), we have

∥ ζR(t) ∥2ε(ϵ)≤Ce−βt + C
(∫ t

0

∥ ζR(s) ∥2ε(ϵ) ds+ eKt + (

∫ t

0

[∥ũ1∥H1 + ∥∂tũ1∥H1 ]ds)2

+

∫ t

0

ds+

∫ t

0

e−β(t−s)∥∂3
t u

0(s)∥2H−1ds
)
,

which implies, owing to estimates (2.70), (4.56) et (4.57),

∥ ζR(t) ∥2ε(ϵ)≤ C
(
eKt + 1 + t+ (1 + ϵ)2 +

∫ t

0

∥ ζR(s) ∥2ε(ϵ) ds
)
. (4.70)

Applying Gronwall’s inequality to (4.70), we obtain

∥ ζR(t) ∥2ε(ϵ)≤ CeKt, (4.71)

where the positive constants C and K depend on R, but they are independent of
ϵ. Thus, the R-part (4.55) is proven. In order to obtain the P-part, we multiply
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(4.53) by 2(−∆)−1∂tP and integrate over Ω. After transformation and using the
fact that

(ũ1, (−∆)−1∂2
tP) = (ũ1, ∂tP) + (ũ1,P)− (ũ1, (−∆)−1∂tR)− (ũ1, (−∆)−1∂tũ

1),

thanks to estimates (4.58), (4.69) and (4.71), we have

d

dt

(
∥∂tP∥2H−1 + ∥P∥2 + 2(ũ1, (−∆)−1∂tP + ∥ũ1∥2H−1) + 2 ∥ ∂tP ∥2)

≤C
(
eKt + e

−t
ϵ ).

This implies, by integration over [0, t],

∥∂tP(t)∥2H−1 ≤ CeKt, (4.72)

where the positive constants C and K depend on R, but they are independent of ϵ.
Combining estimates (4.69) and (4.72), we have

∥ ζP(t) ∥2ε(1)≤ CeKt, (4.73)

where the positive constants C and K depend on R, but they are independent of
ϵ. Combining estimates (4.71) and estimate (4.73), we obtain the desired estimate.
This finishes the proof.

Corollary 4.1. Let the assumptions of Theorem 4.3 hold and let (uϵ, αϵ) and
(u0, α0) be solutions of (1.1)-(1.5) and (2.1)-(2.4), respectively such that uϵ(0) =
u0(0) = u0, α

ϵ(0) = α0(0) = α0 and ∂tα
ϵ(0) = ∂tα

0(0) = α1. Then

∥ (ζuϵ−u0(t), ζαϵ−α0(t)) ∥2Φ2

≤C(1 + e−βt) + Cϵ2
(
eKt + t+ (ϵ ∥ θuϵ,αϵ(0) ∥H1 + ∥ θuϵ,αϵ(0) ∥H−1)2

+
1

ϵ
∥ θuϵ,αϵ(0) ∥2H−1

)
, (4.74)

where θuϵ,αϵ(t) = ∂tu
ϵ(t)−∆uϵ(t)+f(uϵ(t))−∂αϵ(t) and the constants C1, C2 and

K depend on ∥ ζuϵ(0) ∥ε(ϵ), but are independent of ϵ.

Proof. Setting u = uϵ − u0 and α = αϵ − α0, then, (u, α) verifies the system

ϵ∂2
t u+ ∂tu−∆u = f(u0)− f(uϵ) + ∂tα− ϵ∂2

t u
0 = hu,α(t), (4.75)

∂2
t α− ∂t∆α−∆α = −∂tu. (4.76)

Applying estimate (5.37) to the initial and boundary value problem for the singu-
larly perturbed damped hyperbolic equation(4.75), we find

∥ ζu(t) ∥2ε(ϵ) +
∫ t

0

e−β(t−s) ∥ ∂tu(s) ∥2 ds

≤Ce−βt + Cϵ2(

∫ t

0

e−β(t−s)(∥ hu2,α(s) ∥H−1 + ∥ ∂thu,α(s) ∥H−1)ds)2,

where
hu,α(t) = f(u0)− f(uϵ) + ∂tα.
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We have, owing to (2.70) and (4.61),

∥ hu,α(t) ∥H−1≤∥f(u0)− f(uϵ)∥H−1 + ∥∂tα∥H−1 + ϵ∥∂2
t u

0∥H−1

≤Cϵ(∥ R(t) ∥H1 + ∥ ũ1 ∥H1 +∥∂tP∥H−1 + 1).

