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1. Introduction

Now, let us consider differential system

x′ = X(t, x), t ∈ R, x ∈ D ⊂ Rn. (1.1)

We assume that system (1.1) has continuously differentiable right-hand sides and
which has a general solution φ(t; t0, x0). In [7] there was an elaborated method of the
reflecting function which give us an opportunity to research the qualitative behavior
of solutions of (1.1). The reflecting function for system (1.1) is defined in some
region near the hyperplane t = 0 by the formula F (t, x) := φ(−t; t, x). If system
(1.1) is 2ω-periodic with respect to t, then F (−ω, x) is its Poincaré mapping [1,7,8].
Therefore, the solution φ(t;−ω, x0) which can be extended to [−ω, ω] is 2ω-periodic
if and only if F (−ω, x0) = x0.

The reflective function F (t, x) of system (1.1) can be found sometimes even for
the case when the system (1.1) cannot be integrated by quadrature. For example,
every system (1.1) for which X(−t, x) = −X(t, x) has a reflective function given
by the formula F (t, x) ≡ x. We know this due to the following property. A differ-
entiable function F (t, x) is the reflective function of system (1.1) if and only if the
following basic relation

F ′t + F ′xX(t, x) +X(−t, F ) = 0, F (0, x) = x (1.2)

holds.
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So if we can find the solution of the basic relation (1.2), then we can find the ini-
tial data for periodic solutions of (1.1) and investigate the character of the stability
for those solutions.

If system
x′ = Y (t, x) (1.3)

has the same reflective function F (t, x) as the system (1.1), then Y (0, x) = X(0, x)
and systems

F ′t + F ′xX(t, x) +X(−t, F ) = 0,

F ′t + F ′xY (t, x) + Y (−t, F ) = 0,

F (0, x) = x

are compatible. At this moment, we call system (1.3) is equivalent to system (1.1).
To check whether the above systems are compatible we can use the Frobenius

theorem ( [5]). Doing this in practice, however, is a very hard task.
If we can neither solve the system (1.1) nor the problem (1.2), then it is good

enough to construct any system (1.3) which is equivalent to (1.1). To do this,
sometimes we can use:

Lemma 1.1. [9] Let the vector functions 4k (k = 1, 2, ...,m) be solutions of the
equation

4′t +4′xX(t, x) = X ′x4 (1.4)

and αk(t)(k = 1, 2, ...,m) be any scalar continuous odd functions. Then every sys-
tem of the form

x′ = X(t, x) +

m∑
k=1

αk(t)4k(t, x) (1.5)

is equivalent to system (1.1) (here m is any natural number or even m =∞). So if
we find some solutions of equation (1.4), we can construct system (1.5), which has
the same reflective function as system (1.1).

In this paper, we will discuss the form of 4(t, x) on the condition equation

x′ =

m∑
k=0

ak(t)xk + α(t)4(t, x) (1.6)

is equivalent to

x′ =

m∑
k=0

ak(t)xk =: X(t, x). (1.7)

By the equivalence, we can reduce the analysis of properties of solutions of the per-
turbed equation (1.6) to the investigation of behavior of the solutions of polynomial
equation (1.7).

There are some planar polynomial differential systems can be transformed to
an equation of the form (1.7), where the ak(t)(k = 0, 1, 2...,m) are polynomials
in cos t and sin t. The fact that systems with a homogeneous nonlinearity can
be transformed to (1.7) with N = 3 has been exploited in a number of previous
papers [2,4,15]. To study equation (1.7) is closely related to research the qualitative
behavior of the solutions of planar polynomial differential systems.

Other results concerning the reflective function and its applications can be found
in works of Mironenko [7–10], Musafirov and others [3, 6, 11–14,16–20].
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2. Main results

Now, consider the polynomial differential equation (1.7), where ak := ak(t) (k =
0, 1, 2, ..,m) are continuously differentiable functions.

Theorem 2.1. Suppose that α(t) and bk := bk(t) (k = 0, 1, 2, ...,m) are continu-
ously differentiable functions and satisfy the following conditions:

b′0 = a1b0 − a0b1, (2.1)

b′k = (k + 1)(ak+1b0 − a0bk+1) + (k − 1)(akb1 − a1bk), (2.2)

k = 1, 2, ...,m, am+1 = bm+1 = 0,

am−kbm = ambm−k, k = 1, 2, ...,m− 2. (2.3)

Then the differential equation (1.6) with 4(t, x) =
∑m
k=0 bk(t)xk is equivalent to

equation (1.7), where α(t) + α(−t) = 0.
In addition, if the equations (1.7) and (1.6) are 2ω−periodic with respect to t,

then the qualitative behavior of periodic solutions of their defined on [−ω, ω] coin-
cide.

