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1. Introduction

In recent years the impulsive differential equations are an object of intensive study
[11,14,22,25,26, see for e.g.]. These equations describe processes which are charac-
terized as continuous, as jump-wise change of the phase variables describing process.
There are adequate mathematical models of processes and phenomena studied in
theoretical physics, chemical technology, population dynamics, rhythmical beating,
merging of solutions and noncontinuity of solutions. Moreover, the theory of impul-
sive differential equations is emerging as an important area of investigation, since
it is much richer than the corresponding theory of differential equations without
impulse effect.

Oscillatory and asymptotic behaviour of the solutions of various classes of func-
tional differential equations has taken the shape of a well-developed theory presented
in the monographs [13,15] and for recent information we refer the reader to some of
the works [9,19,20,24]. We may note that, in the present years much effort has been
devoted to the study of functional differential equations of neutral type. However,
the impulsive differential equations of neutral type is not well studied. Hence in
this work, the author has made an attempt to study the oscillatory behaviour of
solutions of a class of nonlinear neutral first order impulsive differential equations
of the form

(y(t) + p(t)y(t− τ))′ + q(t)G(y(t− σ)) = 0, t 6= τk, k ∈ N, (1.1)

4(y(τk) + pky(τk − τ)) + qkG(y(τk − σ)) = 0, k ∈ N,

where τ, σ ∈ R+ = (0,+∞); τ1, τ2, ..., τk, ... are the moments of impulse effect; pk
and qk are constants (k ∈ N); G ∈ C(R,R) such that xG(x) > 0 for, x 6= 0;
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q ∈ C(R+,R+); p ∈ PC(R+,R), and

4(y(τk) + pky(τk − τ))

=y(τk + 0) + pky(τk − τ + 0)− y(τk − 0)− pky(τk − τ − 0);

y(τk − 0) = y(τk); and y(τk − τ − 0) = y(τk − τ), k ∈ N.
The study of stability and asymptotic behaviour of certain ordinary differential

equations with impulses have been appeared in [7, 12, 21, 23]. It has been noticed
that almost there is no such work of studying the impulsive differential-difference
equations of the type (1.1) and the objective of this work is to establish sufficient
conditions for oscillation of solutions of (1.1) with deviating argument and fixed
moments of impulse effect. In this direction, we refer the readers to some of the
works [1–6,8, 16–18].

Definition 1.1. A function y : [−ρ,+∞)→ R is said to be a solution of (1.1) with
initial function ø ∈ C([−ρ, 0],R), y(t) = ø(t) for t ∈ [−ρ, 0], y ∈ PC(R+,R), z(t) =
y(t) + p(t)y(t− τ) is continuously differentiable for t ∈ R+, and y(t) satisfies (1.1)
for all sufficiently large t ≥ 0, where ρ = max{τ, σ} and PC(R+,R) is the set of all
functions U : R+ → R which are continuous for t ∈ R+, t 6= τk, k ∈ N, continuous
from the left- side for t ∈ R+, and have discontinuity of the first kind at the points
τk ∈ R+, k ∈ N.

Definition 1.2. A nontrivial solution y(t) of (1.1) is said to be nonoscillatory, if
there exists a point t0 ≥ 0 such that y(t) has a constant sign for t ≥ t0. Otherwise,
the solution y(t) is said to be oscillatory.

Definition 1.3. A solution y(t) of (1.1) is said to be regular, if it is defined on
some interval [Ty,+∞) ⊂ [t0,+∞) and

sup{|y(t)| : t ≥ T} > 0

for every T ≥ Ty. A regular solution y(t) of (1.1) is said to be eventually positive
(eventually negative), if there exists t1 > 0 such that y(t) > 0(y(t) < 0), for t ≥ t1.