From (4.76), we deduce

∥∂2
t α∥H−1 ≤∥∂tα∥H1 + ∥α∥H1 + ∥∂tu∥H−1

≤ϵ(∥∂tP∥H1 + ∥P∥H1 + ∥∂tR∥H−1 + ∥∂tũ1∥H−1),

which implies, thanks to (4.63) and (4.64),

∥ ∂thu,α(t) ∥H−1

≤∥f ′(u0)∂tu∥H−1 + ∥[f ′(u0)− f ′(uϵ)]∂tu
ϵ∥H−1 + ∥∂2

t α∥H−1 + ϵ∥∂3
t u

0∥H−1

≤Cϵ(∥ ∂tR ∥H−1 + ∥ ∂tũ
1 ∥H−1 + ∥ R ∥H1 + ∥ ũ1 ∥H1) + ∥∂2

t α∥H−1

+ ∥∂3
t u

0∥H−1)

≤Cϵ(∥ ∂tR ∥H−1 + ∥ R ∥H1 +∥∂tP∥H1 + ∥P∥H1+ ∥ ũ1 ∥H1 +∥∂tũ1∥H−1

+ ∥∂3
t u

0∥H−1).

Thanks to (4.69), (4.15), (4.56) and (4.57), we have

∥ ζu(t) ∥2ε(ϵ) +
∫ t

0

e−β(t−s) ∥ ∂tu(s) ∥2

≤Ce−βt + Cϵ2
(∫ t

0

eKsds+ t+

∫ t

0

e−β(t−s)∥∂3
t u

0(s)∥2H−1ds

+

∫ t

0

(∥∂tP(s)∥2H1 + ∥P(s)∥2H1)ds

+ ([∥θuϵ,αϵ(0) ∥H1 +
1

ϵ
∥θuϵ,αϵ(0))∥H−1 ]

∫ t

0

e
−s
ϵ ds)2

)
,

which implies

∥ ζu(t) ∥2ε(ϵ)≤ Ce−βt + Cϵ2
(
eKt + 1 + t+ (ϵ∥θuϵ,αϵ(0) ∥H1 +∥θuϵ,αϵ(0))∥H−1)2

)
,

where the positive constants C and K are independent of ϵ.
Multiply (4.76) by 2(I + (−∆)−1)∂tα and integrate over Ω. We obtain, owing

to (4.71) and (4.51),

d

dt
∥ζα∥2ε(1) + ∥∂tα∥2 ≤C(∥∂tu∥2H−1 + ∥α∥2)

≤Cϵ2(∥∂tR∥2H−1 + ∥P∥2H1 + ∥∂tũ1∥2H−1)

≤Cϵ2
(
eKt +

1

ϵ2
∥θuϵ,αϵ(0))∥2H−1e

−2t
ϵ

)
.

Integrating over [0, t], we have,

∥ζα∥2ε(1) ≤ Cϵ2
(
eKt +

1

ϵ
∥θuϵ,αϵ(0)∥2H−1

)
. (4.77)

We obtain the result by combining (4.77) and (4.77).
We now generalize estimate (4.74) to the case where the solutions (uϵ, αϵ) and

(u0, α0) have different initial data.
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Corollary 4.2. Let the assumptions of Theorem 4.3 hold and (u, α) be solution of
the system (1.1)-(1.5) with initial data in B2

R(0). Then, the following estimate

∥ (ζuϵ−u0(t), ζαϵ−α0(t)) ∥2Φ0
≤C(1 + e−βt) + CeKt + Cϵ2

(
eKt + t

+ (ϵ ∥ θuϵ,αϵ(0) ∥H1 + ∥ θuϵ,αϵ(0) ∥H−1)2

+
1

ϵ
∥ θuϵ,αϵ(0) ∥2H−1

)
, (4.78)

is valid, where the positive constants C and K depend on R and ∥ u0(0) ∥H3 , but
are independent of ϵ.

Proof. Let (u0, α0) be the same as in Theorem 4.3. Then, the difference uϵ − u0

satisfies estimate (4.74) and, since (u0, α0) and (u, α) solve the parabolic-hyperbolic
system (2.1)− (2.4), thanks to estimate (4.1) with ϵ = 0, we have

∥ (u(t)− u0(t), ζα(t)− ζα0(t)) ∥2Φ0
≤ CeKt ∥ (u(0)− u0(0), ζα(0)− ζα0(0)) ∥2Φ0

.
(4.79)

Combining (4.74) and (4.79), we obtain the estimate (4.78).
The following corollary allows to control the evolution of the quantity

θuϵ,αϵ(t) = ϵ∂2
t u

ϵ(t). (4.80)

Corollary 4.3. Let the assumptions of Theorem 4.3 hold. Then, we have the
following estimate

∥ θuϵ,αϵ(t) ∥H−1≤ Cϵ
(
eKt + (∥ θuϵ,αϵ(0) ∥H1 +

1

ϵ
∥ θuϵ,αϵ(0) ∥)e

−t
ϵ

)
, (4.81)

where the positive constant C depends on R, but is independent of ϵ.