Proof. In the relation (1.4), taking

4(t, x) =

m∑
k=0

bk(t)xk and X(t, x) =

m∑
k=0

ak(t)xi,

it implies
m∑
k+0

b′kx
k =

2m−1∑
k=0

(

k+1∑
i=0

(k + 1− 2i)ak+1−ibi)x
k.

Equating the coefficients of like powers of x, we get

b′k =

k+1∑
i=0

(k + 1− 2i)ak+1−ibi,

k = 0, 1, 2, ..., 2m− 2, ai = bi = 0, when i > m.

By calculating the above relations, we obtain

am−kbm = ambm−k (k = 1, 2, ...,m− 2).

and identifies (2.1) (2.2).
Therefore, when the conditions (8-10) are satisfied, the identity (1.4) is valid.

By the literature [7,9], we know equation (1.6) is equivalent to equation (1.7).

Corollary 2.1. If (b0i, b1i, ..., bmi) (i = 1, 2, .., p) satisfy the relation (2.1)-(2.3),
βi(t) (i = 1, 2, ..., p) are arbitrary continuously differentiable odd functions, then
equation

x′ = X(t, x) +

p∑
i=1

βi(t)∆i(t, x) (2.4)

is equivalent to equation (1.7), in which ∆i(t, x) =
∑m
k=0 bki(t)x

k.
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Proof. Let F (t, x) be a reflective function of (1.7). In view of the assumptions,
we know ∆i(t, x) (i = 1, 2, ..., p) satisfy the relation (1.4). By the literature [9], we
have

F ′x(t, x)∆i(t, x) = ∆i(−t, F (t, x)).

In the following, we will verify F (t, x) is also a reflective function of equation (2.4).

In fact, as

F ′t (t, x) + F ′x(t, x)(X(t, x) +

p∑
i=1

βi(t)∆i(t, x)) +X(−t, F (t, x))

+

p∑
i−1

βi(−t)∆i(−t, F (t, x)) = F ′t (t, x) + F ′x(t, x)X(t, x) +X(−t, F (t, x))

+

p∑
i=1

βi(t)(F
′
x(t, x)∆i(t, x)−∆i(−t, F (t, x))) = 0.

Thus, equation (2.4) is equivalent to equation (1.7).

Example 2.1. It is easy to check that differential equation

x′ = xm cos t

( m > 1,m is a positive integral) is equivalent to equation

x′ = xm cos t+

m∑
i=1

βi(t)(ki1x+ ((m− 1)k1i cos t+ k2i)x
m),

where βi(t) (i = 1, 2, ...,m) are arbitrary odd functions, k1i, k2i (i = 1, 2, ...,m) are
constants. When βi(t) (i = 1, 2, ...,m) are 2π-periodic continuously differentiable
odd functions, all the solutions of above equations are 2π−periodic.

Now, let us consider

∆(t, x) =

∑m+2
k=0 bkx

k

c0 + c2x2
, (2.5)

where c0c2 6= 0 and ci := ci(t), bj := bj(t) (i = 0, 2, j = 0, 1, 2, ...,m + 2) are
continuously differentiable functions.

Denote

dk = c0ak + c2ak−2, k = 0, 1, 2, ...,m+ 2,

Ak =
1

c20

k+1∑
i=0

(k + 1− 2i)bidk+1−i +
bk−2
c0

(
c2
c0

)′, k = 0, 1, 2, 3, 4,

Ak =
1

c20

3∑
i=0

(k + 1− 2i)(bidk+1−i − dibk+1−i) +
bk−2
c0

(
c2
c0

)′,

k = 5, 6, ...,m+ 4, bi = di = 0, when i > m+ 2 or i < 0.
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Theorem 2.2. If c0, c2 and bk (k = 0, 1, 2, ...,m+ 2) satisfy the following relations

(
bk
c0

)′ =

[ k2 ]∑
i=0

(−c2
c0

)iAk−2i,

k = 0, 1, 2, ...,m+ 4. bi = 0, when i > m+ 2, (2.6)

bm+2−kdm+2 = bm+2dm+2−k, k = 1, 2, ...,m− 2. (2.7)

Then differential equation

x′ = X(t, x) + α(t)∆(t, x) (2.8)

is equivalent to (1.7), where α(t) is an arbitrary continuously differentiable odd
function, ∆(t, x) is in the form of (2.5).