2. Oscillation Results

In this section, we study the impulsive differential-difference equations of the form
(1.1) and its corresponding inequalities

(y(t) + p(t)y(t− τ))′ + q(t)G(y(t− σ)) ≤ 0, t 6= τk, k ∈ N, (2.1)

4(y(τk) + pky(τk − τ)) + qkG(y(τk − σ)) ≤ 0, k ∈ N,

and

(y(t) + p(t)y(t− τ))′ + q(t)G(y(t− σ)) ≥ 0, t 6= τk, k ∈ N, (2.2)

4(y(τk) + pky(τk − τ)) + qkG(y(τk − σ)) ≥ 0, k ∈ N.

We introduce the following assumptions:

(A1) 0 < τ1 < τ2 < ... and limk→∞ = +∞,
(A2) p ∈ PC(R+,R), pk = p(τk − 0) = p(τk) and qk = q(τk − 0) = q(τk), k ∈ N.
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Theorem 2.1. Let −∞ < −M ≤ p(t) ≤ −1, M > 0, t ∈ R+ and τ > σ. Assume
that (A1) and (A2) hold. If

(A3) G(uv) = G(u)G(v), u, v ∈ R,

(A4) G is superlinear and

±∞∫
0

dx

G(x)
<∞,

∞∑
k=1

γ(τk+0)∫
γ(τk)

dx

G(x)
< +∞,

(A5)
∞∫
0

q(t)dt+
∑∞
k=1 qk =∞

hold, then

1. the inequality (2.1) has no eventually positive solutions,

2. the inequality (2.2) has no eventually negative solutions,

3. all solutions of (1.1) are oscillatory.

Proof. Let y(t) be a regular solution of (2.1). Hence, there exists a t0 > 0 such
that y(t) > 0, y(t− τ) > 0 and y(t− σ) > 0, for t ≥ t0 > max{σ, τ}. Set

z(t) = y(t) + p(t)y(t− τ), t ≥ t0, (2.3)

z(τk) = y(τk) + p(τk)y(τk − τ), k ∈ N.

From (2.1) and the assumption (A2), it follows that

z′(t) < −q(t)G(y(t− σ)) < 0,

4z(τk) < −qkG(y(τk − σ)) < 0, k ∈ N

hold and hence z is a decreasing function for t ≥ t0. We claim that z(t) < 0, for
t ≥ t0. If not, let z(t) ≥ 0, for t ≥ t1 > t0. Consequently,

y(t) ≥ −p(t)y(t− τ) ≥ y(t− τ),

y(τk) ≥ −pky(τk − τ) ≥ y(τk − τ), k ∈ N

implies that y is bounded from below by m > 0. Integrating (2.1) from t1 to
t(t ≥ t1), we obtain

z(t)− z(t1)−
∑

t1≤τk<t

4z(τk) +

t∫
t1

q(s)G(y(s− σ))ds < 0,

that is,

z(t)− z(t1) +
∑

t1≤τk<t

qkG(y(τk − σ)) +

t∫
t1

q(s)G(y(s− σ))ds < 0.
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Therefore,

z(t) < z(t1)−G(m)[
∑

t1≤τk<t

qk +

t∫
t1

q(s)ds] < 0, k ∈ N

→ −∞ as t→∞ (byA5),

a contradiction to the fact that z(t) > 0 on [t1,∞). So our claim holds. Upon
using (2.3), it follows that z(t+ τ − σ) > p(t+ τ − σ)y(t− σ) and z(τk + τ − σ) >
p(τk + τ − σ)y(τk − σ), for k ∈ N. Hence, the inequality (2.1) becomes

z
′
(t) +

q(t)

G(−M)
G(z(t+ τ − σ)) ≤ 0, t 6= τk, k ∈ N, (2.4)

4z(τk) +
qk

G(−M)
G(z(τk + τ − σ)) ≤ 0, k ∈ N

due to (A3). Because z is decreasing on [t1,∞), then

z′(t) +
q(t)

G(−M)
G(z(t)) ≤ 0, t 6= τk, k ∈ N,

4z(τk) +
qk

G(−M)
G(z(τk)) ≤ 0, k ∈ N.