Proof. Inserting the asymptotic expansion (4.49) in (4.51), we have

θuϵ,αϵ(t)

=− ∂t(u
ϵ − u0) + ∆(uϵ − u0) + f(u0)− f(uϵ) + ∂t(α

ϵ − α0)

=− ϵ∂t

(
R(t) + ũ1(

t

ϵ
)
)
+ ϵ∆

(
R(t) + ũ1(

t

ϵ
)
)
+ [f(u0(t))− f(uϵ(t))] + ϵ∂tP(t)

=ϵhR,P(t)− ϵ
(
∂tR(t)−∆R(t) + ∂tũ

1(
t

ϵ
)
)
, (4.82)

where hR,P(t) is defined by (4.54). Moreover, without loss generality, we can assume
that t ≤ 1. Then, (4.82) implies

∥ θuϵ,αϵ(t) ∥H−1≤ ϵ∥hR,P(t)∥H−1 + ϵ
(
∥ ∂tR ∥H−1 + ∥ R(t) ∥H1 + ∥ ∂tũ

1 ∥H−1

)
,

(4.83)
where

∥hR,P(t)∥H−1 ≤ ∥∂tP∥H−1 +
1

ϵ
∥f(u0)− f(uϵ)∥H−1 + ∥ũ1∥H1 .

In order to estimate ∥f(u0)− f(uϵ)∥H−1 , we take w ∈ H1(Ω), then we have

|(f(u0)− f(uϵ), w)| ≤3(∥u0∥2L4 + ∥uϵ∥2L4 + 1)ϵ(∥R∥L4 + ∥ũ1∥L4)∥w∥L4

≤Cϵ(∥u0∥2H1 + ∥uϵ∥2H1 + 1)(∥R∥H1 + ∥ũ1∥H1)∥w∥H1

≤Cϵ(∥R∥H1 + ∥ũ1∥H1)∥w∥H1 ,
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which implies
∥f(u0)− f(uϵ)∥H−1 ≤ Cϵ(∥R∥H1 + ∥ũ1∥H1). (4.84)

Thus
∥hR,P(t)∥H−1 ≤ C(∥∂tP∥H−1 + ∥R∥H1 + ∥ũ1∥H2). (4.85)

Inserting (4.85) into (4.83), we have

∥ θuϵ,αϵ(t) ∥H−1≤Cϵ(∥∂tP∥H−1 + ∥R∥H1 + ∥ũ1∥H1)

+ ϵ
(
∥ ∂tR ∥H−1 + ∥ R(t) ∥H1 + ∥ ∂tũ

1 ∥H−1

)
≤Cϵ(∥∂tP∥H−1+ ∥ ∂tR ∥H−1 +∥R∥H1 + ∥ũ1∥H1+ ∥ ∂tũ

1 ∥H−1),

which implies, owing to estimates (4.55), (4.56) and (4.57),

∥ θuϵ,αϵ(t) ∥H−1≤ Cϵ
(
1 + (∥ θuϵ,αϵ(0) ∥H1 +

1

ϵ
∥ θuϵ,αϵ(0) ∥H−1)e

−t
ϵ

)
, (4.86)

where the constant C depends on R, but is independent of ϵ.

Remark 4.1. According (4.86), we have

∥ ∂2
t u

ϵ(t) ∥H−1≤ C
(
1 + (∥ θuϵ,αϵ(0) ∥H1 +

1

ϵ
∥ θuϵ,αϵ(0) ∥H−1)e

−t
ϵ

)
, (4.87)

where the constant C depends on R, but is independent of ϵ.

5. Robust exponential attractors

In this section, we construct a robust family of exponential attractors Mϵ for sys-
tem (1.1) − (1.5) as ϵ → 0. We know that the semigroup St(ϵ) generated by the
system (1.1) − (1.5) with ϵ > 0 and the semigroup St associated with the limit
system (2.1) − (2.4) are defined on different phase spaces (since the limit system
(2.1)− (2.4) does not require to have an initial data for the derivative ∂tu|t=0). In
order to overcome this difficulty, following the standard procedure (for the theory
of singularly perturbed hyperbolic equations,(see Lyusternik & Vishik [10], Babin
& Vishik [1], Fabrie & Galusinski [8] and Grasselli & Miranville [9]), we define the
infinite dimensional submanifold N0 of the space Φ0 as follows:

N0 = {([u, v], ζα) ∈ Φ0, v = N (u, α) = ∂tα+∆u− f(u)}, (5.1)

and define the semigroup St(0) : N0 −→ N0 by the following expression

St(0)(u0, u1, ζα0) = (St(u0, ζα0), N (u0, ζα0)), (u0, u1, ζα0) ∈ N0. (5.2)

In order to construct a robust family of exponential attractors we need the following
theorem.