In addition, if equations (1.7) and (2.8) are 2ω-periodic with respect to t, then
the qualitative behavior of 2ω-periodic solutions of (1.7) and (2.8) coincide.

Where and in the following [k] stands for the integer part of k.
Proof. In the relation (1.4), taking

∆(t, x) =

∑m+2
k=0 bk(t)xk

c0 + c2x2
and X(t, x) =

m∑
k=0

ak(t)xk,

we obtain

m+2∑
k=0

b′kx
k(c0 + c2x

2)− (c′0 + c′2x
2)

m+2∑
k=0

bkx
k

+ (

m+2∑
k=1

kbkx
k−1(c0 + c2x

2)− 2c2x

m+2∑
k=0

bkx
k)

m∑
k=0

akx
k

=(c0 + c2x
2)

m∑
k=1

kakx
k−1

m+2∑
k=0

bkx
k,

i.e.,

m+2∑
k=0

b′kx
k(c0 + c2x

2)− (c′0 + c′2x
2)

m+2∑
k=0

bkx
k

=

m+2∑
k=1

kdkx
k−1

m+2∑
k=0

bkx
k −

m+2∑
k=1

kbkx
k−1

m+2∑
k=0

dkx
k.

Equating the coefficients of like powers of x, we have

b′kc0 + b′k−2c2 − c′0bk − c′2bk−2 =

k+1∑
i=0

(k + 1− 2i)bidk+1−i,

k = 0, 1, 2, ...,m+ 4, bi = di = 0, when i > m+ 2, or i < 0, (2.9)

m+2∑
i=k

(m+ k + 2− 2i)bidm+k+2−i = 0, k = 4, 5, ...,m+ 1. (2.10)
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From (2.10) follows

bm+2−kdm+2 = bm+2dm+2−k, k = 1, 2, ...,m− 2.

Substituting it into (2.9) and performing simple computations, we obtain

(
bk
c0

)′ +
c2
c0

(
bk−2
c0

)′ = Ak,

k = 0, 1, 2, ...,m+ 4, bi = di = 0, when i < 0, or i > m+ 2. (2.11)

Solving it implies

(
bk
c0

)′ =

[ k2 ]∑
i=0

(−c2
c0

)iAk−2i, k = 0, 1, ...,m+ 4, bi = 0, i > m+ 2.

Therefore, when the relations (2.6)-(2.7) are satisfied, the identity (1.4) is valid. By
the literature [7,9], we know that equation (2.8) is equivalent to equation (1.7). The
proof is finished.

Similar discuss as corollary 2.1, we get

Corollary 2.2. If

(c0i, c1i, b0i, b1i, ..., bmi), i = 1, 2, ..., p

satisfy the relations (2.6)-(2.7), βi (i = 1, 2, ..., p) are arbitrary continuously differ-
entiable odd functions, then differential equation

x′ = X(t, x) +

p∑
i=1

βi(t)∆i(t, x)

is equivalent to equation (1.7), where

∆i(t, x) =

∑m+2
k=0 bki(t)x

k

c0i + c1ix2
, c0ic1i 6= 0.

Denote

δ1 =

[m+1
2 ]∑
i=0

(−c2
c0

)i
bm+1−2i

c0
, δ2 =

[m+2
2 ]∑
i=0

(−c2
c0

)i
bm+2−2i

c0
,

W = [(
c0
c2

)′ − 2
c0
c2

[m−1
2 ]∑
i=0

(−c0
c2

)ia1+2i]
2 +

c0
c2

[2

[m2 ]∑
i=0

(−c0
c2

)ia2i]
2.

Theorem 2.3. If all the conditions of Theorem 2.2 are satisfied, and W 6= 0,
then equation (2.8) is equivalent to equation (1.7). In this case, equation (2.8) is a
polynomial differential equation, too.