Integrating the first inequality from t1 to t(t ≥ t1), we get

t∫
t1

z′(s)

G(z(s))
ds+

1

G(−M)

t∫
t1

q(s)ds > 0,

that is,

lim
t→∞

t∫
t1

q(s)ds ≤ −G(−M) lim
t→∞

z(t)∫
z(t1)

z′(s)

G(z(s))
ds <∞. (2.5)

On the other hand, if z(τk + 0) < x < z(τk − 0), then G(x) > G(z(τk + 0)) and the
second inequality implies that

qk < −G(−M)
4z(τk)

G(x)
= −G(−M)

z(τk+0)∫
z(τk)

dx

G(x)
, k ∈ N.

Hence,

∞∑
k=1

qk ≤ −G(−M)

∞∑
k=1

z(τk+0)∫
z(τk)

dx

G(x)
<∞. (2.6)

(2.5) and (2.6) together gives a contradiction to (A5). Thus (2.1) has no eventually
positive solution.
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In order to prove that (2.2) has no eventually negative solution, it is enough
to note that −y(t) is a solution of (2.1) when y(t) is a solution of (2.2). This is
because of (A3), where it is easy to verify the fact that G(−1) = −G(1).

It follows from the assertions 1 and 2 that the (1.1) has neither eventually
positive nor eventually negative solution. Hence, each regular solution of (1.1)
oscillates. This completes the proof of the theorem.

Theorem 2.2. Let −∞ < −M ≤ p(t) ≤ −1, M > 0, t ∈ R+. Assume that (A1),
(A2), (A3) and (A5) hold. Then

1. the inequality (2.1) has no eventually positive bounded solutions,

2. the inequality (2.2) has no eventually negative bounded solutions,

3. all bounded solutions of (1.1) are oscillatory.

Proof. Proceeding as in the proof of Theorem 2.1, we have that z(t) < 0, for
t ≥ t1. Hence the inequality (2.4) holds. Because z is decreasing, there exist t2 > t1
and C > 0 such that z(t) ≤ −C, for t ≥ t2. Moreover, the inequality (2.4) reduces
to

z′(t) +
G(−C)

G(−M)
q(t) < 0, (2.7)

4z(τk) +
G(−C)

G(−M)
qk < 0, k ∈ N

for t ≥ t2. Integrating (2.7) from t2 to t(t ≥ t2), we get

z(t)− z(t2)−
∑

t2≤τk<t

4z(τk) +
G(−C)

G(−M)

t∫
t2

q(s)ds < 0,

that is,

z(t)− z(t2) +
G(−C)

G(−M)
[
∑

t2≤τk<t

qk +

t∫
t2

q(s)ds] < 0. (2.8)

Since y(t) is bounded, then z(t) is bounded and hence the inequality (2.8) becomes

lim
t→∞

G(−C)

G(−M)
[
∑

t2≤τk<t

qk +

t∫
t2

q(s)ds] ≤ − lim
t→∞

z(t) + z(t2) <∞,

a contradiction to (A5). The rest of the proof follows from Theorem 2.1. Hence the
theorem is proved.

Theorem 2.3. Let −1 < −a ≤ p(t) ≤ 0, a > 0, t ∈ R+ and τ > σ. If (A1), (A2),
(A3), (A5) and

(A4) G is sublinear and

±C∫
0

dx

G(x)
<∞,

∞∑
k=1

γ(τk+0)∫
γ(τk)

dx

G(x)
< +∞, C > 0, lim

k→∞
γ(τk) <∞

hold, then the conclusion of Theorem 2.1 is true.
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Proof. Proceeding as in Theorem 2.1, we may note that z is monotonic decreasing
on [t0,∞), t0 > τ . Hence there exists t1 > t0 such that z is of one sign on [t1,∞).
Suppose that z(t) > 0 for the inequality (2.1) on [t1,∞). Using (2.3), it follows
that z(t) ≤ y(t) and z(τk) ≤ y(τk), k ∈ N on [t1,∞). Consequently, the inequality
(2.1) becomes

z′(t) + q(t)G(z(t− σ)) < 0,

4z(τk) + qkG(z(τk − σ)) < 0, k ∈ N,

that is,

z′(t)

G(z(t))
+ q(t) < 0,

4z(τk)

G(z(τk))
+ qk < 0, k ∈ N.