Theorem 5.1. Let the assumptions of Theorem 3.3 hold. Then, there exist a
positive number R0 and a family of exponential attractors Mϵ, ϵ ∈ [0, ϵ0], of the
semigroups St(ϵ) such that

1) the following inclusions hold

Mϵ ⊂ B1
R0

(ϵ), St(ϵ)Mϵ ⊂ Mϵ, (5.3)

for all t ∈ R+, ϵ ∈ [0, ϵ0];
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2) the fractal dimension of Mϵ is uniform bounded with respect ϵ

dimF

(
Mϵ,Φ2

)
≤ C, ϵ ∈ [0, ϵ0]; (5.4)

3) the attractors Mϵ converge to the limit attractor M0 in the following sense

distsymΦ2
(Mϵ,M0) ≤ Cϵκ, (5.5)

where distsymV denotes the symmetric distance between sets in the space V and
the positive constants C and κ are independent of ϵ;

4) the set Mϵ attract exponentially the trajectories of the semigroups St(ϵ), i.e.,
there exists a positive constant β (which is independent of ϵ) such that, for
every ϵ ∈ [0, ϵ0],

distsymΦ2
(St(ϵ)B2

R(ϵ),Mϵ) ≤ Q(R)e−βt, for all t ∈ R+, (5.6)

where Q is a monotonic function independent of initial data.

Proof. We first construct the exponential attractors Mϵ for more regular initial
data belonging to B1

R0
(ϵ) ∩ B2

R(ϵ). Thanks to estimates (3.34), it is sufficient to
construct the exponential attractors Mϵ for initial data belonging to Bϵ = B2

R1
(ϵ)

where R1 is large enough and

B2
R1

(ϵ) = {(ζu, ζα) ∈ Φ2, ∥ (ζu, ζα) ∥Φ2≤ R1}.

According to this estimate, there exists T = T (R0) which is independent of ϵ ∈
(0, ϵ0), such that

St(ϵ)Bϵ ⊂ Bϵ, for all t ≥ T. (5.7)

For ϵ = 0, we define the set B0 by

B0 = {([u, v], ζα) ∈ N2, ∥ (u, ζα) ∥Φ1≤ R0}. (5.8)

Then, we have B0 ⊂ B2
R
(0), where R = R(R0) is large enough, and due to estimate

(2.18), B0 is an absorbing set for the semigroups St(0) in N 2 if R0 is large enough,
i.e., we have

StB0 ⊂ B0, for all t ≥ T. (5.9)

Thus, we define the discrete semigroups S
(n)
ϵ = SnT (ϵ) acting on the phase spaces

Bϵ:
S(n)
ϵ : Bϵ → Bϵ, for all n ∈ N, ϵ ∈ [0, ϵ0]. (5.10)

Instead of constructing the exponential attractorsMϵ for the continuous semigroups
St(ϵ), we first construct the exponential attractors Md

ϵ for the discrte semigroups

S
(n)
ϵ .
To this end, we apply the abstract theorem on perturbations of exponential

attractors proved by Fabrie & Galusinski in [8]. To do this, we need to verify that
there exist two families of Banach spaces E(ϵ) and E1(ϵ), ϵ ∈ [0, ϵ0], such that:

1) the set Bϵ is a closed bounded subset of E(ϵ), B0 ⊂ E(ϵ) for all ϵ ∈ [0, ϵ0] and

∥ b0 ∥E(ϵ)≤ C1 ∥ b0 ∥E(0) +C2ϵ
δ, for all b0 ∈ B0, (5.11)

where the positive constants C1, C2 and δ are independent of ϵ;
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2) the space E1(ϵ) is compactly embedded into the space E(ϵ), for all ϵ ∈ [0, ϵ0],
and this compactness is uniform with respect to ϵ in the following sense:

Nµ(B(1, 0, E1(ϵ)), E(ϵ)) ≤ M(µ), for all µ > 0, (5.12)

where B(1, 0, E1(ϵ)) is the unit ball of E1(ϵ), Nµ(X,Y ) denotes the minimal
number of µ-balls in V which are necessary to cover the subset X ⊂ V and
the monotonic decreasing function M is independent of ϵ;

3) there exist two maps Cϵ and Kϵ (which map Bϵ onto E(ϵ)) such that Sϵ =
Cϵ +Kϵ and, for every bϵ1, b