Proof. According to theorem 2.2, we know equation (2.8) is equivalent to equation
(1.7). By calculating (2.6), we get

δ1[(
c0
c2

)i − 2
c0
c2

[m−1
2 ]∑
i=0

(−c0
c2

)ia1+2i]− δ2[2

[m2 ]∑
i=0

(−c0
c2

)ia2i]
c0
c2

= 0, (2.12)

δ1[2

[m2 ]∑
i=0

(−c0
c2

)ia2i] + δ2[(
c0
c2

)′ − 2
c0
c2

[m−1
2 ]∑
i=0

(−c0
c2

)ia1+2i] = 0. (2.13)
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As W 6= 0, the algebraic equations (2.12)-(2.13) has a unique solution: δ1 = δ2 = 0.
In this case,

∆(t, x) =

∑m+2
k=0 bkx

k

c0 + c2x2
=

m∑
k=0

ekx
k, (2.14)

where ek =
∑[ k2 ]
i=0(− c2c0 )i bk−2i

c0
.

Therefore, equation (2.8) is a polynomial differential equation, too.

Theorem 2.4. If all the conditions of Theorem 2.2 are satisfied, and δ21(0)+δ22(0) =
0, then the differential equation (2.8) is equivalent to equation (1.7). In this case,
equation (2.8) is a polynomial differential equation, too.

Proof. According to theorem 2.2, we know that equation (2.8) is equivalent to
equation (1.7).

Differentiating δ1 and δ2 and using relations (2.6)-(2.7) and by performing simple
computations, we obtain

δ′1 = −δ1
[m−1

2 ]∑
i=0

(m− 4i)a1+2i(−
c0
ci

)i + δ2

[m2 ]∑
i=0

(m+ 2− 4i)a2i(−
c0
ci

)i,

δ′2 =
c2
c0

[m2 ]∑
i=0

(m+ 3− 4i)a2i(−
c0
ci

)iδ1 − δ2
[m−1

2 ]∑
i=0

(m+ 1− 4i)a2i+1(−c0
ci

)i.

Applying the hypothesis of the present theorem, the linear system of above has a
unique solution satisfying initial value δ1(0) = δ2(0) = 0 , i.e. δ1(t) = δ2(t) = 0.
Thus, ∆(t, x) is in the form of (2.14) and equation (2.8) is a polynomial differential
equation, too.

Now, we consider the Riccati equation

x′ = a0(t) + a1(t)x+ a2(t)x2 =: Y (t, x), (2.15)

where ai(t) (i = 0, 1, 2, t ∈ R) are continuously differentiable functions.

Corollary 2.3. Suppose that (b0i(t), b1i(t), b2i(t)), i = 1, 2, ...m are solutions of
equations:

b′0 = a1b0 − a0b1, b′1 = 2(a2b0 − a0b2),

b′2 = a2b1 − a1b2.

βi(t) (i = 1, 2, ...,m) are continuously differentiable odd functions. Then equation

x′ = Y (t, x) +

m∑
i=1

βi(t)(b0i(t) + b1i(t)x+ b2i(t)x
2)

is equivalent to the Ricatti equation (2.15), and they have the same in period [−ω, ω]
transformation (have the same shift operator x0 → ϕ(ω;−ω, x0), where ϕ(t; t0, x0)
is general solution of (2.15)).

Example 2.2. The Riccati equation

x′ = − cos te− sin t + cos tesin tx2 (2.16)
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is equivalent to

x′ = − cos te− sin t + cos tesin tx2 + α(t)(−e− sin t + x+ esin tx2). (2.17)

According to the Theorem 2.25 which is in literature [7, p102], we know that
the Riccati equation (2.16) has at least one 2π−periodic solution. Therefore, when
α(t) is a 2π−periodic continuously differentiable odd function, the equation (2.17)
has at least one 2π−periodic solution, too.

Example 2.3. The Riccati equation

x′ = sin te− sin t − x cos t+ sin tesin tx2 (2.18)

is equivalent to

x′ = sin te− sin t − x cos t+ sin tesin tx2 + α(t)(e− sin t + esin tx2). (2.19)

It is easy to verify that F (t, x) = e2 sin tx is the reflective function of equation
(2.18). So, its Poincaré mapping can be expressed by T (x) = F (−π, x) ≡ x. Thus,
all the solutions of (2.18) are 2π−periodic. Therefore, when α(t) is a 2π-periodic
continuously differentiable odd function, all the solutions of equation (2.19) are also
2π−periodic.

