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TRAVELING WAVE SOLUTIONS OF
NONLINEAR SCALAR INTEGRAL
DIFFERENTIAL EQUATIONS ARISING FROM
SYNAPTICALLY COUPLED NEURONAL
NETWORKS*

Linghai Zhang!! and Axel Hutt?

Abstract Consider the following nonlinear scalar integral differential equa-
tions arising from synaptically coupled neuronal networks
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These model equations generalize many important nonlinear scalar integral
differential equations arising from synaptically coupled neuronal networks.
The kernel functions K and W represent synaptic couplings between neurons
in synaptically coupled neuronal networks. The synaptic couplings can be very
general, including not only pure excitations (modeled with nonnegative kernel
functions), lateral inhibitions (modeled with Mexican hat kernel functions),
lateral excitations (modeled with upside down Mexican hat kernel functions),
but also synaptic couplings which may change sign for finitely many times
or even infinitely many times. The function H = H(u — 0) represents the
Heaviside step function, which is defined by H(u — 0) = 0 for all u < 0,
H(0) = 5 and H(u—6) =1 for all u > 6.

The functions £ and 7 represent probability density functions defined on
(0,00). The parameter ¢ > 0 represents the speed of an action potential
and the parameter 7 > 0 represents a constant delay. In these equations,
u = u(z,t) stands for the membrane potential of a neuron at position z and
time ¢t. The positive constants « > 0 and 8 > 0 represent synaptic rates.
The positive constants 6 > 0 and © > 0 represent thresholds for excitation of
neurons. The positive constant wg > 0 is to be given.
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The authors will establish the existence and stability of traveling wave
solutions of these nonlinear scalar integral differential equations by coupling
together speed index functions, stability index functions (often called Evans
functions, that is, complex analytic functions), implicit function theorem, in-
termediate value theorem, mean value theorem, global strong maximum prin-
ciple for Evans functions, linearized stability criterion and many other im-
portant techniques in dynamical systems. They will find sufficient conditions
satisfied by the synaptic couplings, by the probability density functions, by
the synaptic rate constants and by the thresholds so that the traveling wave
solutions and their wave speeds exist, and the stability of the traveling wave
solutions is true. The main results obtained in this paper greatly improve
many previous results.

Keywords synaptically coupled neuronal networks, nonlinear scalar inte-
gral differential equations, traveling wave solutions, existence, stability, speed
index functions, stability index functions.
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1. Introduction

The spatial temporal dynamics of nonlinear scalar integral differential equations
arising from synaptically coupled neuronal networks have attracted much attention
in recent years, see [2,[5,6,[8H10,(13}/15H17}21}|23}34136/-40.,|42} 45| 46,[59} 60, 68, |77
80]. They are powerful models to explain many phenomena and data observed
in neurobiology medical science: such as pathological visual hallucination patterns
[9,22], cortical epilepsy [14], general anesthesia [35,64], stimuli in turtle visual cortex
[52] and cat visual cortex [66], migraine [43,/53], and encephalographic data [54]. In
addition, spatial temporal propagation of electrical activity has been observed in
neural tissues [b5] and motivates the theoretical study of traveling wave solutions
(representing nerve impulses).

The synaptically coupled neuronal networks involve axonal couplings between
single neurons. Since the transmission speed of action potentials along axons is
finite, the axonal propagation of action potentials involve a certain transmission
delay. This delay depends strongly on the axonal branching architecture [62] and
the degree of myelination of axonal branches |56]. For instance, unmyelinated axons
exhibit a small transmission speed in the range of one tenth to one meter per second
and take place mainly in short-range intra-cortical couplings [48]. In long-range
axonal fibers, such as cortical to cortical couplings, the axons are myelinated leading
to a faster transmission speed in the range of one meter per second to one hundred
meters per second |19]. Consequently, the resulting transmission delay between two
spatial positions depends on the axon and changes between one half millisecond
and one hundred millisecond. Since these delay time are in the same range as
time constants of synaptic responses, effects of finite transmission delays on the
spatial temporal evolution of activity take place. Although one may estimate such
mean transmission delay time along axonal fibers, physiological results suggest that
the transmission speed depends on the specific path the action potential takes and
hence changes in a single axonal branching structure from one neuron to another. In
addition, the branching structure shows plasticity effects [65] and hence changes the
transmission speed. Consequently, the neuronal network does not exhibit a single
transmission speed but rather a distribution of speeds. The proposed models are
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equations involving such a distribution of transmission speeds and extends previous
studies assuming a single speed only.

The model equations under consideration involves two kinds of delays. In intra-
cortical couplings, the lengths of axon may change due to the absence of nerve fibers
of fixed length producing a transmission delay proportional to the distance between
two spatial positions. In contrast, cortical to cortical feedback couplings may ex-
hibit nerve fibers with fixed length producing a constant feedback delay [61]. By
virtue of the distribution of transmission speeds, these two pathways are modeled
with a distribution of transmission speeds and distributed feedback delays. Most
recent research papers [17,364{49,/77.,[79] in synaptically coupled neuronal networks
considered either transmission speeds in intra-area couplings or delay in feedback
couplings, although experimental observations suggest the presence of both cou-
plings, a distribution of transmission speeds and feedback delays. Only very few
previous research groups [6,4778,80] considered both a single transmission delay in
intra-area couplings and the feedback delay. The proposed equations extends these
previous model equations by a rigorous mathematical analysis of traveling wave
solutions in the presence of both distributed and delayed feedback interactions to
gain insights into the existence and stability of traveling wave solutions and their
wave speeds.

The model equations under consideration describes the propagation of trav-
eling wave solutions in synaptically coupled neuronal networks on a mesoscopic
spatial and temporal scale with typical spatial range of five hundred millimeters
and temporal time constants of five to ten milliseconds. The corresponding spatial
domain is coarse-grained and exhibits spatial patches which are motivated by the
macrocolumnar structure in primary sensory areas [31,33]. Such neural field model
equations allow the successful reproduction of electroencephalographic activity on
the head [35] and the successful description of spiral waves in neural tissue [32//44].

1.1. The Mathematical Model Equations

Consider the following nonlinear scalar integral differential equations arising from
synaptically coupled neuronal networks ( [16}/21|24L69,70,(78.80])

%m: a/OOOg(c) [/RK(:c—y)H (u (y,t—1|x—y|) —9) dy] de
w5 [T | [ we-pite - -ew]a a
and
%w: a/ooog(c) [/RK(J:—y)H (u (y,t— i|x—y|> —9> dy} de
3 [ | [ W pttne -0 - e ar w02

These equations may be obtained by setting ¢ = 0, w = 0 and ¢ = 0, w =
wp respectively, in the following nonlinear singularly perturbed system of integral
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differential equations
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These model equations generalize many important nonlinear scalar integral dif-
ferential equations arising from synaptically coupled neuronal networks. In these
equations, u = u(z,t) stands for the membrane potential of a neuron at position
and time t and w = w(x, t) represents a leaking current, a slow process that controls
the excitation of the neuronal network. The kernel functions K and W stand for
synaptic couplings between neurons in synaptically coupled neuronal networks. The
synaptic couplings can be very general, including not only pure excitations (mod-
eled with nonnegative kernel functions), lateral inhibitions (modeled with Mexican
hat kernel functions), lateral excitations (modeled with upside down Mexican hat
kernel functions), but also synaptic couplings which may change sign for finitely
many times or even infinitely many times. The gain function is given by the Heav-
iside step function H = H(u — 0), which is defined by H(u — 6) = 0 for all u < 6,
H(0) = 1 and H(u—0) = 1 for all u > ¢. The probability density functions ¢
and 7 are defined on (0,00). The function £ represents a biological distribution of
action potential speeds and £ may have a compact support [c1, ca], where ¢; > 0 and
co > 0 are positive constants. The function 7 represents a biological distribution
of constant delays and may also have a compact support [y, 73], where 71 > 0 and
79 > 0 are constants. The parameter ¢ > 0 represents the finite propagation speed
of an action potential along the axon and %|:1: — y| denotes the spatial temporal
delay. The parameter 7 > 0 represents a constant delay. Moreover, the positive
constants o > 0 and 5 > 0 represent synaptic rates, and the positive constants § > 0
and © > 0 represent thresholds for excitation of neurons in synaptically coupled
neuronal networks. The integrals represent nonlocal spatial temporal interactions
between neurons. The derivative % represents longitudinal current along an axon.
Sodium channels are voltage gated channels. In other words, sodium conductance
is a function of the membrane potential. The sodium current is derived by using
Ohm’s law and should be a nonlinear smooth function of u, just like the nonlinear
function f(u) = u(u — 1)(u — a) in the Fitzhugh-Nagumo equations [41] or in the
Hodgkin-Huxley equations [30]. The linear function f(u) = u stands for a good
approximation of the sodium current, where m > 0 is a positive constant and n
is a real constant. We may interpret the constant m as the sodium conductance
and the constant n as the sodium reversal potential. The model equation may be
derived by using Kirchhoff’s second law for closed circuit. For more neurobiological
backgrounds of the nonlinear scalar integral differential equations and (L.2),
please see [7}20,24,|29178,/80]. The positive constant wg > 0 is to be given.

= e(u — yw). (1.4)

1.2. The Main Goals

In this paper, we will accomplish the existence and stability of traveling wave so-
lutions of the nonlinear scalar integral differential equations (1.1)) and (1.2]). We
will couple together speed index functions, stability index functions (often called
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Evans functions, that is, complex analytic functions), implicit function theorem,
intermediate value theorem, mean value theorem, global strong maximum principle
for stability index functions, linearized stability criterion and many other important
techniques in dynamical systems to accomplish the existence and stability of the
traveling wave solutions of the nonlinear scalar integral differential equations
and .

We will generalize previous results on the existence and stability of traveling
wave solutions of nonlinear scalar integral differential equations involving one con-
volution product with simple synaptic couplings (the synaptic coupling may change
sign at most once, from positive to negative or from negative to positive) to non-
linear scalar integral differential equations involving two convolution products with
very general synaptic couplings (the synaptic couplings may change signs from pos-
itive to negative for finitely many times or even infinitely many times, such as
K(x) = 92;[)“’2 exp(—p|z|) cos(wz) and W(z) = & +“’2 exp(—p|z|) sin(w|z|), where
p > 0 and w > 0 are positive constants). The ex1stence and stability of traveling
wave solutions of the complicated cases are very important in mathematical neuro-
science but they have been open for a long time. The main results (Theorem |1.1}
Theorem Theorem and Theorem obtained in this paper are new and
they greatly improve previous results. The paper shows that adding complexity to
the nonlinear scalar integral differential equations to account for more accurate neu-
robiological mechanisms in synaptically coupled neuronal networks does not affect
the existence and stability of the traveling wave solutions.

1.3. The Mathematical Assumptions

Suppose that the kernel functions K and W are at least piecewise smooth on R.
Suppose that the probability density functions £ > 0 and n > 0 are either nonnega-
tive finite at least piecewise smooth functions or linear combinations of Dirac delta
impulse functions defined on (0,00). Suppose that there exists a positive constant
¢o > 0, such that £ =0 on (0,cp) and £ > 0 on (¢g, 00). Without loss of generality,
let

co=sup{c>0:&=0on (0,c) and £ > 0 on (c,0)}.