ϵ
2 ∈ Bϵ, we have

∥ Kϵb
ϵ
1 −Kϵb

ϵ
2 ∥E1(ϵ)≤ K ∥ Kϵb

ϵ
1 −Kϵb

ϵ
2 ∥E(ϵ), (5.13)

∥ Cϵb
ϵ
1 −Cϵb

ϵ
2 ∥E(ϵ)≤ δ ∥ Cϵb

ϵ
1 −Cϵb

ϵ
2 ∥E(ϵ), (5.14)

where δ < 1
2 and K are independent of ϵ;

4) there exist nonlinear projectors Πϵ : Bϵ → B0 such that ΠϵBϵ = B0 and

∥ S(n)
ϵ bϵ − S

(n)
0 Πϵbϵ ∥E(ϵ)≤ CϵLn, n ∈ N, bϵ ∈ Bϵ, (5.15)

where the positive constants C and L are also independent of ϵ.

We are going to verify these conditions for the semigroups St(ϵ) generated by the
hyperbolic system (2.1)− (2.4). To this end, we set

Ei(ϵ) = εi(ϵ)× εi(1), i = 0, 1. (5.16)

Then, the first condition (with δ = 1
2 in (5.11)) follows immediately from the def-

inition of the sets Bϵ. The second condition is verified for E(ϵ) = E0(ϵ) . The
third assumption follows from Theorem 4.2 if T is large enough (we recall that
Sϵ = ST (ϵ)). To prove the fourth assumption we define the projectors Πϵ = Π by
following expression

Π([u, v], ζα) = ([u,N (u, α)], ζα), (5.17)

where the map N is the same as in (5.1). Following the definition of the set B0

we have ΠBϵ ⊂ B0. Moreover, as ([u, 0], α, w) ∈ Π−1([u,N (u, α,w)], α, w), then,
ΠBϵ = B0, for every ϵ > 0. We can remark that estimate (5.6) is an immediate
consequence of estimate (4.74). Thus, all the assumptions of the abstract theorem
on the existence of a robust family of exponential attractors are satisfied and, due
to this theorem (see Fabrie & Galusinski [8]), there exists a family Md

ϵ ⊂ Bϵ of

exponential attractors for the semigroups S
(n)
ϵ such that

distE(ϵ)

(
S(n)
ϵ Bϵ,Md

ϵ

)
≤ Ce−Ln, (5.18)

where the constants C and L are independent of t and ϵ,

dimF

(
Md

ϵ , E(ϵ)
)
≤ C1, (5.19)

where the constant C1 is independent of ϵ, and

distsymE(ϵ)

(
Md

ϵ ,Md
0

)
≤ C2ϵ

κ, (5.20)
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where the positive constants C2 and κ are independent of ϵ.
Thus, we have constructed the desired exponential attractors for the discrete

semigroups. In order to obtain the exponential attractors for the continuous semi-
groups St(ϵ), we use the following standard formula:

Mϵ =
∪

t∈[T,2T ]

St(ϵ)Md
ϵ . (5.21)

In order to verify that the exponential attractors Mϵ so constructed satisfy all
assumptions of Theorem 5.1, we use estimates (4.1), (3.29), (4.87) and (4.86) which
prove that the semigroups St(ϵ) are uniformly Lipschitz continuous on [T, 2T ]×Bϵ

in the metric of E(ϵ). Consequently, due to (5.18) and (5.19) , we have

distE(ϵ)

(
Sϵ Bϵ,Mϵ

)
≤ C ′e−L′t, (5.22)

dimF

(
Mϵ, E(ϵ)

)
≤ C ′

1, (5.23)

where the new constants C ′, C ′
1 and L′ are independent of ϵ. From the estimates

(4.78), (4.81) and (5.11), we have the analogue of (5.20) for the continuous attractors

distsymE(ϵ)

(
Mϵ,M0

)
≤ C ′

2ϵ
κ, (5.24)

see Fabrie & Galusinski [8] for the details. We also recall that, due to Theorem 3.5,
the trajectories of the semigroups St(ϵ) are uniformly bounded in Φ1 and we deduce
that estimates (5.22) and (5.24) remain valid with the space E(ϵ) replaced by Φ0.

Thus, all the assertions of Theorem 5.1, except (5.6), are satisfied and instead
of estimate (5.6), we only have

distΦ0(St(ϵ)[B
1
R(ϵ) ∩B2

R(ϵ)],Mϵ) ≤ Q(R)e−βt, for all t ∈ R+, (5.25)

where the positive constant β and the monotonic function Q are independent of
ϵ. Using now estimate (5.25), Theorem 3.5 and the transitivity of the exponential
attraction (see Fabrie & Galusinski [8]), we derive estimate (5.6) for initial data in
B1

R(ϵ). This finishes the proof of the theorem.