Because z is decreasing and limt→∞ z(t) <∞, then the above inequality yields that

lim
t→∞

t∫
t1

q(s)ds < − lim
t→∞

z(t)∫
z(t1)

dx

G(x)
<∞,

∞∑
k=1

qk < −
∞∑
k=1

4z(τk)

G(x)
= −

∞∑
k=1

z(τk+0)∫
z(τk−0)

dw

G(w)
<∞, k ∈ N

due to limk→∞ z(τk) < +∞, if z(τk + 0) < w < z(τk − 0) and G(w) < G(z(τk)),
for k ∈ N. Thus we have a contradiction to (A5) and hence z(t) < 0, for t ≥ t1.
From (2.3), it is easy to verify that y(t) < y(t− τ) and y(τk) < y(τk − τ), k ∈ N on
[t2,∞), t2 > t1. Further, we can write

y(t) < y(t− τ) < y(t− 2τ) < ... < y(t2),

y(τk) < y(τk − τ) < y(τk − 2τ) < ... < y(t2),

that is, y is bounded on [t2,∞). Hence z is bounded on [t2,∞). The rest of the
proof follows from Theorem 2.2. This completes the proof of the theorem.

Theorem 2.4. Let 0 ≤ p(t) ≤ b < ∞, for t ∈ R+ and τ ≤ σ. Assume that
(A1), (A2) and (A3) hold. Furthermore, assume that

(A7) there exists λ > 0 such that G(u) +G(v) ≥ λG(u+ v), u, v ∈ R+,

(A8) G is sublinear and

±c∫
0

dx

G(x)
<∞, c > 0,

∞∑
k=1

[

γ(τk+0)∫
γ(τk)

dx

G(x)
+

γ(τk−τ+0)∫
γ(τk−τ)

dw

G(w)
] < +∞, lim

k→∞
γ(τk) <∞,



Nonlinear neutral impulsive oscillation 95

(A9)
∞∫
0

Q(t)dt+
∑∞
k=1Qk =∞

hold, where Q(t) = min{q(t), q(t−τ)}, t ≥ τ ; Q(τk) = min{q(τk), q(τk−τ)}, τk >
τ, k ∈ N. Then the conclusion of Theorem 2.1 is true.

Proof. Proceeding as in Theorem 2.1, we have that z is monotonic decreasing on
[t0,∞), t0 > σ. Hence there exists t1 > t0 such that z(t) > 0 on [t1,∞). Using (2.1)
and (2.3), it is easy to verify that

0 > z′(t) + q(t)G(y(t− σ)) +G(b)z′(t− τ) +G(b)q(t− τ)G(y(t− τ − σ))

≥ z′(t) +G(b)z′(t− τ) +Q(t)[G(y(t− σ)) +G(by(t− τ − σ))]

≥ z′(t) +G(b)z′(t− τ) + λQ(t)G(y(t− σ) + by(t− τ − σ))

≥ z′(t) +G(b)z′(t− τ) + λQ(t)G(z(t− σ))

due to (A3), (A7) and (A9), where z(t) ≤ y(t) + by(t− τ). Similarly, we obtain

4z(τk) +G(b)4z(τk − τ) + λQkG(z(τk − σ)) < 0, k ∈ N.

Consequently, there exists t2 > t1 such that

z′(t)

G(z(t− σ))
+G(b)

z′(t− τ)

G(z(t− σ))
+ λQ(t) < 0, (2.9)

4z(τk)

G(z(τk − σ))
+G(b)

4z(τk − τ)

G(z(τk − σ))
+ λQk < 0, k ∈ N.