Suppose that there exist two positive integers M > 1 and N > 1 and there exist
two positive constants C > 0 and p > 0, such that the kernel functions (K, W),
the probability density functions (£,7), the synaptic rate constants (a, 8) and the
thresholds (6, ©) satisfy the following conditions

|K ()] + [W(z)| < Cexp(—plz]), on R, (1.5)

0 0
/ 2| K ()dz > 0, / (2 W (z)dz >0, (16)

{ [ / K (y1)dyrdys -- } dynr— 1} dypn >0, for 2 <0, (1.7)
U}W Y3 7/2
{ [ / W (y1)dyidyz -- ] YN-— 1} dyny >0, for z <0, (1.8)
YN Y2
0
/ exp ("””> z) + AW (z)]de > a;ﬁ 0, (1.9)

oo
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QK (0) + W (0) /(00(1 + n(r)dr > 0, (1.10)

/RK(:E)dx =1, | /]RW(:c)dx =1, (1.11)

0 1 0 1
/_OO K(z)dz = 2 /_DO W(x)de = 2 (1.12)
/°° &(c)de =1, /°° n(r)dr =1, (1.13)
0 0
/00 1§(c)dc < 00, /00 n(T)eTdr < oo, (1.14)
o ¢ 0
either0<29<a<®<%(a+ﬂ),0<a(@—a)<59, (1.15)
or 0=, 0<29<O‘J2rﬁ. (1.16)

The kernel functions in the following three classes satisfy these conditions.

(A) The first class consists of all nonnegative kernel functions (representing pure
excitations in neuronal networks). For examples, K (z) = £ exp(—p|z|) and
W(z) = \/Zexp(—p|z|?) may represent pure excitations, where p > 0 is a
constant. Here, p has a biological meaning. It indicates how the excitation
of a synaptic coupling is distributed. If p is large, then a neuron is strongly
coupled with neurons in a relatively small region; if p is small, then a neuron
is strongly coupled with all neurons in a relatively large region.

(B) The second class consists of all Mexican-hat kernel functions (representing
lateral inhibitions in neuronal networks). Each kernel function satisfies the
conditions K > 0 on (-M, M) and K < 0 on (—oco,—M) U (M, c0), for a
positive constant M > 0. For example, K (x) = Aexp(—a|x|?)— B exp(—b|z|?)
may represent a lateral inhibition, where A > B > 0 and a > b > 0 are positive
constants, such that

A_ B T T
S>2 A/l oB/E=1
a b’ \/; \/;

(C) The third class consists of all upside down Mexican-hat kernel functions (repre-

senting lateral excitations in neuronal networks). Each kernel function satisfies

the conditions K <0 on (—M, M) and K > 0 on (—oo,—M) U (M, ), for a

positive constant M > 0. For example, K(z) = Aexp(—alz|) — Bexp(—b|z|)

may represent a lateral excitation, where 0 < A < B and 0 < a < b are
positive constants, such that

A S B

a2 =2’

SIS
o>
—_

(=

1.4. The Main Results

To make the statements of the main results and the mathematical analysis as simple
as possible, we define the sign function s = s(z) by: s(x) = —1forallz <0, s(0) =0
and s(z) =1 for all x > 0.
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Figure 1. The graph of two nonnegative Figure 2. The graph of a lateral inhibi-
synaptic couplings. The solid curve isan tion synaptic coupling (that is, a Mexi-
on-center kernel function and the dashed can hat kernel function).

one is an off-center kernel function.

Figure 3. The graph of a lateral excitation synaptic coupling (that is, an upside
down Mexican hat kernel function).

Theorem 1.1. (Existence of the traveling wave fronts) There exist exactly three
traveling wave fronts to the nonlinear scalar integral differential equation . The
first two traveling wave fronts are called small fronts because they cross one threshold

only. The third traveling wave front is called a large front because it crosses both
thresholds.

(I) The first small traveling wave front u(x,t) = Ugont—1(2) is given by

U(z) = a/ooo &(e) [/_C:(H_S(Z)M) K(z)dx

- /ooo @ U_oo P (xu—l Z) c+ Six)ul " (C + 5?56)#1) dx} ae

V) = % /0°° @ [/_oo P (xu_l z) c+ sc(x)ul r (c + t:?;w)m) dm] e
lim U(z) =0, lim U(z) = a, lim U'(z) =0,

zZ——00 Z—00 z—+o0

de

where the first wave speed 1 = pi(a, &, K, 0) is the unique solution of the first
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speed equation

aéma@[[;wptj

(IT) The second small traveling wave front u(xz,t) =

e Caal [

Z— 2T

"

. x> K(x)dx] de = % "y

Utront—2(2) is given by

o]

_ 5/ Um exp <xu‘22> W(x)dx} dr,
U'(z) = { ;Wexp( /:22> W(x)dx} dr,
ngvm ln UG —a+p,  lim U(2) =0,

where the second wave speed po = pa(8,m, W, ©) is the unique solution of the

second speed equation
0 e}
ﬁ/ [ W(x)dx] dr+ﬁ/ n(r)
0

= f—@
a+2

(III) The large traveling wave front u(x,t) =

U(z) = a/ooo €(c) l/_c;/(%s(z)ua)

z

K(z)dx

|/

nT

exp (Z) W(x)dx} dr

o0

Utront—3(2) is given by

de

Ama@{[
OwMﬂl/:MF%

oo

T —z c cx
ex K dz| dc
P ( 13 ) c+ s(@)ps <C+ 8(%)#3) ]
W(z)dz| dr
Z*Ma;*Zs Py

seo(2) w0

oo

> W(x)dx] dr,

(*
exp

u3

Cx

U'(z) = & c[/z ex (m—z) ¢ K( )dx]dc
(2) s ), &(c) I Gl e el e
z e’} Z2—pus3T—23 _
+ ﬁeXp <3> / n(r)e” l/ exp (1j Z) W(x)dx] dr,
K3 3 0 —0 3
. o . o . ! _
Sp VR =0 EU@=at+s  Ig UE=0
where, if 6 = O, then Zs = 0 and the third wave speed us = ps(a, 8,&,m, K, W, 0)
is the unique solution of the third speed equation
00 0 c—p 0o 0
a/ &(c) [/ exp ( 3:) K(m)dx} de+ ﬂ/ n(7) { W(x)dx] dr
Ccp 0 —uUT
+5/ {/ exp (m) W(x)dx} dr:a;rﬂ—ﬁ.
1
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]f 0<0< 6; then (/143723) = (ﬂ3(a>ﬂ7£an7Kamgve)azii(avﬂaf,naKvm
0, @)) is the unique solution of the system of speed equations

a[O £(0) [/OOO exp <Ccu"x) K(m)dz] de
v B /OOO n(r) [/iz W(:z:)d;z:] dr

+ Bexp <i> /OOO n(r)em l/_:T_Z exp (2) W(x)dx} dr = & ;F By,
and
a/:o @ [/Ooo op (i) T (c T (sT;f;)u) dx} e

— a/ooo () l/OcZ/(cH(Z)u) K(z)dz| de+ B/OOO n(T) [ ’ W(w)dx} dr

— T

+5 OOO n(r)e” UW exp (i) W(a:)dx] dr= 918 o

2

Figure 4. The graphs of the three trav- Figure 5. The phase plane portrait of
eling wave fronts of equation (1.1)). the three traveling wave fronts of equa-

tion (L.1)).

Theorem 1.2. (Ezistence of the traveling wave backs) There exist exactly three
traveling wave backs u(z,t) = Upack—1(%), u(z,t) = Upack—2(2) and u(z,t) =
Uback—3(2) to the nonlinear scalar integral differential equation with the same
speeds as the corresponding traveling wave fronts u(x,t) = Ugont—1(2), u(z,t) =
Utront—2(2) and u(z,t) = Ugont—3(2), respectively. Moreover

Ubackfl(z) =20 - Ufrontfl(z)v

Uback—Z(Z) =20 — Ufront—Q(Z);

Uback—3(z) =20 — Ufront—3(z)7 Zf9 = @7

Upack—3(2) = =W3 + a/ (o) [/ K(m)dx] de
0 c

z/(c+s(2)ps)
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o[, e () W ar
e /O°° <@ [/oo P (z—;) c+ Sc(x)usK <c + SCEE%)M?)) dx] de
+ Bexp (i’) /OOO n(r)e” l/_:%_#yexp (xl:) W(x)dx] dr, if0 <O,

where W3 > 0 and Z3 > 0 are positive constants. These traveling wave backs cross
their thresholds in the following way.

(I) The first small traveling wave back U = Upack—1(2) crosses the small threshold
0 exactly once and it does not cross the large threshold ©.

(II) The second small traveling wave back U = Upack—2(2) crosses the large thresh-
old © exactly once and it does not cross the small threshold 6.

(III) The large traveling wave back U = Upack—3(2) crosses the small threshold 0
exactly once and it crosses the large threshold © exactly once.

Theorem 1.3. (The exponential stability of the traveling wave fronts) Let k =
1,2,3. Consider the following Cauchy problem for the nonlinear scalar integral
differential equation

8P+ 6P+P
ot Mk

Ll oo te) o

—|—,@/ {/W z—y)H(P(y — pg7,t — 7) —@)dy] dr, (1.17)
P(2,0) = (1.18)

Let U, = Ufmnt,k(z) represent the traveling wave front of the monlinear scalar
integral differential equation . There exist three positive constants Cy > 0,
My > 0 and p > 0, such that if the initial function Py satisfies the condition
|Po — Ukllze=®) < Ck, then the global solution of — enjoys the decay

estimate
[P(-;t) = Ur(- + hi)|| oo (r) < My exp(—pit)||Po — Ukl Lo (r),

for all t > 0, where hy, # 0 is a real time-independent constant, satisfying the
estimate |hy| < My||Po — Ugl|p~(®). In another word, t The traveling wave fronts
of the nonlinear scalar integral differential equation are exponentially stable.

Theorem 1.4. (The exponential stability of the traveling wave backs) Let k =
1,2,3. Consider the following Cauchy problem for the nonlinear scalar integral
differential equation

OP oP

— 4+ P
ot THeg, T

—a/o §(c)[/RK(z—y)H(P(y—|z—yt—|z—y|) ) ]dc

5 [T | [ We-pHe - mri - ) - )] dr—wn (119)
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P(2,0) = Py(2). (1.20)

Let Uy, = Upack—x(2) represent the traveling wave back of the nonlinear scalar in-
tegral differential equation , There exist three positive constants Cj > 0,
My > 0 and pr, > 0, such that if the initial function Py satisfies the condition

|Po — Ukl ®) < Ck, then the global solution of - enjoys the decay
estimate

[P(5t) = Uk (- + hie)l| Lo r) < My exp(—pit) |1 Po — Ul Lo~ w),

for all t > 0, where hy, # 0 is a real time-independent constant, satisfying the
estimate |hy| < Mg||Po — Uk||p(®). In another word, the traveling wave backs of
the nonlinear scalar integral differential equation are exponentially stable.

These results will be rigorously proved in the next two sections.

Remark 1.1. The conditions 0 < 20 < a@ < © < i(a + ) guarantee that the
existence and stability of each of the first two small traveling wave fronts of
as well as the existence and stability of each of the first two small traveling wave
backs of are true; and the conditions 0 < (O — «) < 6 guarantee that the
existence and stability of the large traveling wave front of and the existence
and stability of the large traveling wave back of are true.

The study of the existence and stability of the traveling wave fronts of
and the traveling wave backs of are the preparation for the study of the exis-
tence and stability of traveling pulse solutions of the nonlinear singularly perturbed

system of integral differential equations ((1.3)-(1.4).