Remark 5.1. It follows from Theorem 5.1 that there exists a family of global
attractors Aϵ, ϵ ∈ [0, ϵ0], of the semigroups St(ϵ) such that

1) Aϵ ⊂ B2
R0

(ϵ), St(ϵ)Aϵ = Aϵ, ∀t ∈ R+, ϵ ∈ [0, ϵ0];

2) the fractal dimension of Aϵ is uniformly bounded with respect to ϵ, that is,

dimF (Aϵ,Φ0) ≤ C, ϵ ∈ [0, ϵ0]. (5.26)
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Appendix

The aim here is to give the proof of Corollary 5.2 and Proposition 5.3 of Grasselli &
Miranville (see [9]). Actually we make use of these results to deduce uniform energy
estimates for the following initial and boundary value problem for a singularly
perturbed damped hyperbolic equation

ϵ∂2
t v + ∂tv −∆v = h(t), ζv|t=0 = ζ0, v|∂Ω

= 0. (5.27)

The following theorem gives the uniform ε1(ϵ)-norm energy estimate of equation
(5.27).

Theorem 5.2. Let v be a solution of (5.27) and the function h(t) be such that
h(t)|∂Ω = 0 for all t ≥ 0. Then, the following estimate

∥ζv(t)∥2ε1(ϵ) +
∫ t

0

e−β(t−s)∥∂tv(s)∥2H1ds

≤Ce−βt
(
∥ζv(0)∥2ε1(ϵ) + ∥h(0)∥2

)
+

∫ t

0

e−β(t−s)
(
∥h(s)∥2H1 + ∥∂th(s)∥2H−1

)
ds,

(5.28)

is valid, where the positive constants C and β are independent of ϵ.

Proof. Multiplying (5.27) by (−∆)(∂tv + γv), where γ > 0 is a sufficiently small
(but independent of ϵ) number, integrating over Ω, we have

d

dt

(
ϵ∥∂tv∥2H1 + ∥v∥2H2 + γ(∥v∥2H1 + 2ϵ(∆v,∆∂tv))

)
+ (1− 2ϵγ)∥∂tv∥2H1 + γ∥v∥2H2 ≤ C∥h(t)∥2H1 , (5.29)

where the positive constant C is independent of ϵ. Moreover, for a sufficiently small
γ > 0, there exists C1 > 0 such that

C−1
1 (ϵ∥∂tv(t)∥2H1 + ∥v(t)∥2H2)

≤ϵ∥∂tv∥2H1 + ∥v∥2H2 + γ(∥v∥2H1 + 2ϵγ(∆v,∆∂tv))

≤C1(ϵ∥∂tv(t)∥2H1 + ∥v(t)∥2H2). (5.30)

Thanks to (5.30), (5.29) can be written in the form

d

dt

(
ϵ∥∂tv∥2H1 + ∥v∥2H2 + γ(∥v∥2H1 + 2ϵ(∆v,∆∂tv))

)
+ β

(
ϵ∥∂tv∥2H1 + ∥v∥2H2 + γ(∥v∥2H1 + 2ϵ(∆v,∆∂tv))

)
+ β∥∂tv∥2H1 ≤ C∥h(t)∥2H1 ,

where the positive constants C and β are independent of ϵ. Applying Gronwall’s
inequality, owing to (5.30), we have

ϵ∥∂tv(t)∥2H1 + ∥v(t)∥2H2 +

∫ t

0

e−β(t−s)∥∂tv(s)∥2H1ds

≤Ce−βt
(
∥∂tv(0)∥2H1 + ∥v(0)∥2H2

)
ds+ C

∫ t

0

e−β(t−s)∥h(s)∥2H1ds. (5.31)
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Thus, it only remains to deduce the estimate for L2-norm of ∂tv. To do that, we
multiply (5.27) by ∂2

t v and integrate over Ω. We obtain

d

dt

(
∥∂tv∥2 + 2(v, (−∆)∂tv)− 2(h, ∂tv)

)
+ β

(
∥∂tv∥2 + 2(u, (−∆)∂tv)− 2(h, ∂tu)

)
+ 2ϵ∥∂2

t v∥2 = 2∥∂tv∥2H1 − 2(∂th, ∂tv) +
(
∥∂tv∥2 + 2(v, (−∆)∂tv)− 2(h, ∂tv)

)
= g(t), (5.32)

where β > 0 and the function g is such that

|g(t)| ≤ C∥∂tv∥2H1 + β∥v(t)∥2H1 + C(∥h(t)∥2H1 + ∥∂th(t)∥2H−1). (5.33)

