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SMOOTH SOLUTION OF PARTIAL
INTEGRO-DIFFERENTIAL EQUATIONS

USING RADIAL BASIS FUNCTIONS

Z. Avazzadeha, M. Heydarib,†, W. Chena

and G.B. Loghmanib

Abstract In this work, we present the method based on radial basis func-
tions to solve partial integro-differential equations. We focus on the parabolic
type of integro-differential equations as the most common forms including
the “memory” of the systems. We propose to apply the collocation scheme
using radial basis functions to approximate the solutions of partial integro-
differential equations. Due to the presented technique, system of linear or
nonlinear equations is made instead of primary problem. The method is ef-
ficient because the rate of convergence of collocation method based on radial
basis functions is exponential. Some numerical examples and investigation of
the experimental results show the applicability and accuracy of the method.
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1. Introduction

Many different fields of engineering and science include the system mixed of a partial
differential equation and the integral terms involving the unknown function [1, 4,
18, 44, 53]. Such terms appear when we must consider the effects of the “memory”
of the system. Corresponding to the partial differential equations, there are many
different types of these equations such as parabolic and hyperbolic forms [2, 3, 52].

These class of equations called partial integro-differential equations (PIDE) can
describe some phenomena in compression of poro-viscoelastic media [22], reaction-
diffusion problems [17] and nuclear reactor dynamics [41–43], geophysics [19], plas-
ma physics [21], electromagnetic theory [10].

Although these equations are solved by using some different methods [20, 32,
33, 35, 51, 52], there are some new research to find much more fast and efficient
method through the new methods [2, 3, 25, 45, 54]. In this paper, we apply radial
basis functions to approximate solution which lead to the continuous solutions.

The radial basis function (RBF) methodology was introduced by Hardy [23] and
became popular in multivariate interpolation [5–9,26,38–40]. In 1990, Kansa intro-
duced a way to use it for solving parabolic, hyperbolic and elliptic partial differential
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equations [30]. After that, radial basis functions have been widely discussed [5, 15]
and applied in numerous fields. In this study, we propose using RBFs for solving
the parabolic partial integro-differential equations.

As Kansa proposed the radial basis functions technique based on collocation
scheme [30], RBFs have been coupled with some other techniques [12–14,27,48–50].

Here, we use the collocation method based on radial basis functions to solve
the PIDE problems. The most privileges of the method are making a continuous
solution and exponentially convergence.

This work is organized as follows. In Section 2, we introduce the parabolic
partial integro-differential equations as the most common operators. In Section 3,
we apply the radial basis functions as the effective tool to approximate the solution.
This section is devoted to describing the collocation method applied for solving
partial integro-differential equations. In Section 4, some illustrative examples and
numerical results are shown. Also, we investigate the validity of the method by
analysis of the experimental results. An error analysis for the proposed method is
introduced in Section 5. Finally, we review some important points of the numerical
findings in Section 6.

2. Parabolic partial integro-differential equation

As mentioned before, partial integro-differential equations appear in many different
types. Here, we focus only on parabolic partial integro-differential equation which
is one of the most important types.

Consider the following partial integro-differential equation

ut(x, t) = g(x, t) + uxx(x, t) +

∫ t

0

k(x, t, s, u(x, s))ds, a ≤ x ≤ b, 0 ≤ t ≤ T, (2.1)

with the following initial and boundary conditions

u(x, 0) = f(x), x ∈ [a, b], (2.2)

u(a, t) = h(t), u(b, t) = l(t), t ∈ [0, T ], (2.3)

where ut = ∂u
∂t and uxx = ∂2u

∂x2 . The functions g and k are continuous on Ω =
{(x, t) ∈ R2 : x ∈ I, t ∈ J} and I × S × R, respectively, with I = [a, b], J = [0, T ]
and S = {(t, s) ∈ J × J : s ≤ t}.

In the general form, we can write these operators as

L(u(x)) = λ(x), inΩ, (2.4)

where x = (x, t), with the following initial and boundary conditions

B(u(x)) = µ(x), in ∂Ω, (2.5)

However, such equations can handle describing of some physical phenomena in the
real world, they are heavy and complex in computation.

3. Description of the RBF collocation method

Consider the general partial integro-differential equation (2.1) with the initial and
boundary conditions (2.2), (2.3), respectively. As it is illustrated in Fig.1, Ω is a



Smooth solution of partial integro-differential equations 117

rectangle surrounded in ∂Ω. The initial and boundary conditions are defined on
three sides of this rectangle which are numbered.