1.5. The Existence of Wave Speeds and the Speed Index Func-
tions

Wave speeds play a very important role in the study of traveling wave solutions
of nonlinear scalar integral differential equations. Once a wave speed is found,
the traveling wave solution is easy to obtain by using usual techniques in ordinary
differential equations. Moreover, wave speeds may be closely related to the stability
of traveling wave solutions. Intuitively, stable traveling wave solutions are the most
important solutions. Let us motivate the definition of a speed index function by
using a very simple model in synaptically coupled neuronal networks.
Consider the following nonlinear scalar integral differential equation

% = Q/RK(I —y)H(u(y,t) - 0)dy, (1.21)

where @ > 0 and 6 > 0 are positive constants, such that 0 < 20 < «. This model
equation may be viewed as a simplified version of (L.I)), by setting # = 0 and
&(c) = §(c — 00). Suppose that u(z,t) = U(x + vt) is a traveling wave front of
(T:21)), satisfying the conditions U < § on (—00,0), U(0) =6, U’(0) > 0 and U > 6
on (0,00), where z = z + vt stands for the moving coordinate. Then the traveling
wave equation becomes a linear ordinary differential equation

VU'—l—U—a/RK(Z—y)H(U(y)—0)dy—a/z K(z)dx.
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There exists a unique traveling wave front U = U(z + vpt) to this equation:

U(z) = a/_; K(z)dz — a/_; exp (x;o Z) K(z)dz,
U'lz) =2 / exp (m — Z) K(z)dz,

1%} o0 1%0)

where vy represents the wave speed, which is the unique positive solution of the
speed equation U(0) = 0, that is

a/o exp (%) K(x)dxz%—@.

— 00

The speed index function for (1.21)) is defined by

o(v) = a/o exp (%) K(z)dex, (1.22)

—00

for all v > 0.

Following this idea, we have developed a general method to construct the speed
index functions for nonlinear scalar integral differential equations in [77H80|. For
equation , we will construct several speed index functions. By using these
speed index functions, we will establish the existence and uniqueness of a wave
speed. The speed index functions are very interesting and important for the follow-
ing reasons. There exists a unique solution to the speed equation ¢(v) = QTW -0
or a system of speed equations involving the speed index functions and the intrin-
sic functions (K, W) and (£,n) and the positive constants («, 3) and (0, ©). This
unique solution is precisely the wave speed of a traveling wave front. Through
the speed index functions, we will be able to investigate how the wave speeds de-
pend on the synaptic couplings (K, W), the probability density functions (&,7),
the synaptic rate constants («, ) and the thresholds (6,©0). Many important re-
sults such as the monotonicity of the wave speeds and the asymptotic behaviors
of the wave speeds as the constants approach certain critical numbers can be in-
vestigated very clearly. More appropriately, the speed index functions should be
called neurobiological mechanism index functions because they involve very im-
portant neurobiological mechanisms, such as (K, W), (§,7n), (o, 8) and (0,0). By
using the properties of the speed index functions, we are able to prove the sim-
ple but elegant identity: i = 1 4+ L in [77], which connects the wave speed p
of the traveling wave front of the nonlinear scalar integral differential equation
U +u = afR K(x —y)H (u (y,t - %|:c — y|) - 0) dy (where there exists a spatial
temporal delay) to the wave speed v of the traveling wave front of the nonlinear
scalar integral differential equation u; +u = o [ K(x — y)H (u(y,t) — 0)dy (where
there exists no delay).

1.6. The Stability and the Stability Index Functions

To establish the exponential stability of a traveling wave solution, very often we have
to study the eigenvalues and eigenfunctions of an associated eigenvalue problem. It
turns out that a complex number \g is an eigenvalue if and only if )\ is a zero of a
stability index function. The stability index functions, also called Evans functions,
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are complex analytic functions defined in some right half complex plane €2, usually
the left boundary is a vertical straight line located to the left of the imaginary axis.
For the nonlinear scalar integral differential equation , the stability index
function is defined by [77]

N =1— [/_OOO exp (A;; 1) K(a:)dx] / U_OOO exp (fo) K(x)dx] . (1.23)

There exists a very important relationship between the speed index function and
the stability index function:

1 1 120
g =1 ¢(VO)¢<H1). (1.24)

This relationship implies that there exists a close relationship between the existence
and the stability of the traveling wave solution.

The speed index functions and the stability index functions introduced in this
paper are very interesting and important concepts in mathematical neuroscience.
They have potential applications and impacts in applied mathematics. With the
introduction of the speed index functions and the stability index functions, we can
do much more mathematical analysis on the traveling wave fronts than before. One
interesting point is that we can build valuable relationships between the stability
index functions and the speed index functions. By using these relationships and by
proving a global strong maximum principle for the stability index functions (the
Evans functions, that is, the complex analytic functions), the stability of the trav-
eling wave solutions can be analyzed easily. The speed index functions and the
stability index functions may play very important roles in rigorous mathematical
analysis of traveling pulse solutions of nonlinear singularly perturbed systems of
integral differential equations. See [8l11},/16,[21}27]28,[44} /49, /78] for such systems.
Moreover, the rigorous mathematical analysis and the results on the wave speeds,
the speed index functions and the stability index functions can be applied to math-
ematical /computational neuroscience.

1.7. Related Results

In [39], Hutt and Zhang presented the existence and stability result of a traveling
wave front of a simpler nonlinear scalar integral differential equation (it is a simpler
equation because § = ©) with minimum amount of rigorous mathematical analysis
on the existence and stability of the traveling wave front. Many results of that
paper depend heavily on the rigorous mathematical analysis of this paper.

To keep the Introduction from too long, we place other related results in the
Appendix.

2. The Existence Analysis

In this section, we will accomplish the existence of the traveling wave solutions of
the nonlinear scalar integral differential equations and . We will construct
speed index functions and couple together implicit function theorem, intermediate
value theorem, mean value theorem and many important techniques in dynamical
systems to establish the existence. We will focus on the rigorous mathematical proof
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of the existence of the large traveling wave front of and the large traveling wave
back of . The existence of the first two small traveling wave fronts of as
well as the existence of the first two small traveling wave backs of may be
proved very similarly.

2.1. The Formal Representation of the Traveling Wave Solu-
tions

The main purpose of this subsection is to derive the formal representation of the
traveling wave fronts of equation . The main strategy is to make use of the
shape of the fronts and a series of change of variables to reduce the nonlinear scalar
integral differential equation to a first order nonhomogeneous linear differential
equation and then use integrating factor idea to solve it.

There exist three constant solutions Uy = 0, U; = a and Us = a+ 8 to equation
if0 <6 <a< O <a+ f; and there exist two constant solutions Uy = 0 and
Us = a+ g if § = ©. Suppose that u(z,t) = U(z + ut) is a traveling wave front
of the nonlinear scalar integral differential equation , where p > 0 represents
the wave speed and z = x + ut represents a moving coordinate. Then the traveling
wave front u(z,t) = U(x + pt) and its wave speed p satisfy

uU'+Ua/OOO§(c) {/RK(zy)H<U(y/Z|zy) Q)dy] de
5 [ | [ - pmw - - ey ar

Let 0 < ¢t < ¢ and let

"
w=y—=lz—yl

Then
sz:z—y+%|z,y|
(Y H _
=(z—v) [1 + = s(z y)]
(Y M _
=(z —y) {1 + Cs(z w)} .
Therefore
c
g=Y= m(z - w),
and
— c B cp B o
dy = c+s(z— w)ydw [c+ s(z — w)p]? (2 —w)s'(z = w)dw.

Then the traveling wave front U = U(z) and its wave speed p satisfy

v =a [Te0 | | o () B -0 e
8 [T | [ Wi - - 0HOG) - )1y
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Suppose that the large traveling wave front satisfies the conditions U < 6 on
(—00,0), U(0) = 0, U'(0) > 0 and U > 0 on (0,00). Similarly, suppose that
U<Oon(—0,2),U(Z)=0,U'(Z)>0and U > © on (Z,), for some non-
negative constant Z > 0, to be determined later. Intuitively, Z = 0 if § = © and
Z > 0if 6 < ©. This assumption is made based on the translation invariance of the
traveling wave front. Then the traveling wave equation becomes

wirv=a [Fe | [t () ]

+,6/Ooon(7) [/ZOOW(z—uT—y)dy} dr.

Let

Then

T — H

e P il e G A GO

Therefore, the traveling wave equation for the large front becomes

00 cz/(ct+s(z)p)
uU'—&-Uza/ (c) / K(z)dx| dc
0

—0o0

+ B/Ooo n(7) [/_:W_Z W(m)dm] dr.

This is a first order nonhomogeneous linear differential equation. Solving this equa-
tion by using integrating factor idea, we obtain the solution

oo cz/(c+s(2)p)
U(z) = a/o &(e) [/ K(x)dx] de

— 00

o e | oo () et () oo o

+8 /OOO n(r) V;MZ W(m)dx] dr

—B 000 n(r) [/_Oo exp (”C;Z) Wz — pr — Z)dx] dr,
U= /OO @ U_oo P <x l_l Z) ¢+ Sc(x)uK (c +(;x(w)u> dm} e

"
+ io/ooo n(7) [/oo exp <5”;Z> Wz — pr — Z)d:c] dr.

There hold the following limits

lim U(z) =0, lim U(z) = a+ 8, lim U'(z) = 0.

Z——00 zZ—00 z—+oo
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Making a simple change of variable, we obtain the formal representation of the large
traveling wave front

oo cz/(c+s(z)p)
U(z) = a/o &(e) [/ K(ac)da:] de

—00

oo [ e (50) i (exin) ]

oo z—put—272
+ 3 ; n(T) [/ W(;v)dac] dr

— 00

_ Bexp (i) /OOO n(r)em U:W—Z exp (‘"” . Z) W(x)dx] dr,

and
) = % /O°° {© Uoo P (w l_l Z) c+ sc(fc)uK (c +C;Ex)u> dx} de
+ gexp (i) /OOO n(r)e l/_:m—z exp < — Z) W(x)dJC] dr,
and
Uie) = Z/ooo (@) L+§(Z)u (HZZ)#H e
+ g Ooo ()W (z — pr = Z)dr

- % 0°° < Uoo o (w . Z) e+ sc(fc)uK (C +fo)”> dw} -

_ %exp (i) /OOC n(r)er V_:“T_Zexp (x ; "’) W(x)dx] dr.

We call the system of equations U(0) = 6 and U(Z) = © the speed equations.
We will derive the speed index functions by using this system of equations.
Let U(0) = 6, that is

3° O‘/OOOE(C) Uooo P (i) ct sc<:c>uK (c+csg€:c>u> dl} e

+ 5/000 n(T) /_“T_Z W(a:)da:] dr

— 00

— Bexp (i) /OOC n(r)e” V_:T_Z exp (i) W(x)d:v] dr
_ ; b_ a/ooo £(c) UOOO exp (Cw“x) K(a:)da:] de
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- ,@eip (i) /OOO n(r)er U: exp (‘"” - Z) W(ac)da:] dr

00 cZ/(c+s(Z)p)
:a;—ﬁ—i—a/o &(e) [/0 K(z)dz

de

+2)

o ol o () e (5
o o[, e or

—ﬂ/o U_w (u) <>d4df=@-
. [ ( )K }
+ﬂ/ [ o

o e | [ e (5w -

) da e
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= [T [ on(5F) i () o
en(5) [ s [ e (5w

1fa+p o0 cZ/(ct+s(Z)p)
_M{ 5 —@—I—a/o f(c)[/o K(x)dx| de

ﬁ oo 0
— ; ; n(7) [/_M W(m)dx} dr,
and
vr0) =2 [ e@rOde+ 2 [ pmw(pr - z)ar
B Jo KJo

FIRL Uw o () s (S ) 4]

_ %exp (i) /Ooo n(r)e” V:Zexp <z> W(x)d:z:] dr

ZgK(O) + s n(T)W(—pur — Z)dr

Ao o] vesd)
- [ e (o 4w
o | [ (37) e () d“’] &
(2 oo [ o5 ]
ol (2 [ v
) % {a o, /0005@ /OCZ/<6+5(z>u>K(I)d4 dc}

+ % /0 h n(r) [ /_ OW W(:c)dx} dr.