Applying Gronwall’s inequality to (5.32), owing to (5.31) and (5.33), we have

∥∂tv(t)∥2 + 2(v(t), (−∆)∂tv(t))− 2(h(t), ∂tv(t)) +

∫ t

0

e−β(t−s)2ϵ∥∂2
t v(s)∥2ds

≤
(
∥∂tv(0)∥2 + 2(v(0), (−∆)∂tv(0))− 2(h(0), ∂tv(0))

)
e−βt

+ C

∫ t

0

e−β(t−s)
(
∥h(s)∥2H1 + ∥∂th(s)∥2H−1

)
ds, (5.34)

where the positive costant C is independent of ϵ. We know that

∥h(t)∥2 − e−βt∥h(0)∥2 =

∫ t

0

d

dt

(
e−β(t−s)∥h(s)∥2

)
ds

=

∫ t

0

e−β(t−s)
(
β∥h(s)∥2 + 2(h(s), ∂th(s))

)
ds

≤
∫ t

0

e−β(t−s)
(
β∥h(s)∥2 + 2∥h(s)∥H1∥∂th(s)∥H−1

)
ds

≤C

∫ t

0

e−β(t−s)
(
∥h(s)∥2H1 + ∥∂th(s)∥2H−1

)
ds. (5.35)

Adding (5.31) and γ(5.34) where γ > 0 is sufficiently small, we have, owing to (5.34)

∥∂tv(t)∥2 ≤C(∥ζv(0)∥2ε(ϵ) + ∥h(0)∥2)dse−βt

+ C

∫ t

0

e−β(t−s)
(
∥h(s)∥2H1 + ∥∂th(s)∥2H−1

)
ds. (5.36)

Combining (5.31) and (5.36), we obtain the result.
The following theorem gives the uniform ε(ϵ)-norm energy estimate of equation

(5.27), in the case where the H−1-norm of the right-hand side h is known or can be
obtained.

Theorem 5.3. Let v be a solution of (5.27) such that ζv(0) ∈ ε(ϵ). Then, the
following estimate

∥ ζv(t) ∥2ε(ϵ) +
∫ t

0

e−β(t−s) ∥ ∂tv(s) ∥2 ds

≤Ce−βt(∥ ζv(0) ∥2ε(ϵ) + ∥ h(0) ∥2H−1)

+ C
(∫ t

0

e−β(t−s)(∥ ∂th(s) ∥H−1 + ∥ h(s) ∥H−1)ds
)2

, (5.37)

is valid, where the positive constants β and C are independent of ϵ.
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Proof. In order to prove this theorem, we proceed as Grasselli & Miranville (see
[9]). We first multiply (5.27) by 2(∂tv+γv), where β > 0 is small (but independent
of ϵ) number, integrate over Ω and have

d

dt
Γ + 2(1− βϵ)∥∂tv∥2 + 2β∥u∥2H1 = 4(h(t), (−∆)−1∂th) + 2(βh− ∂th, v), (5.38)

where

Γ = ϵ∥∂tv∥2 + ∥v∥2H1 + β∥v∥2 + 2βϵ(v, ∂tv)− 2(h(t), v(t)) + 2∥h∥2H−1 .

Moreover, for a sufficiently small β > 0, there exists a constant C > 0 such that

C
(
ϵ∥∂tv(t)∥2 + ∥v(t)∥2H1 + ∥h(t)∥2H−1

)
≤ Γ(t)

≤C
(
ϵ∥∂tv(t)∥2 + ∥v(t)∥2H1 + ∥h(t)∥2H−1

)
, (5.39)

where the positive constant C is independent of ϵ. Then, we can write (5.27) in the
form

∂tΓ + β′Γ + β∥∂tv∥2 ≤ CH(t)Γ
1
2 , (5.40)

where the positive constants C and β′ are independent of ϵ, and H(t) = ∥h(t)∥H−1+
∥∂th(t)∥H−1 . In order to solve (5.40), we first solve the following inequality

∂tΓ + β′Γ ≤ CH(t)Γ
1
2 . (5.41)

Here, Γ = 0 is the trivial solution of (5.41). Assume that Γ ̸= 0. We set U(t) =√
Γ(t) in (5.41) and we obtain

d

dt
U + β′U ≤ CH(t). (5.42)

Applying Gronwall’s inequality, we obtain

U(t) ≤ U(0)e−β′t + C

∫ t

0

e−β′(t−s)H(s)ds

which implies

U(t)2 ≤3

2
U(0)2e−2β′t + C(

∫ t

0

e−β′(t−s)H(s)ds)2

≤U(0)2e−β′t+1 + C(

∫ t

0

e−β′(t−s)H(s)ds)2,

which we can write in the form

Γ(t) ≤ Γ(0)eβ
′t+1 + C(

∫ t

0

eβ
′(t−s)/2H(s)ds)2, (5.43)

where the positive constants β′ and C are independent of ϵ. Then, using (5.44), we
have