Because z is decreasing on [t2,∞) and τ ≤ σ, the inequalities in (2.9) become

z′(t)

G(z(t))
+G(b)

z′(t− τ)

G(z(t− τ))
+ λQ(t) < 0,

4z(τk)

G(z(τk))
+G(b)

4z(τk − τ)

G(z(τk − τ))
+ λQk < 0, k ∈ N,

that is,

t∫
t2

z′(s)

G(z(s))
ds+G(b)

t∫
t2

z′(s− τ)

G(z(s− τ))
ds+ λ

t∫
t2

Q(s)ds < 0, (2.10)

4z(τk)

G(x)
+G(b)

4z(τk − τ)

G(u)
+ λQk < 0, k ∈ N,

where τk + 0 < x < τk − 0 and τk − τ + 0 < u < τk − τ − 0. As a result, the
inequalities in (2.10) yield

λ lim
t→∞

t∫
t2

Q(s)ds < − lim
t→∞

[

z(t)∫
z(t2)

z′(s)

G(z(s))
ds+G(b)

z(t−τ)∫
z(t2−τ)

z′(s− τ)

G(z(s− τ))
ds],

λQk < −
z(τk+0)∫
z(τk−0)

dx

G(x)
−G(b)

z(τk−τ+0)∫
z(τk−τ−0)

du

G(u)
, k ∈ N.
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Hence,

∞∫
t2

Q(s)ds <∞,

λ

∞∑
k=1

Qk < −
∞∑
k=1

[

z(τk+0)∫
z(τk−0)

dx

G(x)
+G(b)

z(τk−τ+0)∫
z(τk−τ−0)

du

G(u)
], k ∈ N,

a contradiction to (A9) due to (A8), limt→∞ z(t) <∞ and limk→∞ z(τk) <∞. The
rest of the proof follows from Theorem 2.1. Hence the theorem is proved.

Theorem 2.5. Let p(t) ≤ −1, for t ∈ R+ and τ > σ. Assume that (A1), (A2), (A3)
and (A5) hold. Furthermore, assume that

(A10) there exists γ > 0 such that G(u) ≥ γ|u|, u ∈ R,

(A11) lim supk→∞

[
τk∫

τk−τ+σ

−q(u)du
p(u+τ−σ) +

∑
τk−τ+σ≤τi<τk

−q(τi)
p(τi+τ−σ)

]
> 1

γ , k ∈ N

hold. Then the conclusion of Theorem 2.1 is true.

Proof. Let y(t) be an eventually positive solution of (2.1), for t ≥ t0 > τ . Pro-
ceeding as in Theorem 2.1, we get a contradiction when z(t) > 0 on [t1,∞). Hence
z(t) < 0, for t ≥ t1. From (2.3), it follows that z(t+ τ − σ) > p(t+ τ − σ)y(t− σ),
that is,

G(y(t− σ)) > G

(
z(t+ τ − σ)

p(t+ τ − σ)

)
≥ γz(t+ τ − σ)

p(t+ τ − σ)
.

Therefore, the inequality (2.1) reduces to

z′(t) +
γq(t)

p(t+ τ − σ)
z(t+ τ − σ) < 0, t ≥ t1, t 6= τk,

4z(τk) +
γq(τk)

p(τk + τ − σ)
z(τk + τ − σ) < 0, k ∈ N,

that is,

z′(t) + η(t)z(t+ l) < 0, t ≥ t1, t 6= τk,

4z(τk) + ηkz(τk + l) < 0, k ∈ N, (2.11)

where l = τ − σ and η(t) = γq(t)
p(t+τ−σ) , for t ≥ t1. Integrating (2.11) from τk − l to

τk(τk ≥ t1 + l, k ∈ N), we obtain

z(τk)− z(τk − l)−
∑

τk−l≤τi<τk

4z(τi) +

∫ τk

τk−l
η(u)z(u+ l)du < 0,

that is,

z(τk) +
∑

τk−l≤τi<τk

ηiz(τi + l) +

∫ τk

τk−l
η(u)z(u+ l)du < 0.
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As a result, the last inequality reduces to

z(τk) + z(τk)