2.2. The Speed Index Functions and the Speed Equations

The main purpose of this subsection is to define the speed index functions and to
derive the speed equations.

Definition 2.1. Define the speed index functions ¢ = ¢1(a, &, K, i), p2 = ¢p2(8, 1,
W/’(‘)a ¢ = ¢(04767§7777KaVV7M)7 (I)l = (bl(aa€7K7,U/7Z) and (I)Q = (I)Q(ﬁan7W,u7Z)
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by

é1 =a /OOO £(c) [/_OOO exp (‘;%) K(x)dx] de,
o= [ )| [ OW W)z | dr
o [ e i
¢ =a /OOO £(c) [/_OOO exp (tﬂ%) K(x)dx] de

+5/00077(7)[ ’ W(x)dx} dr

—uT

+ ﬁ/ooo n(r)e” [/_:T exp <Z> W(x)dx} dr,

e /Ooo ) U_Ooo o (Z) P (c v (sf;f;)u) dx] e
_a/ooo ‘o l/OCZ/(ws(z)u) Ko
By =8 /O ) { /_ OM_Z W(x)dm] dr

+ Bexp <i> /OOO n(r)e” /:Z exp (i) W(x)dx] dr,

for all (o, B), (&,m), (K, W) and (i, Z) € (0,¢9) x (0,00), where we recall that

and

de,

co=sup{c>0:£=0o0n (0,¢) and £ > 0 on (¢,00)}.

Remark 2.1. With the definitions of the speed index functions, the speed equation
becomes

oo .6, K, W) = 252 o,
if # = ©; and the system of speed equations becomes
@u(, € K 0) + BB W 2) = TPy
(06 Ko Z) + @a(Bn Wop0) = C 0 e
if < ©. Note that
Py, &, K, 1,0) = o1, &, K, p),

‘1)2(577%1/‘/7/%0) = ¢2(5’n7mu)7
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¢(04»5,§a77aK, W,/i) = (,bl(a,f,K,N) +¢2(ﬂa77>vvnu‘)7
@1(0&,5,[(,#70) +q)2(/8an7m/aU7O) = ¢(O‘aﬁa§7naK7VVaM)7

and

o0 0 _
—aexp <i> /O £(c) { [ e (Ccu“x) K(x)dx} de
N 2/ ool
+aexp (—i) /0 £(c) VO exp (C;%) K(ac)dx] de
00 cZ/(c+s(Z)p)
—a /0 £(c) [ /0 K(x)dm] de.
We compute the first order partial derivatives of the speed index functions:
o' =% [e@ ][ low (L) K] de
o
) () =2 / U 2] exp (Z) W(x)dx} dr,
o (1) =% [Tea ][ wew (L) K] ac
+ % /OOO n(r)e” U_:T ] exp (Z’) W(x)d:v} dr,
a;: :% exp (f) /OOO £(0) U_Ooo(z ~ 2)exp (:;%) K(ac)dx} de
+ % exp (- %) /OOO £(¢) UOCZ/(HS(Z)#)(Z _ 2)exp (C;ux>K(x)dx} de
. /Ooo (o) l/ Z/(c+s(Z)n) () exp <x+ pm;i— Z> K(uz + 7)dz

i) { exp ( ) (m)dx] de
i) [ /OcZ/<c+s<Z>u exp (c+ux> K(z )dm] de
| [ ZZ(Hs(Z S ( ) (p + Z)da

2 maew(7) [ e V . Z'“““’( Jwe ]

5 /Ooo n(7) UO ] exp(x)W (i — pir — Z)dac] dr,

— 00

de,

00 _ _a
3Z_pp

7
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22 By (Z) ["awre [ [ e (2) W(@dx] ar

=8 /Ooo n(T) [/_ exp(x)W (pux — pr — Z)dx} dr,

0
oo
for all (u, Z) € (0,¢) x (0,00).

2.3. The Existence and Uniqueness of the Wave Speed 3 of
the Large Traveling Wave Front for the Case § = ©

The main purpose of this subsection is to accomplish the existence and uniqueness
of the wave speed us of the large traveling wave front of . That is, we will
prove that the wave speed ps of the large traveling wave front is the unique solution
of the speed equation

¢(a’/87£7777K7W’/’L):

under the assumptions (|1.5)-(1.16). Let & = ©. First of all, it is easy to find the
following limits

lim ¢1(a, & K, pu) =0, lim ¢2(8,n, W, pn) =0,

pn—0t p—0+
(o' 0

i il 6K = a [ €0 [ [ ew (C‘ x) K(x)dx] de,
0

Hu—Co ) CCo

0o 70
im 623, W) = 5 [ 0o |
H—>Co 0 —CoT

+ ﬂ/ooo n(r)e U:Texp (;) W(x)dx} dr.

Moreover, it is easy to see that

a /0 T e { [ OOO exp (CC_COCO x> K(x)dx} de

-Fﬁ/oOo n(T) [ ' W(m)dx} dr

—CoT

+ ﬁ/ooo n(r)e” [/_:OT exp (;) W(x)dx} dr
>04/00o £(c) U_OOO exp (;) K(x)dx} de

+ /OOO n(r) [/_im exp (i) W(x)dx} dr

+ B/OOO n(r) [/OO exp <;) W(x)dx} dr

W(a:)dz] dr
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o /0 “ ¢ [ /_ Ooo exp (;) K(w)dx} de
+ ﬂ/om n(7) UOOO exp (;) W(a:)da:] dr
—a /OOO exp <;) K(z)dz + B/OOO exp (;) W (z)dz

OH_ﬁ—G.

>

Furthermore, it is easy to find that

lim (e B, K, W) = 0 < 28 g < lim g(a, 8.€.m, K, W, ).
u—0+ 2 p—co

Therefore, the existence of a wave speed p3 to the speed equation ¢(«, 8, &, n, K, W, i)
= # — 0 in (0, ¢p) is obviously true by using an intermediate value theorem. It
suffices to establish the uniqueness of the wave speed. As u — 0%, we obtain the
following limits

o' =15 [T [ Ooo afexp (=2 ) Koo ac

_ a/ooo £(0) [/_OOO ] exp (C - ’“‘m) K(um)dx} de

Sa {/OOO £(0) UO 2| exp(w)K(O)dm} dc} — aK(0),

— 00

020 = 55 [T | [ el (£) wiaja] ar

L
_ 3 /0 A [ /_ gl exp(x)W(,ux)dx} dr

(oo}

and

Ny, /0 e [ / Tl exp(a:)W(O)dm] dr

—+{["a +T>n<j>ow<o>d7}.

We will show that ¢'(u) > 0 for all synaptic couplings in classes (A) and (B).
Also we will demonstrate that ¢'(u) < 0 on (0, ug), ¢’ (ux) = 0 and ¢'(u) > 0 on
(14, co), where the positive constant p depends on the kernel functions K and W,
for all kernel functions in class (C). Overall, if 0 < 20 < o + 3, then as a function
of u, the graph of ¢ crosses the line ¢ = a;ﬁ — 0 exactly once.

The rest of the proof of the uniqueness of the wave speed u3 is divided into three
parts.

(A) For all nonnegative kernel functions K and W, because

/OOO K(z)dz = /OOO W(z)da = %,
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so we must have that ¢'(u) > 0 on (0, ¢o).

(B1) For each Mexican hat kernel function K, there exists a positive constant
M > 0, such that K > 0 on (—M,0) and K <0 on (—oo, —M). Therefore, there
hold the estimates

|| exp (C — u:v) K(x) > exp (_c—,uM> |x| K (z) > 0,
cp ci

on (—M,0), and

c

0 > |x|exp ( c_uux> K(z) > exp <—CC_M'UM> |z| K (x),

on (—oo, —M). Hence for all u € (0, ¢cp), we have

o (1) > “2/000 ¢(c) [exp (—C_“M> /O |xK(x)dx} de > 0.

I cp o

(B2) For each Mexican hat kernel function W, there exists a positive constant
M > 0, such that W > 0 on (—M,0) and W < 0 on (—oo,—M). Define two
sequences of functions {¢1 »(p) :n=1,2,3,---} and {¢2n(p) :n=1,2,3,---} on

(0,00) by
b1 () =B / e [ / Oo 2| exp (M) W(w)dx] ar,
Go.m (1) =Bu" / n(r)r W (ur)dr.
Then
lim ¢1,n(1u’) = Oa lim djl,n(:u) = 07
n—0+ H—>00
lim ¢2,n(:u’) =0, lim ¢2,n(:u’) =0.
N_)0+ H—>00

Also, as u — 07, we have the limit

Sl L[ [ (3) ] )
=p {/OOO n(r)e” [/O: |x|”exp(x)W(px)d$} dT}
—f {/OOO n(r)e’ [/; || exp(:c)W(O)d:c} dr} .

For the function ¢2 ,, we have the following simple estimate

6 e n On
B2.n(p) = E/o n (;) W (r)dr < 2

for some positive constant C,, > 0. It is easy to derive the differential equation

%m,n(u) _ 52/0“ ()" U: 2 exp (Z) W(ﬂ:)dx} dr

Py -




24 L. H. Zhang & A. Hutt

That is

d 1
@%,n(u) = E¢1,n+1(ﬂ) — da,n (1)

For all integers n > 1 and k > 1, we have the estimate

Gtk (1) < M G (i)

Making use of this estimate, we get

d M
@d’l,n(ﬂ) < Eﬁbl,n(U) - ¢2,n(ﬂ)7

% {eXp (Aj) ¢17n(u)} < —exp (f) ban ().

Integrating the last differential inequality with respect to p on the interval (u, o),

we get
— exp (f) P1.0(1) < —/M exp (J\lj[) P2 (v)dv.
That is
P1,n(p) = exp (f) /M exp (]\5> P2,n(v)dv.
Because
/ exp (M> ¢o.n(v)dv
L v
=p /:0 exp <J\y/[) " {/000 77(7)7”+1W(1/T)d7] dv
< <1 M
:ﬁ/o " HW(r) {/ﬂ —5 eXP (1/> n (g) du} dr > 0,
and

M"p11(p) > ¢1,n41(1) >0,

we obtain the estimate

¢1.1(p) > 0.

Therefore, we obtain the desired estimate

b2’ () = %mw > 0.

(C1) For each upside down Mexican hat kernel function K, there exists a positive
constant M > 0, such that K < 0on (—M,0) and K > 0 on (—oo, —M). Therefore,
there exist two positive constants C7 and Cs, with Cy > C7 > 0, such that

0 —(1+C1)M
/ K(z)dx +/ K(z)dz > 0.
-M —(1+C2)M
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First of all, for all integers n > 1, we have the following estimates

o /O T e { [ OOO |x"K(x)dx} de

0o r 0
=aM" f(c)/ |z|”K(Mz)dz] de

0 LJ —oco

o0 r ro0 b
=aMm™ ! &(c) / |z|"K(Mz)dx| de
/-1

0o -1
+aM™ ! &(e) [/ |x"K(Mx)dx} de
0 —00

o r rO
>aM™H! (o) / |z|" K (Mz)dz| de
0 L/ -1 J

+aMmH /OOO £(0) Vlcl J;|”K(Mm)dm] de

—1—-Cs

>aM™H! /OOO £(c) [/_01 K(Mx)d:v] de

+ oM /0 T e [ / e K(Mx)dx] de

—1-C4

[e'e) 0 [e'e) 7(1+Cl)M

:aM”/ &(e) [ K(x)dx} de + aM"/ &(e) [/ K(ac)da:‘| de
0 -M 0 —(1+C2)M
) 0 —(1+C1)M

:aM”/ (o) [/ K(z)dx —|—/ K(a:)dx} de > 0.
0 -M —(14C2)M

That is

a/ooo £(c) [/_OOO |x"K(x)dx} de > 0.