ϵ∥∂tv(t)∥2 + ∥v(t)∥2H1 + ∥u(t)∥2 + ∥h(t)∥2H−1

≤Ce−β′t(ϵ∥∂tv(0)∥2 + ∥v(0)∥2H1 + ∥v(t)∥2 + ∥h(0)∥2H−1

+ C
(∫ t

0

eβ
′(t−s)/2H(s)ds

)2

, (5.44)
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where the positive constants β and C are independent of ϵ. In order to obtain the
desired estimate for integral of ∥∂tu(s)∥2, we multiply (5.40) by e−β′(T−s), integrate
over [0, T ] and use the following equality∫ T

0

e−β′(T−t)[U ′(t) + β′U(t)]dt = U(t)− U(0)e−β′T . (5.45)

Thanks to (5.39), (5.40) and (5.45), we have

β′
∫ T

0

e−β′(T−t)∥∂tv(t)∥dt

≤Γ(0)e−β′T − Γ(T ) + C

∫ T

0

e−β′(T−t)H(t)[Γ(t)]
1
2 dt

≤Γ(0)e−β′T + C

∫ T

0

e−β′(T−t)H(t).e−β′t/2[Γ(0)]
1
2 dt

+ C

∫ T

0

e−β′(T−t)/2H(t).e−β′(T−t)
(
[Γ(t)]

1
2 − eβ

′t/2[Γ(0)]
1
2 )
)
dt

≤C1Γ(0)e
−β′T + C

∫ T

0

e−β′(T−t)/2H(t).e−β′(T−t)
(
U(t)− U(0)eβ

′t/2)
)
dt

≤C1Γ(0)e
−β′T + C

∫ T

0

e−β′(T−t)/2H(t).e−β′(T−t)

∫ t

0

e−β′(t−s)/2[v′(s) +
β′

2
U(s)]dsdt

≤C1Γ(0)e
−β′T + C

∫ T

0

e−β′(T−t)/2H(t).e−β′(T−t)/2

∫ t

0

e−β′(t−s)/2H(s)dsdt

≤C1Γ(0)e
−β′T + C

∫ T

0

e−β′(T−t)/2H(t).

∫ t

0

e−β′(T−s)/2H(s)dsdt

≤C1Γ(0)e
−β′T + C

(∫ T

0

e−β′(T−t)/2H(t)dt
)2

. (5.46)

In order to obtain the estimate for H−1-norm of ∂tv(t), due to estimate (3.11), we
can assume ζv(0) = 0. We differentiate equation (5.27) with respect t and we obtain

ϵ∂3
t v + ∂2

t v −∆∂tv = ∂th. (5.47)

Multiply (5.47) by (−∆)−1(2ϵ∂2
t v + ∂tv) and integrate over Ω. We obtain

d

dt
Γv+ϵ∥∂2

t v∥2H−1+∥∂tv∥2 = 2(∂th, (−∆)−1, (−∆)−1(ϵ∂2
t v+∂v))+2ϵ∥∂tv∥2, (5.48)

where

Γv = ϵ2∥∂2
t v∥2H−1 + ϵ∥∂tv∥2 +

1

2
∥∂tv∥2H−1 + ϵ(∂tv, ∂

2
t v).

There exists C > 0 such that

C−1(ϵ2∥∂2
t v(t)∥2H−1 + ϵ∥∂tv(t)∥2 + ∥∂tv(t)∥2H−1)

≤ Γv(t)

C(ϵ2∥∂2
t v(t)∥2H−1 + ϵ∥∂tv(t)∥2 + ∥∂tv(t)∥2H−1), (5.49)
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where the constants C is independent of ϵ. Moreover, for sufficiently small ϵ > 0,
(5.48) can be written in the form

d

dt
Γv + β′Γv = C1∥∂th∥H−1Γ

1
2
u , (5.50)

where the positive constants β′ and C1 are independent of ϵ. Applying estimate
(5.43) for the above equation, we have

ϵ2∥∂2
t v(t)∥2H−1 + ϵ∥∂tv(t)∥2 + ∥∂tv(t)∥2H−1)

≤Ce−β′tϵ2∥∂2
t v(0)∥2H−1 + C

(∫ t

0

e−β′(t−s)C1∥∂th(s)∥H−1ds
)2

. (5.51)

Here, we have also used the fact that ζu(0) = 0, which yields, owing to (5.27), ϵ∂2
t v =

h(0) and the desired estimate for the H−1 of ∂tu is an immediate consequence of
(5.51).
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