 ∑
τk−l≤τi<τk

ηi +

∫ τk

τk−l
η(u)du

 < 0,

that is, 1 +
∑

τk−l≤τi<τk

γq(τi)

p(τi + τ − σ)
+

∫ τk

τk−l

γq(u)du

p(u+ τ − σ)

 > 0,

which contradicts our assumption (A11). The rest of the proof follows from Theorem
2.1. Hence the theorem is proved.

Theorem 2.6. Let −1 < −a ≤ p(t) ≤ 0, a > 0, for t ∈ R+. If (A1), (A2), (A3), (A5),
(A10) and

(A12) lim supk→∞

[
τk∫

τk−σ
q(t)dt+

∑
τk−σ≤τi<τk qi

]
> 1

γ , k ∈ N

hold, then the conclusion of Theorem 2.1 is true.

Proof. Proceeding as in Theorem 2.3, we have two cases viz., z(t) > 0 and z(t) <
0, for t ≥ t1. The case z(t) < 0, for t ≥ t1 follows from the proof of Theorem
2.3. Consider the former case for t ≥ t1. Integrating (2.1) from τk − σ to τk(τk ≥
t1 + σ, k ∈ N), we get

z(τk)− z(τk − σ)−
∑

τk−σ≤τi<τk

4z(τi) +

∫ τk

τk−σ
q(s)G(z(s− σ))ds < 0,

that is,

z(τk)− z(τk − σ) +
∑

τk−σ≤τi<τk

qiG(z(τi − σ)) +

∫ τk

τk−σ
q(s)G(z(s− σ))ds < 0.

Using the fact that z is decreasing, the last inequality yields

−z(τk − σ) + γz(τk − σ)
∑

τk−σ≤τi<τk

qi + γz(τk − σ)

∫ τk

τk−σ
q(s)ds < −z(τk)

due to (A10). Consequently,

lim sup
k→∞

 τk∫
τk−σ

q(t)dt+
∑

τk−σ≤τi<τk

qi

 ≤ 1

γ
, k ∈ N

a contradiction to (A12). The rest of the proof follows from Theorem 2.1 and hence
the proof is complete.

Theorem 2.7. Let 0 ≤ p(t) ≤ b < ∞, for t ∈ R+ and σ ≥ 2τ . Assume that
(A1), (A2) and (A10) hold. If G(−u) = −G(u) and

(A13) lim supk→∞

[
τk∫

τk−τ
Q(t)dt+

∑
τk−τ≤τi<τk Q(τi)

]
> 1+b

γ , k ∈ N

hold, where Q(t) is defined in Theorem 2.4, then the conclusion of Theorem 2.1 is
true.
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Proof. Proceeding as in Theorem 2.4, we obtain

z′(t) + bz′(t− τ) + γQ(t)z(t− σ) < 0, t ≥ t1, t 6= τk,

4z(τk) + b4z(τk − τ) + γQkz(τk − σ) < 0, k ∈ N. (2.12)

Integrating (2.12) from τk − τ to τk(τk ≥ t1 + τ, k ∈ N), we get

z(τk) + bz(τk − τ)− z(τk − τ)− bz(τk − 2τ)

−
∑

τk−τ≤τi<τk

4z(τi) + γ

∫ τk

τk−τ
Q(t)z(t− σ)dt < 0,

that is,

z(τk) + bz(τk − τ)− z(τk − τ)− bz(τk − 2τ)

+ γ
∑

τk−τ≤τi<τk

Q(τi)z(τi − σ) + γ

∫ τk

τk−τ
Q(t)z(t− σ)dt < 0.