Second, for all integers n > 1 and k£ > 1, we have the estimates

a/om £(e) [/_OOO 12" exp (‘tﬂ%) K(a:)dx} de

9] 0
:aM"+k+1/ () [/ || *F exp (CC_M'MMJJ> K(Mx)dx} dc
0

— 00

00 0
:aM”JrkH/ &(c) [/ || F exp (CCMHMx> K(Ma:)dz] de

0 —1
o0 -1 o
+ aMmkE / £(c) [ / 2| exp (C”Mx> K(Ma;)da:] de
0 —o0 Ccp
o) 0 o
>a MR / &(e) [/ |z|™ exp <WMx> K(Mm)d:c] de
0 1 CH

%S —1
varr =t [Zee) [ [ apresn (S are) Kb ac
, Sl

o0
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= qMntrFL /OOO &(c) [/0 |z|™ exp (?Mm) K(Mx)dx} dc

— 00

00 0 _
:aMk/O &(e) [/ |x]™ exp (Cc,uu

a/ooo £(c) U_Ooo 2| exp (tﬂ%) K(x)dx} de
>aM* /OOo £(c) [/_Ooo |z (Cc_u“x> K(w)dx} de.

Third, for each fixed constant pg € (0,cp), there exists a sufficiently large integer
No = No(uo), such that for all integers n > Ny + 1 and for all u € (uo, co), there
holds

) K(o)ie] de

That is

#“ x) K(a:)d:c} de > 0.

/0 e [ / 000 [+ excp (CC‘

In fact, fix pg € (0,¢9) and let pg < p < ¢g. Then we have the following estimates

a/ooo £(c) [/_OOO |z["*! exp (i;%) K(x)dm} de

00 0
:aM”+2/0 &(c) [/ |z exp (Cc_;LlLM‘T) K(Mx)dx} de

—00

=aM"™t? /000 () [/O || exp (CC_MMMJU) K(Mx)dx] de

—1

+ aM™+? /OQ g(c) |:/1 |x‘"+1 exp <CC_M'UM$) K(Ma:)dm] de
0 _

oo

0o 0
zaM”JrQ/O &(e) [/1 |z|" Tt exp (CCM'UMSC> K(Mz)d:v] de

o —-1-Cy _
+ a2 / £(c) l / 2| exp (CW“M@> K(Mx)dx] de
0 _

1-Cs

>aM™t? /Ooo £(c) l/_ol K(Mz)dx + /_1_01 K(Mx)dx] de

—-1-C>

o0 0 —(14C1)M
:aMn+1/0 £(c) l/M K(x)der/ ' K(x)dx} de > 0,

—(14+C2)M

where we have applied the following elementary estimates

|| exp (HMQL‘) < land K(Mz) <0, on (—1,0), for all n > 0,
cp

c—
|| exp ('uMm>
cp
provided that the integer n is sufficiently large, namely, n > Ny 4+ 1, where

m ik

Y

1and K(Mz) >0, on (—1—Csy,—1—C4),

v
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Here [[z]] represents the greatest integer function of .
Fourth, define a sequence of nonlinear smooth functions {¢s (1)} on (0, cy) by

sanm=a [ e [ OOO o exp (“ L) K]

for all integers n > 1. Then

lim ¢3,(p) =0,

u—0+

%) 0
i an) =a [Te@) | [ new (20 Kaas] ac >0,

for all sufficiently large integer n > Ny + 1. Moreover

[e%s} 0 _
b3’ (1) = %/0 &(c) {/Oo |z|" T exp (Ccuuaj> K(x)dx} dec = %Qﬁgmﬂ(u).

Therefore, for all n > Ny + 1 and for all p € (o, co), we obtain the estimates

, 1
¢3,n (M) = E¢3,n+l(ﬂ)
aM'n,J,-l e e] 0 —(1+Cl)M
> 5 / (o) / K(z)dx +/ K(z)dz| de > 0.
w 0 -M —(14+C2)M

If ¢35 (pg) = 0, at some number py € (0,¢p), then for the same number 14, we

have @3 54k (ps) > 0, because ¢3 pir () > MFd3 ,(1y) = 0.
Fifth, by fixing the integer n = Ny + 1 and by making the change of variable
= %, where p € (0, ¢p), we have

/OOO £(0) [/_OOO 12"+ exp (cc_u”x) K(m)dx] de
2 [Cea | [ OOO e (4

Jim, { /0 “ €0 { [ OOC 2"+ exp <CC“$> K(,u:c)dx} dc}

_ {/OOO £(c) UO ! exp(z)K(O)da:} dc} — (n+ 1IK(0) <0,

— 00

a x) K(,ux)dx} de,

and

if K(0) < 0. Therefore, there exists a small number g = p,,+1 > 0, such that

bannli)=a [ e | [ U e exp (“2H) K(e)ae] ac

—00

—at? [Cea | [ el exp (=

for all p with 0 < g < fipy1. This result is also true if K(0) = 0, K > 0 on
(=00, —M) and K <0 on (—M,0), for some positive constant M > 0.

'ux) K(,ux)dx] de <0,
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Sixth, set Ay, | = inf{u < co: ¢3ns1(p) > 0o0n (p,c0)} and A} = sup{p >
0: ¢3nt1(p) <0on (0,4)}. We will show that A7 | = AX* .

In fact, if ¢3.,41(px) = 0 at some constant pu € (0,cp), then %qﬁan“(u#) =
%#Qd)g,wrg (%) > 0. Thus the graph of the smooth function ¢g,,41(u) crosses the

p-axis exactly once. Without any difficulty, we may conclude that A, = A, | =
Aty Now ¢3,41(Ay, 1) = 0. Below we will use mathematical induction method
backward. Note that

K1
i 63,00 =0, 6a,00) = [ z6nma()w

pn—0

Now it is easy to find that ¢z, (1) < 0 on (0, ) and ¢3 (1) > 0 on (g, co), for
some constant p, € (0,cg). Recall that we have

_ ¢3,n(u)
= ’UJ2

and lim ¢3,-1(p) =0.

pn—0+

d
@%,nq(u)

Therefore, it is easy to conclude that ¢3,—1(1) < 0 on (0, ftn—1) and ¢z 1 (1) >
0 on (fn—1,co), for some constant p,—1 € (0,¢9), and so on. Finally, we get
lim,, o+ #3,1(1) = 0, ¢3,1(p) < 0 on (0, p1) and @31(p) > 0 on (1, ¢o), for some
constant p1 € (0,¢p). By mathematical induction method backward, we find that
there exists some constant p, = p(m), such that ¢3m,(p) < 0if 0 < p < fim,
O3.m(tm) = 0 and @3, (1) > 0 if fy, < p < cg. Note that 0 < py41 < fim, < Co.

(C2) For each upside down Mexican hat kernel function W, there exists a positive
constant M > 0, such that W < 0 on (—M,0) and W > 0 on (—oo, —M). Therefore,
there exist two positive constants C; and Cs, with Cy > Cy > 0, such that

0 —(1+C1)M
/ W (x)dz +/ W (2)dz > 0.
M —(1+C2)M

There exists a positive constant gy > 0, such that ¢’ (1) < 0 on (0, u1). Note that

020 =5 [Tame | [ el (£) wiaja] ar

_ 5 /0 T e { / Tl exp(:v)W(u:v)d:L‘] dr

— 00

_ B/_ODO || exp(a)W (uz) [/O_x n(T)erT} dz

=5 [ alen@ S { [* wi [ amerar] av}as
=5 /000(1 + ) exp(a) {/; W (1) on n(T)erT] dy} dz.

This means that there exists a unique positive constant 1 > 0, such that ¢’ (1) < 0
on (0, p), p2' (pge) = 0 and ¢ (1) > 0 on (i, 00).

Now let us consider more general kernel functions which may cross the x-axis
for finitely or even infinitely many times.
(D1) If the synaptic coupling K satisfies condition , then by using integration
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by parts for M times, we find that
[e's) r rO c—
/ (o) / exp ( ) dx} de
0 L/ —oo
00 r rO 0
e[ () L (- [ an)

J solf [

:/0 # /Ooo eXp( o x) </ B dyl) }dc

:/OO £() /Oo eXp( Cuﬂx) 2 (/ i K(yl)dyldy2> dx} de
/ |/
/ £

(5 5 ([ o)

) M
c—p c—p
INEEIC)
cp
(// //Kyl Jdyidys - - - dyar— 1dyM>d$] dc > 0.
Y2

(D2) If the synaptic coupling W satisfies condition (1.8)), then by using integration
by parts for N times, we find that

/OOO n(7) [ i W(x)dx} dr + /Ooo n(r)e” [/: exp <z> W(z)dr] dr
Fmdr e (B) [ pmerdr| e
/—m/,u, (M) /o ]
[ (:“ n(F)dr + exp (Z) /O o n(T)erT]
2 [— / 0W<y1>dy1} da
) o] [ ]
LG s 2 [
LG 2] f [
AL ()
AL ]

I
—
8 o
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i (30 )
[

{ / W( yl)dylddey3:| de =
Y3 J Y2

B G ()24 ()

F ot (DN WD) <Z>}

0 0 0 0
. U / / W (1) dy1dys - -~dyN_1dyN] dz > 0.
z YN Y3z v Y2

Therefore, for all synaptic couplings in classes (A), (B), (C) and for more general

synaptic couplings satisfying conditions or , there exists a unique wave

speed p13 = ﬁbg(Og B¢, n, K, W, 9) > 0, such that p3 € (07 C()), (]5(0[, B¢, n, K, W, M3) =
— 0 and then U(0) = 6.

2.4. The Existence and Uniqueness of the Wave Speed 3 of
the Large Traveling Wave Front for the Case § < ©

The main purpose of this subsection is to accomplish the existence and uniqueness
of the solution (s, Z3) of the system of speed equations U(0) = 6 and U(Z3) = O,
where pu3 = p3(Z3) > 0 represents the wave speed and Z3 > 0 is a positive constant.
That is, we will establish the existence and uniqueness of the solution of the system
of speed equations

W a+

¢1(a’§7K’M’O)+q}2(/BaT]7 aM:Z): QB_aa
o+

Di(0, € Ko, Z) + @o(Bn, W 0) = 57 0

Suppose that the assumptions (|1.5))-(1.16|) hold. Let # < ©. First of all, we have
the following limits:

z
lim ®(o,&, K, 1, 2) = ,a/ K(z)dz
n—0+ 0

lim ®4(a, & K, pu, Z)

H—co

- /0oo £(o) |:/—Ooo P ( : ) c+ s(a:c+ Z)co k (C +C£?;—+ZZ))CO) dm] &

0o cZ/(c+s(Z)co)
—a/o &(c) [/0 K(z)dz

. . «
Zli?g+(b1(a7€7K,M7Z)_¢l7 le_I>noo¢1(a7§7K7M7Z)__§7

de,

0
lim (I)Q(B U,WM, 6/ W(.’L’)dl’, lim q’2(5a77>VVaM>Z) = éa
pn—0+ —z H—>0 2
. B . B
Zli{ngqh(ﬂ;naVthaZ)_gb% Zlgnoo(I)Q(/Ban7VVa,u7Z)_§



Traveling wave solutions in neuronal networks 31

Moreover, we have the following limits about the partial derivatives of the speed
index functions:

001 _, [Z /OOo %g(c)dc - 1] K(2),

im ——
p—0+ O

. 8<I>1 - « Z o 0 Cc—Cp
Ml;rrgo O ol exp (Co> /0 &(e) {/OO(Z — ) exp ( - :L') K(z)dz] de

o) cZ/(c+s(Z)co)
/ &(e) [/ " (Z —z)exp <C:CCO x) K(x)dx] de,
0 0 0

00, 0D,
A s ¢’ (w),  Jim o 0,
0P
L = _aK((Z
;LLI{)IJF o0z @ ( )’

. 0P« Z & 0 c— ¢
Jl_)rrcloa—z——aexp <_Co>/o &(c) [/_Ooexp< - x) K(;v)dac] de

7 00 cZ/(c+s(Z)co)
- exp (—) / &(c) l/ exp <C+ 0 x) K(z)dz| de,
CO CO 0 0 CCO

im % — lqﬁ lim % =0
750+ 072 M b Z5oo 0Z
and
. 0Py * . 0Py
ulgng o B [/0 n(7)dr — 1} W(-2), Mh_}rrolo o 0,
. 0Py, . 0Py
Am g =02 Ao Y
. acI)2 . 8@2
lim 22 =W (—Z lim o2 —
. 5z =PV (D). Wz
. 0Py B[ e T . 0%y
Zli>H&+ 57 _ﬁ/o n(T)e [/OO exp m W (x)dz| dr, ZlgnOC 7 = 0.