Figure 1. Ω is a rectangle surrounded in ∂Ω. The initial and boundary conditions
are defined on three sides of this rectangle which is numbered 1, 2, 3. The first
side is correspond to a ≤ x ≤ b and the second and third sides are correspond to
0 ≤ t ≤ T .

Now we use the RBFs for discretization of both time and space variables. Let

Ω = {(xi, tj), a ≤ xi ≤ b, 0 ≤ tj ≤ T, i, j = 1, 2, · · · , n}, (3.1)

be a set of scattered nodes. Then the approximated solution of the problem (2.1)-
(2.3) is considered as follows:

ũ(x, t) =

N∑
i=1

αiϕi(x, t), (3.2)

where ϕi(x, t) = ϕ(||(x, t) − (xk, tl)||), k, l = 1, 2, · · · , n, i = 1, 2, · · · , N = n2 , for
a radial function ϕ and αi, i = 1, 2, · · · , N are unknown coefficients that must be
found. There are many different RBFs can be used as the multiquadratics (MQ)

φ(r) = (r2 + c2)
β
2 , β ̸= 0, β ̸= 2N, inverse multiquadratics (IMQ) φ(r) =

1√
r2 + c2

,

Gaussians (GA) φ(r) = e−c2r2 and etc.

The collocation technique is used for finding unknowns αi, i = 1, 2, · · · , N . Let

Ω = Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4, (3.3)

where

1 th side : Ω1 = {(xi, tj), a ≤ xi ≤ b, tj = 0, i, j = 1, 2, · · · , n},
2 th side : Ω2 = {(xi, tj), xi = a, 0 < tj ≤ T, i, j = 1, 2, · · · , n},
3 th side : Ω3 = {(xi, tj), xi = b, 0 < tj ≤ T, i, j = 1, 2, · · · , n},

Inner area : Ω4 = {(xi, tj), a < xi < b, 0 < tj ≤ T, i, j = 1, 2, · · · , n}.

Also we assume Ωi ̸= ∅ for i = 1, 2, 3, 4. Now (2.1)-(2.3) are approximated by using
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(3.2). Thus we have

N∑
i=1

αiϕi(xk, tl) = f(xk), (xk, tl) ∈ Ω1, (3.4)

N∑
i=1

αiϕi(xk, tl) = h(tl), (xk, tl) ∈ Ω2, (3.5)

N∑
i=1

αiϕi(xk, tl) = l(tl), (xk, tl) ∈ Ω3, (3.6)

N∑
i=1

αi

[
∂

∂t
ϕi(xk, tl)−

∂2

∂x2
ϕi(xk, tl)

]
−A(xk, tl) = g(xk, tl), (xk, tl) ∈ Ω4, (3.7)

where

A(xk, tl) =

∫ tl

0

k(xk, tl, s,
N∑
i=1

αiϕi(xk, s))ds, (xk, tl) ∈ Ω4, (3.8)

which results in a system of equations that can be solved via Newton’s iteration
method or other efficient method to obtain the coefficients αi, i = 1, 2, ..., N [28].

Remark 3.1. (Legendre-Gauss nodes and weights) Let LM+1(ξ) be the Leg-
endre polynomial of order M + 1 on [−1, 1]. Then the Legendre-Gauss nodes are

− 1 < ξ0 < ξ1 < · · · < ξM < 1, (3.9)

where {ξi}Mi=0 are the zeros of LM+1(ξ). No explicit formulas are known for the
points ξi, and so they are computed numerically using subroutines [11,31]. Also we
approximate the integral of f on [−1, 1] as∫ 1

−1

f(ξ)dξ ≃
M∑
i=0

wif(ξi), (3.10)

where ξi are Legendre-Guass nodes in (3.9) and the weights wi given in [11,31]

wi =
2

(1− ξ2i )[L
′
M+1(ξi)]

2
, i = 0, 1, · · · ,M. (3.11)

As it is mentioned in [11, 31], the integration in (3.10) is exact whenever f(ξ) is a
polynomial of degree ≤ 2M + 1.