Using the fact that z is decreasing on [t1,∞), it follows from the last inequality that

−z(τk − τ)− bz(τk − 2τ) + γz(τk − σ)

 ∑
τk−τ≤τi<τk

Q(τi) +

∫ τk

τk−τ
Q(t)dt

 < 0,

that is,

−(1 + b)z(τk − 2τ) + γz(τk − σ)

 ∑
τk−τ≤τi<τk

Q(τi) +

∫ τk

τk−τ
Q(t)dt

 < 0.

As σ ≥ 2τ , the last inequality becomes−(1 + b) + γ

 ∑
τk−τ≤τi<τk

Q(τi) +

∫ τk

τk−τ
Q(t)dt


 z(τk − 2τ) < 0

and hence

lim sup
k→∞

 τk∫
τk−τ

Q(t)dt+
∑

τk−τ≤τi<τk

Q(τi)

 ≤ 1 + b

γ
,

a contradiction to (A13). The rest of the proof follows from Theorem 2.1. This
completes the proof of the theorem.

3. Discussion and Example

In [10], Graef et al. have studied the oscillatory and asymptotic behavior of solu-
tions of the equations of the form

(y(t) + p(t)y(t− τ))′ + q(t)G(y(t− σ)) = 0. (3.1)
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They have established the sufficient conditions for oscillation of all solutions of (3.1),
when

p(t) ≤ 0 and

∞∫
0

q(t)dt =∞.

Taking the present work into account, it reveals that (3.1) could be oscillatory with
impulses irrespective of p(t) 6= 0 following to the differential-difference equations.

The following example illustrates the main result of our work:

Example 3.1. Consider the differential-difference equations of the form(
y(t) + (1 + e−t)y(t− 1

2
)

)′
+ q(t)(8 + |y(t− 1)|)|y(t− 1)|sgn y(t− 1) = 0,

4
(
y(τk) + (1 + e−τk)y(τk −

1

2
)

)
+ qk(8 + |y(τk − 1)|)|y(τk − 1)|sgn y(τk − 1) = 0,

where 0 ≤ p(t) = 1 + e−t ≤ 2, q(t) = t, τk = 2k, for k > 1 and γ = 8. Clearly,
Q(t) = t− 1 and ∫ 2k

2k− 1
2

Q(t)dt+
∑

2k− 1
2≤τi<2k

Q(τi) >

∫ 2k

2k− 1
2

Q(t)dt

=

∫ 2k

2k− 1
2

(t− 1)dt =
2k

2
− 5

8
>

3

8
, if k > 1

implies that (A13) holds. Hence by Theorem 2.7, all solutions of the above differential-
difference equations are oscillatory.

We conclude this section with the following existence result without proof:

Theorem 3.1. Let −1 < −a ≤ p(t) ≤ 0, a > 0, t ∈ R+. Assume that (A1), (A2)
and (A3) hold. If

∞∫
0

q(t)dt+

∞∑
k=1

qk <∞,

then the differential-difference equations (1.1) admits positive bounded solutions.

Acknowledgements

The author is thankful to the referees for their helpful suggestions and necessary
corrections in completion of this paper.

References

[1] D. D. Bainov and P. S. Simeonov, Systems with impulse effect: stability, theory
and applications, Ellis Horwood, Chichester, 1989.



100 A.K. Tripathy

[2] D. D. Bainov and P. S. Simeonov, Theory of impulsive differential equations:
asymptotic properties of the solutions and applications, World Scientific Pub-
lishers, Singapore, 1995.

[3] D. D. Bainov and M. B. Dimitrova, Oscillation of sub and super linear impulsive
differential equations with constant delay, Applicable Analysis, 64(1997), 57-67.

[4] D. D. Bainov and M. B. Dimitrova, Oscillatory properties of the solutions of
impulsive differential equations with a deviating argument and Nonconstant
Coefficients, Rocky Mount. J. Math., 27(1997), 1027-1040.

[5] D. D. Bainov and M. B. Dimitrova, Oscillation of the solutions of impulsive
differential equations and inequalities with a retarded argument, Rocky Mount.
J. Math., 28(1998), 25-40.