Now let us denote

∆(t, x) :=
b0 + b1x+ b2x

2 + b3x
3 + b4x

4

c0 + c1x+ c2x2
, (2.20)

here c0·c2 6= 0, and ci := ci(t), bj := bj(t) (i = 0, 1, 2, j = 0, 1, ..., 4) are continuously
differentiable functions,

δ1 :=
b1
c0
− b3
c2
− c1b0

c20
+
c1b4
c22

, δ2 :=
b2
c0
− b4
c2
− c1b3
c0c2

− c2b0
c20

+
c21b4
c22c0

,

W := [2a1 −
c1
c2
a2 −

c1
c0
a0 −

c2
c0

(
c0
c2

)′][(
c0
c2

)′ − c1
c2

(
c1
c2

)′ − c1
c2
a0 + (

c21
c22
− 2

c0
c2

)a1

+ (3
c1c0
c22
− c31
c32

)a2]− [2a0 + (
c1
c2

)′ − c1
c2
a1 +

c21
c22
a2 − 2

c0
c2
a2]2,

δ1[2a0 + (
c1
c2

)′ − c1
c2
a1 +

c21
c22
a2 − 2

c0
c2
a2] + δ2[(

c0
c2

)′ − c1
c2

(
c1
c2

)′ − c1
c2
a0

+ (
c21
c22
− 2

c0
c2

)a1 + (3
c1c0
c22
− c31
c32

)a2] = 0, (2.21)

δ1[2a1 −
c1
c2
a2 −

c1
c0
a0 −

c2
c0

(
c0
c2

)′]δ2[2a0 + (
c1
c2

)′ − c1
c2
a1 +

c21
c22
a2 − 2

c0
c2
a2] = 0,

(2.22)

(
b0
c0

)′ = a0(
c1b0
c20
− b1
c0

) + a1
b0
c0
, (2.23)

(
b1
c0

)′ = (
c1
c0

)′
b0
c0

+ a0(2
c2b0
c20

+
c1b1
c20
− 2

b2
c0
− c21b0

c30
) + a1

c1b0
c20

+ 2a2
b0
c0
, (2.24)

(
b2
c2

)′ = (
c1
c2

)′
b3
c2

+ (
c0
c2

)′
b4
c2
− (

c1
c2

)′
c1b4
c22
− a0(

b3
c2

+
c1b4
c22

) + a1(
b2
c2

+
c21b4
c32
− c1b3

c22

− 2
c0b4
c22

) + a2(3
b1
c2

+ 3
c0c1b4
c32

+
c21b3
c32
− c1b2

c22
− 2

c0b3
c22
− c31b4

c42
), (2.25)
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(
b3
c2

)′ = (
c1
c2

)′
b4
c2
− 2a0

b4
c2
− a1

c1b4
c22

+ a2(2
b2
c2
− 2

c0b4
c22
− c1b3

c22
+
c21b4
c32

), (2.26)

(
b4
c2

)′ = −a1
b4
c2

+ a2(
b3
c2
− c1b4

c22
). (2.27)

Theorem 2.5. (1) If the relations (2.21)-(2.27) are satisfied, then the Riccati
equation (2.15) is equivalent to equation

x′ = Y (t, x) + α(t)∆(t, x), (2.28)

in which the function ∆(t, x) is in the form (2.20).

(2) If the relations (2.21)-(2.27) are satisfied, and W 6= 0, then the Riccati equa-
tion (2.15) is equivalent to the equation (2.28). Moreover, (2.28) is a Riccati
equation, too.

(3) If the relations (2.21)-(2.27) are satisfied, ( c0c2 )′ and ( c1c2 )′ are continuous, and

δ21(0)+δ22(0) = 0, then the Riccati equation (2.15) is equivalent to the equation
(2.28). Furthermore, (2.28) is a Riccati equation, too.