To prove the existence and uniqueness of (us3, Z3), we use the speed index functions
®; and P, to construct the following auxiliary functions in (0, cg) x (0, 00). Define

F/’“ Z) = q)l(aa§>K7MaO) +¢’2(ﬁ,77,VV,M, Z)7
A(M’ Z) = (Pl(a?S?KaMu Z) +q)2(67777W7/1'70)'

Then, we have the partial derivatives

or 0, 0P,

—_— == K, pn,0)+ —= W,u,Z) >0
8,[1, a# (a’€7 7/’L7 )+ a‘LL (/B’TI’ 7/’L’ )> b)
or 09,

P A 87(57777‘4/7/172) >0,

ON 0P, 0P,

— = K u,7Z)+ —= W, u,0) >0
o o (a7§7 ) My )+ N (57777 2 )> s
oA 09y

87 - 87(a7§7K7/1‘7Z) <07
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for all (4, Z) € (0, co) % (0, 00). By using implicit function theorem and the system of
speed equations, we know that there exist two well defined functions p = A(Z) and
1 =B(Z) on (0,00), such that T'(A(Z),Z) = *12 — 9 and A(B(2),Z) = 252 — ©.

Differentiating the system of speed equations I'(A(Z), Z) = # —6 and A(B(Z),
Z)= O‘TH? — © with respect to Z, we obtain

or or

@(A(Z%Z)A’(Z) +5,A2),2) =0,
oA , oA B
%(B(Z),Z)B (Z) + ﬁ(B(Z), Z)=0.
Solving these equations, we have
oo (OT/02)(A(Z),Z)
A== Grjonaz.z) <
oo (ONOZ)(B(Z), Z)
B = oron B 2.2 "

Thus, A = A(Z) is a strictly decreasing function and B = B(Z) is a strictly increas-
ing function on (0, c0).
Consider the following equations

T(Ao, 0) = @1, &, K, Ao, 0) + B2 (8,1, W, Ao, 0) = agﬂ -

A(Bo, 0) = ®1(a, &, K, By, 0) + D2(8, 1, W, By, 0) = a;ﬂ 9
a+ 5

F(A+7OO):(I)l(aagvKaA-HO)+(I)2(B7777VV7A+’OO): 2 _9’
a+p

A(B+,OO):(I)l(Oé,g,K,B_A,_,OO)+(I)2(B,T],VV,B+,O): - 0.

That is, the explicit equations
0

o / T (o) { / OOO exp( A“;‘O )K(m)daz] de+ 8 /0 S ) [ _AOTW(:v)d:c] dr
+ﬁ/ V AOTexp(j())W(m)dx]dT:a—gﬂ—&

o / £(0) { / 000 eXp( ’Bfo >K(x)dx] det 8 [ (o) { BOTW(x)dx} dr

+,8/ V BOTeXp<BO)W(J;)dm]dT=a—;ﬁ—@,

a/ £(0) UO exp( _AAer)K(x)dx]dc—Fg:a;ﬂ—O,

€A+

- = + ﬁ/ l (x)dx] dr
—Byr
+ﬁ/ V o (l;i) W(m)dm] dr = O‘;B—e).
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The existence and uniqueness of each of the solutions Ag, By, A, By of the above
equations in (0, ¢p) may be proved by using intermediate value theorem, mean value
theorem and the conditions 0 < 20 < a < 6O < O‘—JQFB, respectively. Therefore, there
exist the following limits

Ao = lim A(Z), By = lim B(Z),

Z—0t Z—0t

Ay = Jim A(Z), By = lim B(Z).

Note that Ay > By and A, < By due to the conditions 0 < a(© — a) < S6.
Therefore, we find that the two smooth functions A = A(Z) and B = B(Z) inter-
sect exactly once at (us, Z3) = (A(Z3), Z3) = (B(Z3), Z3), such that I'(A(Z3), Z3) =
QTW — 6 and A(B(Z3),Z3) = O‘T"HB — O. The existence and uniqueness of the wave
speed us of the large traveling wave front of for the case 6 < © is proved.

2.5. The Existence and Uniqueness of the Large Traveling
Wave Front

The main purpose of this subsection is to finish the proof of the existence and
uniqueness of the large traveling wave front of .

We have made the assumptions U(0) = 6 and U(Z) = © and have proved that
there exists a unique solution (u3, Z3) to the system of speed equations. If there
exists another number z; # 0, such that the large traveling wave front crosses
the small threshold 6, then Lemma (in Section 5) says that U’(z1) > 0. By
continuity and intermediate value theorem, there exists another number zo # 0,
0 < |z2] < |z1], such that U(z2) = 6 and U’(z2) < 0. But this is a contradiction to
Lemma Therefore, the large traveling wave front crosses the small threshold 6
only once. Similarly, it crosses the large threshold © only once, as expected.

Overall, for all synaptic couplings and for all probability density functions satis-
fying the conditions —, including all synaptic couplings in the three classes
(A), (B), (C), the large traveling wave front crosses the small threshold 6 only once
and it crosses the large threshold © only once. Therefore, the large traveling wave
front really satisfies the conditions U(z) < 6 for all z < 0, U(0) =6, U’'(0) > 0 and
U(z) > 0 for all z > 0. Similarly, U(z) < © for all z < Z3, U(Z3) = ©, U'(Z3) > 0
and U(z) > O for all z > Z3. For the wave speed p3, the uniqueness of the large
traveling wave front is true up to translation invariance. The proof of Theorem 1
is completely finished. (I

2.6. The Traveling Wave Backs

The main purpose of this subsection is to establish the existence and uniqueness of
each of the three traveling wave solutions of the nonlinear scalar integral differential
equation (|1.2) with three appropriate constants wy > 0, under the assumptions
—. We want the wave speed of the k-th traveling wave front of and
the k-th traveling wave back of to be the same, where £ = 1,2,3. We will
make use of the existence and uniqueness of each of the three traveling wave fronts
of equation to accomplish the existence and uniqueness of each of the three
traveling wave backs of equation . Hence we will have to be very careful to
select the constant wy, in .
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(I) Suppose that U = U(z) is a solution of the following nonlinear scalar integral
differential equation

ulU’JrU:a/ [/Kz— (y—’uclz—y|)—9)dy]dc

Define a function V = V(2)
Uz)—0=0—V(z).
Then
U'(z) = -V'(z), HU-0)=H®O-V)=1-H(V —0).

Moreover, V solves the differential equation

,ulV/—i-V—&-a—%‘:a/Ooof(c) {/}RK(z—y)H( (y—|z—y)—9)dy]dc.

Let w1 = o — 26. Then the first small traveling wave back of (1.2) is given by
Uback—l(z) =20 — Ufront—l(z)-

(IT) Suppose that U = U(z) is a solution of the following nonlinear scalar integral
differential equation

uzU’+U=a+B/OOOn(T) [AW(z—y)H(U(y—u2T)—@)dy dr.

Define a function V=V (z) b
U(2)—©=0-V(z2).
Then
U'(z) = =V'(2), HU-©)=H©O©-V)=1—-H(V-0).
Moreover, V solves the differential equation
wV' +V +2a+6-20 za—l—ﬁ/ n(T) [/ W(z—y)H(V(y — par) — ©)dy| dr.
0 R
Let wy = 2a+ f — 20 = § —2(0 — ). Then the second traveling wave back of
is given by
Uback—Q(Z) =20 — Ufront—2(z)~

Now, let us establish the existence and uniqueness of the large traveling wave solu-
tion u(x,t) = Upack—3(x + pst) of equation by using two cases.

(ITI-1) Let 6 = ©. Suppose that U = U(z) is a solution of the following nonlinear
scalar integral differential equation

usU’+U=a/OOO£(C) URK(Z—y)H( (y—flz—yl) )dy} de
8 [T | [ Wi - pH@G - par) - O] ar
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Define a function V' by
U(z)—0=0—-V(2).
Then
U'(z) = =V'(2), HU-0)=HO0-V)=1-H(V -0).
Moreover, V solves the differential equation

V' +V+a+p-20
= K(z—y)H - =z - —0)dy|d
a/o 5(6)[/R (z—v) (V(y Iz yl) ) y} c
8 [ | [ W -V - ) - )y ar
0 R
Let w3 = a+ B — 260. Then the third traveling wave back of is given by

Ubackf?)(z) =20 — Ufront73(z)-

(ITI-2) Let € < ©. The large traveling wave back u(z,t) = U(z + ust) of equation
(1.2) and the constant w3 satisfy the equation

usU' +U = a/ &(e) [/K(zy)H(U(yﬂgky) H)dy] de
0 R ¢
3 [ ) | [ W= U - o) - )iy dr = s
0 R
As before, make the following change of variable
w=y— 2z -y,
c
Then we have

usU' +U

o (RS -]
5 [ | [ W e - @) — )y dr — s

Suppose that U > 6 on (—o00,0), U(0) = 0, U'(0) < 0 and U < 0 on (0,00).
Similarly, suppose that U > © on (-0, —Z), U(-Z) =0, U'(-Z) < 0and U < ©
on (—Z,00), where Z > 0 is a positive constant to be determined later. Then

psU' + U = a/ooo £(c) UOOO C+S(ZC_ w)u?,K (c +Cs(fz—o;))us> dw} e

+ﬂ/00077(7) V__:W(z—ugr—y)dy

dr — ws.
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Let

c(z —w)
et sz —wns

psU' +U = a/ &(c) [/ K(m)dx] de
cz/(cts(2)ps)

+ 6/ [/z+z - W(x)dx} dr — ws.

Solving the differential equation, we find the solution

U(z) =a / T o) l / :@H(z)m,) K(x)dx] de
v B / [ / o W(x)dx} dr
i a/o € Uoo op (xu; Z> ¢+ Sc(x)u3K (c + jx)us) dx] i
+ Bexp <_53) /Om n(r)e” l/:z_w exp <$;Z> W(x)d:v] dr — ws.

The derivative is

V) =- % 0°° @ [/oo P <$M—32> c+ Siw)usK (c + jﬂﬁ)%) dw} de
_ %exp (-i) /OOO (e /:Z_W exp (”Cu_j) W(a;)dx] dr.
The compatible conditions are given by U(0) = 6 and U(—Z) = ©. That is
/ U K(x dm]dc+ﬁ/ [/Z B ()dx}dr
ra [ @ U_w‘”{p () s (et o
+ Bexp (-i) /Ooo n(r)e” l/iw exp (/Z) W(x)d:c] dr — ws = 0,
o /0 ~ ¢ [ [ ZOZ/@H(@%) K(2)dz | de+ 3 /0 ) { [ O;TW(ar)dx} dr
- Oé/ooo () [/_;Z P (x/j;Z) c+ Six)NBK (C + 5&)%) dm] e
+ Bexp (-i) /Ooo n(r)e” U: exp <x:32) W(x)dx} d7 — wy = O.