[6] L. Berezansky and E. Braverman, Oscillation of a linear delay impulsive dif-
ferential equations, Commu. Appl. Nonli. Anal., 3(1996), 61-77.

[7] S. D. Borisenko, Asymptotic stability of systems with impulse action, Ukrain.
Math. Zh., 35(1983), 144-150.

[8] K. Gopalsamy and B. G. Zhang, On delay differential equations with impulses,
J. Math. Anal. Appl., 139(1989), 110-122.

[9] J. R. Graef and M. K. Grammatikopoulos, On the behaviour of a first order
nonlinear neutral delay differential equations, Applicable Anal., 40(1991), 111-
121.

[10] J. R. Graef, M. K. Grammatikopoulos and P. W. Spikes, Asymptotic and oscil-
latory behaviour of solutions of first order nonlinear neutral delay differential
equations, J. Math. Anal. Appl., 155(1991), 562-571.

[11] J. R. Graef, J. H. Shen and I. P. Stavroulakis, Oscillation of impulsive neutral
delay differential equations,J. Math. Anal. Appl., 268(2002), 310-333.

[12] S. I. Gurgula, A study of the stability of solutions of impulse systems by Lya-
punov’s second method, Ukrain. Math. Zh., 34(1982).

[13] I. Gyori and G. Ladas, Oscillation theory of delay differential equations with
applications, Clarendon Press, Oxford, 1991.

[14] G. R. Jiang and Q. S. Lu, Impulsive state feedback control of a prey-predator
model, J. Compu. Appl. Math., 200(2007), 193-207.

[15] G. S. Ladde, V. Lakshmikantham and B. G. Zhang, Oscillation theory of dif-
ferential equations with deviating arguments, Pure and Applied Mathematics,
Marcel Dekker, 110(1987).

[16] V. Lakshmikantham, D. D. Bainov and P. S. Simieonov, Oscillation theory of
impulsive differential equations, World Scientific, Singapore, 1989.

[17] X. Liu and G. Ballinger, Existence and continuability of solutions for dif-
ferential equations with delays and state-dependent impulses, Nonlin. Anal.,
51(2002), 633-647.

[18] S. G. Pandit and S. G. Deo, Differential systems involving impulses, Lect. Notes
in Math., Springer-Verlag, New York, 954(1982).

[19] N. Parhi and A. K. Tripathy, On oscillatory fourth-order nonlinear neutral
differential equations-I, Math. Slovaca, 54(2004), 369-388.



Nonlinear neutral impulsive oscillation 101

[20] N. Parhi and A. K. Tripathy, On oscillatory fourth-order nonlinear neutral
differential equations-II, Math. Slovaca, 55(2005), 183-202.

[21] N. A. Perestyuk and O. S. Chernikova, A contribution to the stability problem
for solutions of systems of differential equations with impulses, Ukrain. Math.
Zh., 36(1984), 190-195.

[22] L. Qian, Q. Lu, Q. Meng and Z. Feng, Dynamical behaviours of a prey-predator
system with impulsive control, J. Math. Anal. Appl., 363(2010), 345-356.

[23] J. Shen and Y. Liu, Asymptotic begaviour of solutions for nonlinear delay dif-
ferential equation with impulses, Appl. Math. Compu., 213(2009), 449-454.

[24] A.K.Tripathy, Oscillation properties of a class of neutral differential equations
with positive and negative coefficients, Fasciculi Mathematici, Nr 45(2010), 133-
155.

[25] X. Wu, S. Chen and H. Tang, Osillation of a class of second order delay dif-
ferential equation with impulses, Appl. Math. Comp., 145(2003), 561-567.

[26] X. Wu, S. Chen and H. Tang, Osillation of a class of second order nonlinear
ODE with impulses, Appl. Math. Comp., 138(2003), 181-188.


	Introduction
	Oscillation Results
	Discussion and Example