Proof. Substituting the formula (2.20) into the relation (1.4) and equating the
coefficients of like powers of x, we obtain

b′0c0 − c′0b0 = a0(c1b0 − c0b1) + a1c0b0, (2.29)

b′0c1 + b′1c0 − b0c′1 − b1c′0 = 2a0(c2b0 − c0b2) + 2a1c1b0 + 2a2c0b0, (2.30)

b′0c2 + b′1c1 + b′2c0 − b0c′2 − b1c′1 − b2c′0 = a0(c2b1 − b2c1 − 3c0b3)

+ a1(c1b1 − c0b2 + 3c2b0) + a2(c0b1 + 3c1b0), (2.31)

b′1c2 + b′2c1 + b′3c0 − b1c′2 − b2c′1 − b3c′0 = −a0(2c1b3 + 4c0b4)

+ a1(2c2b1 − 2c0b3) + a2(2c1b1 + 4c2b0), (2.32)

b′2c2 + b′3c1 + b′4c0 − b2c′2 − b3c′1 − b4c′0 = −a0(c2b3 + 3c1b4)

+ a1(c2b2 − c1b3 − 3c0b4) + a2(3c2b1 − c0b3 + c1b2), (2.33)

b′3c2 + b′4c1 − b3c′2 − b4c′1 = −2a0c2b4 − 2a1c1b4 + 2a2(c2b2 − c0b4), (2.34)

b′4c2 − c′2b4 = −a1c2b4 + a2(c2b3 − c1b4). (2.35)

Taking account of relations (2.29)-(2.30) and (2.34)-(2.35) and by performing simple
computations, we obtain the identities (2.23)-(2.24) and (2.26)-(2.27), substituting
them into (2.33), we get the relation (2.25). Putting (2.23)-(2.27) into (2.31)-(2.32)
we obtain

(
b0
c0

)′ =− c2b0
c20

(
c0
c2

)′ +
b1
c2

(
c1
c0

)′ − c0b2
c22

(
c2
c0

)′ + (
c0
c2

)′
c1b1
c20
− (

c1
c2

)′
c1b2
c2c0

+ (
c2
c0

)′
c0c1b3
c32

+ (
c1
c2

)′
c21b3
c22c0

+ (
c0
c2

)′
c21b4
c22c0

− (
c1
c2

)′
c31b4
c32c0

+ (
c1
c2

)′
c1b4
c22
− (

c1
c2

)′
b3
c2
− (

c0
c2

)′
b4
c2

+ (
c1
c2

)′
c1b4
c22

+ a0(
b1
c0
− 2

b3
c2

+ 3
c1b4
c22
− c1b2
c0c2

+
c21b3
c22c0

− c31b4
c32c0

)

+ a1(3
b0
c0
− 2

b2
c2

+ 2
c0b4
c22

+ 3
c1b3
c22
− c1b1
c0c2

− 4
c21b4
c32

+
c21b2
c22c0

− c31b3
c32b2

+
c41b4
c42c0

)

+ a2(5
c31b4
c42
− c31b2
c32c0

+
c41b3
c42c0

− c51b4
c52c0

− 4
c21b3
c32

+
c21b1
c22c0

+ 3
c1b2
c22
− 5

c0c1b4
c32
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+ 2
c0b3
c22
− 2

b1
c2
− c1b0
c0c2

), (2.36)

(
b1
c0

)′ =− (
c0
c2

)′
c2b1
c20

+ (
c1
c2

)′
b2
c0
− (

c2
c0

)′
c0b3
c22
− (

c1
c2

)′
c1b3
c0c2

− (
c0
c2

)′
c1b4
c0c2

+ (
c1
c2

)′
c21b4
c22c0

− (
c1
c2

)′
b4
c2

+ a0(
c21b4
c22c0

− c1b3
c0c2

− 2
b4
c2

) + a1(−c
3
1b4
c32c0

− c1b2
c0c2

+
c21b3
c22c0

+ 3
c1b4
c22

+ 2
b1
c0
− 2

b3
c2

) + a2(
c21b2
c22c0

− 4
c21b4
c32
− c31b3
c32c0

+
c41b4
c42c0

+ 3
c1b3
c22
− c1b2
c0c2

− 2
b2
c2

+ 2
c0b4
c22

+ 4
b0
c0

). (2.37)

Computing (2.23) and (2.36), (2.24) and (2.34), it implies that the identities (2.21)-
(2.22) are valid. Therefore, when the relations (2.21)-(2.27) are satisfied, the identity
(1.4) is valid for ∆(t, x) which is in the form (2.20). Thus, the equation (2.15) and
(2.28) are equivalent.