We have
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To establish the existence and uniqueness of (ws, Z), let us define the following
auxiliary functions in (0, 00) x (0, 00). Define

(W, Z)

—a /0 T e { /0 h K(:c)dx} de+ /0 S ) [ /Z O:M W(:v)d:z:] dr
e /0°° @ [/_Ooo P (53) ¢+ Siw)us " (c + sfx)urs) dx} de
+ Bexp <—MZS> AOO n(r)e” Viw exp (53) W(x)dx] dr — W,

AW, 2)
—a /O “ e l /_ TZ/(C+S(_Z)M)K(x)dx de+ /0 h n(T)[ _O;TW(x)dx} dr

+ Oz/OOo &(c) {/OOO exp (53) o S<xc_ Z)MgK <C+CS(Z;_ZZ))M3> d;z:] de
+ 8 /OOO n(r)e’ U:ST exp <;> W(x)dx} dr — W.

By using the system of compatible equations T'(W, Z) = 6 and A(W,Z) = O, we
obtain two well defined functions W = A(Z) and W = B(Z) on (0, 00), such that
I'A(Z),Z) = 6 and A(B(Z),Z) = ©. Differentiating the system of compatible
equations I'(A(Z), Z) = 0 and A(B(Z), Z) = © with respect to Z, we obtain

and

or ,or -
W(A(Z)’ Z)A(Z) + ﬁ(A(Z)vz) =0,
dA oA -

W(B(Z),Z)B (Z) + %(6(2)72) =0.

Therefore
or/0Z)(A(2), Z) (0A/0Z)(B(2), Z)
’Z:—( <0, B (Z) =— > 0.
A= arjawiaz),2) A= onjom)B2).2)
It is easy to see that A = A(Z) is a strictly decreasing function of Z on (0, 00) and
B = B(Z) is a strictly increasing function of Z on (0, c0). There exist the following

limits

A(] = lim ./4(Z)7 B(] = lim B(Z),
Z—0+ Z—0+

Ay = lim A(Z), B, = lim B(Z).
Z—0 Z—0

The limits Ag, By, Ay, B satisfy the following equations, respectively

a+ﬁ+ﬂ/ooon(7)[ ' W(x)dx]dT

2 —H3T

+a /Ooo £(c) [/_OOO exp (CC_N’;?’ a:) K(m)dx} de

+8 /Ooo n(r)e” [/:T exp (53) W(:c)dx] dr — Ay =0,
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O‘+ﬁ+ﬁ/0mn(7)[ ’ W(x)dx} dr

2 —H3T

+ a/o £(e) [/_Ooo exp (Cc_ug‘?’ x) K(m)dx] de
+ B/ODO n(r)e” U_:T exp (53) W(x)dx} dr — By = ©,

% n a/o £(0) U_OOO exp (CC_M’;%) K(m)dx} de— Ay =6,

a+§+5/0°°n(7){ ’ W(x)dx} dr

—H3T

+ B/ODO n(r)e” U_:T exp (53) W(x)dx} dr — B, = ©.

It is easy to find that A, < By and Ay > By. Therefore, the two functions
A = A(Z) and B = B(Z) intersect exactly once. Finally, we obtain a unique
solution (W, Z) to the system of equations I'(W, Z) = 6 and A(W,Z) = ©. The
existence and uniqueness of the large traveling wave back of the nonlinear scalar
integral differential equation are proved for the case § < ©. The proof of
Theorem [[.2] is finished. O

3. The Stability Analysis

The main purpose of this section is to accomplish the stability of the traveling wave
solutions of the nonlinear scalar integral differential equations and . We
will focus on the stability analysis of the large traveling wave front of equation .
The stability analysis of the first two small traveling wave fronts of and the
stability analysis of the three traveling wave backs of (1.2)) may be established very
similarly. We are going to use the same assumptions || as we did for the
existence analysis.

First of all, we will use linearization technique and the method of separation
of variables to derive the associated eigenvalue problems corresponding to a family
of linear differential operators £()\) from C!(R) to C°(R). Then, we will study
the solutions of the general eigenvalue problem L(A)Y + £ = M. Next, we will
construct the stability index functions (that is, the Evans functions) by using the
solutions of the general eigenvalue problem. One very important point is that the
complex number )\g is an eigenvalue of the eigenvalue problem if and only if Ag is
a zero of the Evans function. We will prove a global strong maximum principle for
the Evans functions to analyze the zeros of the eigenvalue problems. The stability
of the traveling wave fronts is determined by the zeros of the Evans functions.

3.1. The Eigenvalue Problems and Solutions

The main purpose of this subsection is to derive an associated eigenvalue problem
and to define a family of linear differential operators.

Set P(z,t) = u(x,t), where z = x + pust. Then the nonlinear scalar integral
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differential equation (1.1)), that is

%M a/wg(@ UK@—y)H(u(y,t—ilx—yl) —G)dy] de

+ﬁ/ [/Wx— (y,t—T)—@)dy}dT
becomes

oP oP
o +M3 +P

L T

+ ﬁ/o n(t) {/R W(z—y)H(P(y — ps7,t —7) — @)dy] dr.

Let
w=y -2y
C
Then
smw= =y 1+ 25—y = G-y [1+ Bsz-w)].
and
C
S i s SRR
and
c cp3 ,
dy = dw — z—w)s (z —w)dw.
e el P i 1 Lo e

Therefore, the above equation becomes

oP 9P
ot Moz

- /OOO <9 [/]R c+ S(zc— w)p3 r <C +C‘§(ZZ__Q2)“3>
- H <P (w,t M) 9) dw] de

+8 /0 h n(7) { /R W(z — pst —y)H(P(y,t — 7) — @)dy] dr.

The large traveling wave front is a stationary solution of this equation, that is

+8 "ot [ [ Wt = o7 O - @)dy} ar.
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The linearization of this nonlinear scalar integral differential equation with respect
to the large traveling wave front U = Ugont—3(2) is given by

% + M3% +p
:U'OEO) /OOO @ [C + SC(Z)M:a K (c + sfz)m,) p (0’ t= CJFLZ(Z)%)] de
* U/(BZ?,) /OOo n(r) [W(z = ps7 — Zs)p(Zs, t — 7)) d7.

Suppose that p(z,t) = exp(At)y(2) is a solution of this linear differential equation,
where ) is a complex number and 1) is a complex bounded continuously differentiable
function defined on R. Then we obtain the eigenvalue problem

psy’ + (A + 1)

:U’L(O) {/0“ < [C + Sc(z)u:a " (C + ScfZ)usﬂ op {_HA’S'(ZJ)M] dc} v

/B o0
+ U'(Zs) {/0 n(T)[W(z — pst — Zs) exp(AT)}dT} (N, Z3).

We define a family of linear differential operators £L(\) : C1(R) — CY(R) by
LV = —ps)" —

+ U’L(()) {/Ooo £() [04— SC(Z)M3K <C+ SC(ZZ)MBH P [_H);'(zfl)%] dc} Vi.0)

ﬂ oo
+ U(Z3) {/0 n(T)[W(z — pst — Z3) eXp()\T)]dT} V(N Zs).

For the first two small traveling wave fronts of (1.1]) , the associated linear differential
operators £1(A) : CH(R) — C%(R) and L2(\) : C1(R) — CY(R) are defined by

Li(NY = —md' =9

’ U/OEO) {/0OO §(e) L—i— sc(z),ulK <c+ sc(zz)mﬂ P [_H)(‘J(Zl)m} dc} ¥(A,0),
and
LoN) = —patp" —1p + U’/é()O) {/OOO n(T) [W(z — o) exp(—)n’)]dr} »(N,0),

respectively.

The associated linear differential operators Li(\) : CY(R) — C°(R) for the
stability analysis of the three traveling wave backs of may be defined very
similarly. The main difference is to replace U’(0) and U’(Zs) for the front of
with [U’(0)| and |U’(—Z3)] for the back of (1.2), respectively.

The essential spectrum of the linear differential operator L () is easy to find
by using ideas in John Evans [25] and it is given by

Uessential(ﬁk(/\)) = {)\ € C:Re) = —1}, k=1,2,3.

Define the open, simply connected domain = {A € C: Re\ > —1}.
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If there exists a complex number \g and there exists a complex valued bounded
continuous function g = ¥p(Ag, 2) on R, such that L£(Ao)g = Aoto, then Ag is
called an eigenvalue and g = (Mg, 2) is called an eigenfunction of the eigenvalue
problem.

Differentiating the following traveling wave equation

oo cz/(ct+s(z)us)
usU' +U :a/ &(e) / K(z)dz| de
0

— 0o

+8 /0 " n(r) [ /_ :“”_23 W(m)dm] ar,

with respect to z, we have

pall" + U = /oOO @ L + S(EZ)M:SK (C + gé)ﬂs)] ae
+ 5/000 n(r)W(z — pst — Zs)dr.

This means that Ay = 0 is an eigenvalue and g = U’(z) is an eigenfunction of the
eigenvalue problem.

3.2. The Linearized Stability Criterion

Theorem 3.1. (I) The nonlinear stability of a traveling wave front U = Ug(z)
of the nonlinear scalar integral differential equation is equivalent to the
linear stability.

(II) The traveling wave front U = Uy (z) of the nonlinear scalar integral differential
equation is exponentially stable, if max{ReX: X € o(Lr(N)), A # 0} <
—C% and Mo = 0 is algebraically simple, where (L (\)) denotes the spectrum
of Li(N\) and Cy > 0 is a positive constant, for all k =1,2,3.

(III) The traveling wave front U = Uk(z) of is unstable, if there exists an
eigenvalue Ao with positive real part or if the neutral eigenvalue A = 0 is not
simple.

Proof. It is standard and it is omitted. Please see [77]. O
We will not only study the eigenvalues and eigenfunctions of the eigenvalue
problem £(A)y = A, but also we will study the simplicity of the neutral eigenvalue

Ao = 0. Hence, let us study the solutions of a general eigenvalue problem L£(\)y) +
K = A, that is,

Ot 1y
o, € e (i) o [ aof v

U'(Z3) {/Ooo (1) [W(z = ps — Zs) exp(AT)}dT} (N, Z3) + K(2),

where k = k(z) is a complex bounded continuous function defined on R.
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3.3. The Solutions of the General Eigenvalue Problem

The main purpose of this subsection is to solve the general eigenvalue problem
LAY + k = M) for formal solutions and prepare to define the stability index
functions.

Theorem 3.2. (I) The solutions of the general eigenvalue problem L(A)p+rK = \ip
are given by

B, 2) = C(A) exp (_ At 1z>

2%

ol Ol mmmer (Gee)
o () < (s ) e def o

st oL e ()

- exp(—AT)W (z — psT — Zd)da:] dT}w(A Z3)

1 [~ A+1
+ — exp [ + (x — z)} k(z)dx,
3 J—oo M3

where C(\) is an appropriate complex constant to be determined later.

(II) The solution b = (A, z) of the general eigenvalue problem LAY + k = X\
is bounded on R if and only if C(\) =0

Proof. (I) The representation of the solutions follows from Lemma (in Sub-
section 4). (II) It is obviously true and the proof is omitted. O

Now, let us appropriately determine the complex constant C' (), which is closely
related to the construction of the stability index functions of the nonlinear scalar
integral differential equation (1.1J) .