For obtaining A(xk, tl), (xk, tl) ∈ Ω4, by change of variable s = tl
2 (ξ+1), (3.8)

can be written as:

A(xk, tl) =
tl
2

∫ 1

−1

k

(
xk, tl,

tl
2
(ξ + 1),

N∑
i=1

αiϕi(xk,
tl
2
(ξ + 1))

)
dξ, (xk, tl) ∈ Ω4.

(3.12)
By applying numerical integration method given in (3.10), we can approximate the
integral in (3.12) and we can get:

A(xk, tl) ≃
tl
2

M∑
j=0

wjk

(
xk, tl,

tl
2
(ξj + 1),

N∑
i=1

αiϕi(xk,
tl
2
(ξj + 1))

)
dξ, (xk, tl) ∈ Ω4.

(3.13)
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In case L and B are the linear operators, we have a linear system that can be solved
to obtain the coefficient αi, i = 1, 2, ..., N .

4. Numerical examples

To show the efficiency of the present method on the partial integro-differential
equation, we give some computational results to illustrate our theoretical discussion.
These experiments are chosen such that the relevant analytical solutions are known.
The computations associated with the examples were performed using Matlab 7
software on a Personal Computer.

Example 4.1 ( [25]). We consider the partial integro-differential equation with the
initial condition

u(x, 0) = 0, −1 ≤ x ≤ 1,

and boundary conditions

u(−1, t) = 0, 0 ≤ t ≤ 1,
u(1, t) = 0, 0 ≤ t ≤ 1,

where k(x, t, s, u) = − exp(x(t− s))u ,

g(x, t) =
(
1− x2

)
cos (t) +

(
x2 − 1

)
(x sin (t)− ext + cos (t))

x2 + 1
+ 2 sin (t) ,

and u(x, t) = (1− x2) sin(t) is the exact solution.
In Figure 2, the exact solution, numerical solution and the corresponding abso-

lute error function |u−ũ| are plotted by using GA-RBF with c = 0.1 and the uniform
set of collocation points xi = −1 + (i− 1)/5 and ti = (i− 1)/10, i = 1, 2, · · · , 11.

Example 4.2 ( [25]). In this example, we consider the partial integro-differential
equation with the initial condition

u(x, 0) = 1− x2, −1 ≤ x ≤ 1,

and boundary conditions

u(−1, t) = 0, 0 ≤ t ≤ 1,
u(1, t) = 0, 0 ≤ t ≤ 1,

where k(x, t, s, u) = −1+t−s
1+x u,

g(x, t) =

(
2x2 − 2

)
t

(t2 + 1)
2 +

(
x− 1

2

)
ln
(
t2 + 1

)
+ (−xt+ t− x+ 1) arctan (t) +

2

1 + t2
,

and u(x, t) = 1−x2

1+t2 is the exact solution.
In Figure 3, the exact solution, numerical solution and the corresponding abso-

lute error function |u−ũ| are plotted by using GA-RBF with c = 0.1 and the uniform
set of collocation points xi = −1+ 2(i− 1)/15 and ti = (i− 1)/15, i = 1, 2, · · · , 16.
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Figure 2. Exact solution (a), approximated solution (b) and absolute error function
|u− ũ| for N = 121 using GA-RBF with c = 0.1. See Example 4.1.

Example 4.3 ( [25]). We consider the partial integro-differential equation with the
initial condition

u(x, 0) = 1− x2, −1 ≤ x ≤ 1,

and boundary conditions

u(−1, t) = 0, 0 ≤ t ≤ 1,
u(1, t) = 0, 0 ≤ t ≤ 1,

where k(x, t, s, u) = − sin(x(t− s))u,

g(x, t) =
(
1− x2

)
et +

(
x2 − 1

)
(x cos (xt) + sin (xt)− xet)

x2 + 1
+ 2 et,

and u(x, t) = (1− x2) exp(t) is the exact solution.
In Figure 4, the exact solution, numerical solution and the corresponding abso-

lute error function |u−ũ| are plotted by using GA-RBF with c = 0.1 and the uniform
set of collocation points xi = −1 + (i− 1)/5 and ti = (i− 1)/10, i = 1, 2, · · · , 11.