When W 6= 0, the algebraic equations (2.21)-(2.22) has a unique solution, i.e.
δ1(t) = δ2(t) = 0. In this case,

∆(t, x) =
b0 + b1x+ b2x

2 + b3x
3 + b4x

4

c0 + c1x+ c2x2
= e0 + e1x+ e2x

2, (2.38)

here e0 = b0
c0
, e1 = b3

c2
− c1b4

c22
, e2 = b4

c2
. Moreover, the equation (2.28) is a Riccati

equation, too.
Applying the relations (30-34) and computing, we obtain

δ′1 = δ1(−c2
c0

(
c0
c2

)′ + a0
c1
c0

+ 2a1 − a2
c1
c2

) + δ2((
c1
c2

)′ − a1
c1
c2

+ a2(
c21
c22
− 4

c0
c2

)),

δ′2 = δ1(a0
c2
c0

+ 3a2) + δ2(a1 −
c2
c0

(
c0
c2

)′ − 3a2
c1
c2

).

By the assumptions of the present theorem, above the linear system has a unique
solution satisfying initial value δ1(0) = 0, δ2(0) = 0, i.e. δ1(t) = 0, δ2(t) = 0. Thus,
∆(t, x) is in the form (2.20) and the equation (2.28) is a Riccati equation, too.

Example 2.4. The Riccati equation

x′ = e
1
2 sin t +

x

2
cos t+ e−

1
2 sin tx2

is equivalent to equation

x′ = e
1
2 sin t +

x

2
cos t+ e−

1
2 sin tx2 + α(t)∆(t, x),

here

∆(t, x) =
b0 + b1x+ b2x

2 + b3x
3 + b4x

4

esin t + x2
,

b0 = µ(t)e
3
2 sin t, b1 = −µ′(t)esin t,

b2 = 2µ(t)e
1
2 sin t +

1

2
µ′′(t)e

1
2 sin t,

b3 = −5

3
µ′(t)− 1

6
µ′′′(t),

b4 = µ(t)e−
1
2 sin t +

2

3
µ′′(t)e−

1
2 sin t +

1

24
µ(4)(t)e−

1
2 sin t,
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µ(t) = k1 cosλ1t+ k2 sinλ1t+ k3 cosλ2t+ k4 sinλ2t,

λ1 =

√
20− 4

√
21, λ2 =

√
20 + 4

√
21,

k2(λ31 − 4λ1) + k4(λ32 − 4λ2) 6= 0,

ki (i = 1, 2, 3, 4) are constants.

In fact, in the Theorem 2.5, taking a1 = 0, a2 = 1, the relations (2.21)-(2.27)
are equivalent to

δ1(2a1 −
c′0
c0

) + 2δ2(a0 − c0a2) = 0,

2δ1(a0 − c0a2) + δ2(c′0 − 2c0a1) = 0,

b′0 = (
c′0
c0

+ a1)b0 − a0b1,

b′1 = (2a2 + 2
a0
c0

)b0 +
c′0
c0
b1 − 2a0b2,

b′2 = 3a2b1 + a1b2 − (a0 + 2c0a2)b3 + (c′0 − 2c0a1)b4,

b′3 = 2a2b2 − 2(a0 + c0a2)b4,

b′4 = a2b3 − a1b4.

It is not difficult to verify that bi(i = 0, 1, ..., 4), in the present example, satisfy

these relations with a0 = e
1
2 sin t, a1 = cos t

2 , a2 = e−
1
2 sin t, c0 = esin t, and δ1(0) 6= 0.

It means that the present conclusion is true.

Example 2.5. The Riccati equation

x′ = 1 + x2

is equivalent to equation

x′ = 1 + x2 + α(t)
sin 4t− 4x cos 4t− 6x2 sin 4t+ 4x3 cos 4t+ x4 sin 4t

1 + x2
,

here α(t) is an arbitrary odd continuous function. This equation does not have one
π
2 -periodic solution.

Corollary 2.4. If

∆k(t, x) =
bk0 + bk1x+ bk2x

2 + bk3x
3 + bk4x

4

ck0 + ck1x+ ck2x2

satisfies the conditions of Theorem 2.5, then the Riccati equation (2.15) is equivalent
to equation

x′ = a0(t) + a1(t)x+ a2(t)x2 + Σβk(t)∆k(t, x),

where βk(t) are arbitrary continuously differentiable odd functions.

From this corollary, we see that the properties of solution of above the com-
plected equation also can be determined by the Riccati equation (2.15).
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