Example 4.4. We consider the nonlinear partial integro-differential equation with
the initial condition

u(x, 0) = x2, 0 ≤ x ≤ 1,

and boundary conditions

u(0, t) = t2, 0 ≤ t ≤ 1,
u(1, t) = 1 + t2, 0 ≤ t ≤ 1,
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Figure 3. Exact solution (a), approximated solution (b) and absolute error function
|u− ũ| for N = 256 using GA-RBF with c = 0.1. See Example 4.2.

where k(x, t, s, u) = sin(xt)u2,

g(x, t) = 2 t− 2− 1

5
sin (xt) t5 − 2

3
sin (xt)x2t3 − sin (xt)x4t,

and u(x, t) = x2 + t2 is the exact solution.
In Figure 5, the exact solution, numerical solution and the corresponding ab-

solute error function |u − ũ| are plotted by using GA-RBF with c = 0.01 and the
uniform set of collocation points xi = (i− 1)/4 and ti = (i− 1)/4, i = 1, 2, · · · , 5.

5. Error Analysis

Madych have proven exponential convergence property of multiquadratic approxi-
mation [36]. He has shown that under certain conditions, the interpolation error is
ε = O(λ

c
h ) where c is the shape parameter, h is the mesh size and 0 < λ < 1 is a

constant. It implies we can improve the approximated solution either by reducing
the size of h or by increasing the magnitude of c. It means that if c → ∞ then
ε → 0. Since increasing of c can improve the accuracy exponentially without extra
computation [16,24,36,37], it is preferred to decrease error rather than reducing h.

However, according to ‘uncertainty principle’ of Schaback [47], as the error be-
comes smaller, the matrix becomes more ill-conditioned; hence the solution will
break down as c becomes too large. The experimental results confirm such behav-
ior of the error values as c becomes larger. The numerical results for Examples
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Figure 4. Exact solution (a), approximated solution (b) and absolute error function
|u− ũ| for N = 121 using GA-RBF with c = 0.1. See Example 4.3.

4.1, 4.2 and 4.3 are demonstrated in Figures 6, 7 and Tables 1 and 2 which show
according to the findings of Madych, the error functions decrease exponentially as
c becomes larger in bounded interval. After that according to the research of Sch-
aback the error values decline as c becomes too large. The best c is different for
various problems and not the same RBFs.

Table 1. The maximum absolute error by using GA-RBF with different c for
Examples 4.1, 4.2 and 4.3.

c Example 1 Example 2 Example 3
N = 121 N = 256 N = 121

0.001 7.45×10−8 1.12×10−1 3.49×10−4

0.01 8.55×10−12 1.72×10−5 8.51×10−12

0.1 4.52×10−13 3.11×10−8 9.25×10−12

0.5 2.51×10−7 1.14×10−7 8.38×10−7

1 1.19×10−4 6.58×10−7 3.63×10−4

1.2 4.52×10−4 5.52×10−6 1.59×10−3

2 8.51×10−3 7.16×10−4 2.82×10−2

3 2.62×10−2 7.13×10−3 8.55×10−2
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Figure 5. Exact solution (a), approximated solution (b) and absolute error function
|u− ũ| for N = 25 using GA-RBF with c = 0.01. See Example 4.4.

6. Conclusion

In this work, we apply the radial basis functions method to solve the parabolic
partial integro-differential equations. The presented method is flexible to solve
the nonlinear problems. The numerical experiments show the applicability and
accuracy of method. All experiments are performed within some seconds, running
on DELL with 4Gb RAM 2.4GHz CPU. This method can be utilized for solving
the other types of partial integro-differential equations such as hyperbolic partial
integro-differential equations.

Table 2. The maximum absolute error by using MQ-RBF with different c for
Examples 4.1, 4.2 and 4.3.

c Example 1 Example 2 Example 3
N = 121 N = 256 N = 121

0.1 5.22×10−2 1.81×10−2 1.31×10−1

1 2.01×10−3 1.35×10−4 3.16×10−3

5 6.38×10−6 2.51×10−6 1.82×10−5

19 5.43×10−13 2.42×10−7 3.75×10−11

25 1.61×10−12 3.24×10−7 3.31×10−11

30 1.91×10−11 8.51×10−7 2.54×10−11

35 2.19×10−11 2.11×10−6 8.01×10−11
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Figure 6. Horizontal axis is related to shape parameter (c) with log mode and
vertical axis shows absolute error values with log mode when the solutions are
approximated by using GA-RBF.
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Figure 7. Horizontal axis is related to shape parameter (c) with log mode and
vertical axis shows absolute error values with log mode when the solutions are
approximated by using MQ-RBF.
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