For the case § = O, Z3 = 0, letting z = 0 in the formal solution of the general
eigenvalue problem L£(\)y) + k = A\, it is not difficult to find that

C\) = {1_;@,5/(0)/0005(0) U;M)exp (A;1x)
eXp( +A|< ;)% (HSM) o]
ugU, [ [ exp( +1 )exp(—)\T)W(x - pgT)dx} dT} $(0,0)
<OO/~03 ) wle)d
_{ MSU’ /0 e [

exp < A+ 1)C - u3x> exp (/\x> K(x)dx} de
clis c
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- ugUﬁl(O) /OOO n(r)e’ [/_ZST exp ()\; 1x) W(m)dx} dr} ¥(A,0)
LY L, (A + 19:) (z)da.

M3 J—oo M3

For the case 8 < ©, Z3 > 0, letting z = 0 and z = Z3 in the formal solution of the
general eigenvalue problem L£(\)y + k = A, respectively, we get

w0 =e0 i {60 [ oo ()
oo () & (it ) 4] ae oo
+ %Uﬁ(zg) {/Ooo n(r) [/_OOO exp (A; 1:1:) exp(=AT)W (z — pa — Zg)dx} dT}
(N Zs) + i /_OOO exp (A; 1:10) w(z)dz
—o0) + Mg;@){ /Ooog(c) [/_OOO exp (()\ + 1)6;5’9;)
exp (290) K(x)dx} dc}zp(A,o) + A%U/?(ZB) exp (A; 123>
. {/OOO n(r)e” V:Z exp <A; 13:) W(x)dx] dr} V(A Zs)

I A+1
+ —/ exp ( + x) k(z)dz,
M3 J oo 2%}

and

Y(\, Z3) = C(A) exp (—A/j;lzs) + MS;‘,(O) { /OOO £(c) {/_1 o Sim)u?’
exp <A; Lw- Zg)) exp <—c +2gm3> K <c - SCZ;)%) dx] dc}w(w)
st e (e 2 et

Z3
-W(x — psT — Zg)d$:| dT}dJ(}\, Z3)+ — / exp [A: !
oo 3

(At ) (2 (i s
IR o

I A+1
+— exp ( + x) k(z + Z3)dx.
M3 J oo H3

(z — 23)] k(z)dz
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Finally, by using these equations and by canceling out (), Z3), we obtain the
valuable equation

{1 - %UL(O) /OOO £(e) [/_OOO exp <()\ + 1)‘30_”’:3 x) exp (2@«) K(x)dm} dc}
. {1 _ %U/f(zg) /OOO n(r)er [/_;:T exp (A; 195) W(a:)dm] dT} ¥(),0)
A [0 | e (e )

oo () < (i ) oo oo}

. {%U?(ZS) exp (Alj;lzg) /0°° n(r)er [/usfzs exp (A; 1x)W(x)dx] dT}

—0o0

_ {O()\) + i /ZO ex: <)\;1x>fi(xjdx}
.{1 _ MBU/B(Z:%)/O n(r)er [/_OO exp (ﬁ;%) W(m)dx] dT}
+ {O()\) exp (_A:;lzg> + i /Ooo exp <>\;31x> K+ Zg)d:z:}

oo E—
. {[J,gU?(Z?,) exp ()‘; 1 Zg) /0 n(r)e” [/7 exp ()\';; 11.) W(z)dx} dT}~

oo

3.4. The Stability Index Functions

The main purpose of this subsection is to define the stability index functions (that
is, the Evans functions) in the right half complex plane = {\ € C : ReA > —1}
by using the above valuable equation.

Definition 3.1. Define the stability index functions for the first two small traveling

wave fronts of (1.1]) by

£ =1- mUL(O) /OOO £(0) U(; exp ((/\ + 1)0;:1 x) exp (233) K(a:)da:] de,
E2(0) =1 Mf/(o) /Ooo n(r)er U_:Texp (A;1x> W(ac)dac} dr,

in the open simply connected domain 2 = {\ € C: ReX > —1}.

Definition 3.2. (I) Define the stability index function for the large traveling wave
front of (1.1]) for the case § = © by

£3(0) =1 — MS;‘(O){/OOO 5(0)[/0 exp ((A+1)C;L’;3z) exp (i\x)K(x)dx} dc}

o0

_ u3£(0) { /OOO n(r)er {/O:STexp ()\le)W(x)dsc} dr},
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in the open simply connected domain Q = {\ € C: ReA > —1}.

(IT) Define the stability index function for the large traveling wave front of (1.1]) for
the case § < © by

&(\) = {1 Mg(j’f,(o) /Ooog(c){/o exp (A+1)C;:3x) exp (i\x)K(:c)dx}dc}

oo

(

. {1 _ m(f(zg) /Ooo n(r)er U:Texp (A;1x> W(x)dx] dT}
o o Zs C

- {AAU(O)/ € [/_oo e (- )

o (o) * () o] )

.{MSU?(ZS) exp ()\;123) /0°° U(T)BT{/:N—% exp (/\J;lx)W(x)dx} dr},

in the open simply connected domain 2 = {\ € C: Re\ > —1}.
3.5. The Compatible Solutions of the General Eigenvalue Prob-
lem

The main purpose of this subsection is to find the compatible solutions of the general
eigenvalue problem.

Definition 3.3. Define the following complex auxiliary functions in the open sim-
ply connected domain Q2 = {\ € C: ReA > —1}:

{3 ()
{0 [ e (]
; {,L /OOO exp (i%) "o+ Z3)dx}
Loz [Tawe [ [ e (A wader],
o= s o [ (2w
e itz [ [[ 7 e (5 ) wion]r)

1
- exp (—/\+ Z3> .
M3
The above valuable equation becomes
E3(N)Y(A,0) = C(NG(A) + F(A).

Therefore, we have appropriately determined the complex constant C'()):
_ &MYL0) — F

Gg(A) '

e
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Now, we find the compatible solutions of the general eigenvalue problem L(\)y+k =
YUK

u3

S, 0L s e (e 9)
) (i) s
+ MU?(Z?)) { /0 n(r)

. U exp (A e z)) exp(= M)W (2 — pis7 — Zg)dx} dT} WA, Z3)

3.6. The Properties of the Stability Index Functions

The main purpose of this subsection is to study the properties of the stability index
functions.

Theorem 3.3. (The relationships between the speed index functions and the sta-
bility index functions)

(I) The speed index function ¢1 = ¢1(u) and the stability index function £ = & (N\)
for the first small traveling wave front u(x,t) = Uont—1(z + p1t) of are
related through the mathematical equation

80 =1 5 (AT 1) '

(II) The speed index function ¢o = ¢2(u) and the stability index function 9 =
Es(N) for the second small traveling wave front w(xz,t) = Ugont—2(x + uat) of
are related through the mathematical equation

G =1 o (Auf 1) |

(III) The speed index functions ¢1 = ¢1(w) and ¢ = ¢2(p) and the stability index
function E5 = E5(N) for the large traveling wave front u(z,t) = Ugons—3(z +
ust) of for the case 0 = © are related through the mathematical equation

1 3 ) 1 ( 3 )
EsN)=1-— — .
s ¢1(M3)¢1 <A+1 ¢2(M3)¢2 A+1
(IV) The speed index functions ¢1 = ¢1(u) and ¢o = ¢2(u) and the stability index

function E5 = E3(\) for the large traveling wave front u(x,t) = Ugont—3(z +
ust) of for the case 8 < © are related through the mathematical equation

(N =1- ¢1(1M3)¢1 (x\/jrg1> - ¢2(1M3)¢2 </\lf1> .
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Proof. This is easy to prove by using Definitions O

Theorem 3.4. (The properties of the stability index functions) The following state-
ments are correct, for all positive integers k =1,2,3.

(I) The stability index functions & = E1(N), &2 = E(N) and E = E3(N) are
complex analytic functions of A € Q and they are real-valued if X is real.

(II) The complex number \g is an eigenvalue of the eigenvalue problem Ly (M) =
A if and only if Ao is a zero of the stability index function &, = Ek(N), that
is, Ex(Mo) = 0. In particular, E,(0) = 0.

(III) The algebraic multiplicity of any eigenvalue Mg of the eigenvalue problem
LM = M\ is equal to the order of Ao as a zero of the stability index
function Ek(N).

(IV) The stability index functions & = E1(N), €2 = E2(N) and E3 = E3(\) enjoy
the following limit

lim &(\) =1,

A |00

in the right half plane {A € C: ReA > 0}.
(V) There hold the following results on the imaginary axis:

sup |E(N)] =1, sup |1 — E(N)| = 1.
A€iR A€iR

(VI) The real parts of the stability index functions enjoy the estimate
Reé’k()\) > Reé’k(O) =0,

forall X € C, A # 0, ReX > 0 and |\| < ¢y, for some positive constant ¢ > 0.

(VII) There exists no nonzero eigenvalue of L (A = M\ in the right half complex
plane {\ € C: ReX > 0} for the traveling wave front u(z,t) = U(x + uit) of
(1.1). (VII) The derivative of the stability index function &, = Ex(N) at
o = 0 is positive, that is, E,'(0) > 0.

Proof. The proofs of (I), (II), (III), (IV) are standard and omitted. Please see [77].
The proof of (V) follows from Van Der Corput Lemma in [63]. The proofs of (VI),
(VII) and (VIII) follow from Lemma and Lemma (in Section 4). In the
general eigenvalue problem L(A)Y + k = A\, letting A = 0 and k(z) = U'(2), we
find that all solutions of the eigenvalue problem £(0)y 4+ U’(z) = 0 are unbounded
on R. Therefore, A = 0 is a simple eigenvalue. O

3.7. The Completion of the Stability Analysis

The proof of Theorem It is finished by coupling together the results of
Theorem Theorem [3.3] and Theorem O

The proof of Theorem 1.4} The main ideas in the rigorous mathematical analysis
of the stability of the large traveling wave back of are the same as those in the
proof of Theorem All technical details are very similar. The main difference is
to replace U{,,,(0) and Uf,....(Z3) by |Ul,.(0)] and |U}, .. (—Z3)|, respectively. O
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4. Conclusion

4.1. Summary

We study the following nonlinear scalar integral differential equations

G vu=a [ e | [ K- (u(ne-To-ul) -0) a ac

w8 [Tat) | [ W -G - 1) - o)y ar

% v [ (s - o) )

8 [T | [ W - -7 - o)y ar - .

and

arising from synaptically coupled neuronal networks. We have accomplished the
existence and stability of the traveling wave solutions of these model equations.
Additionally, we have found sufficient conditions the neurobiological mechanisms
(represented by the synaptic couplings, by the probability density functions, by the
synaptic rate constants and by the thresholds) must satisfy, so that the traveling
wave fronts of and the traveling wave backs of exist. The rigorous math-
ematical analysis of the traveling wave solutions of these nonlinear scalar integral
differential equations involves many new methods and techniques.

For equation , we construct speed index functions and stability index func-
tions. We built valuable relationships between the speed index functions and the
stability index functions. These stability index functions are very important to es-
tablish the exponential stability of the traveling wave fronts of equation and
the traveling wave backs of equation (L.2]).

Nonlinear scalar reaction diffusion equations may support stable traveling wave
fronts, see [113[/4,/13]. Nonlinear singularly perturbed systems of reaction diffusion
equations support fast stable traveling pulse solutions and slow unstable traveling
pulse solutions, see [41,/57,/58]. These results are similar to our main results -
Theorem [1.1], Theorem [1.2] Theorem Theorem [1.4] Theorem [4.2] (without proof,
please see the next subsection).

Neurobiologists have found spiral waves in neuronal networks, see [32,|71,(72].
However, except for some numerical results [44], there has been no rigorous math-
ematical theory to explain or support the existence and stability of spiral waves.
Mathematicians have discovered lurching waves in neuronal networks [68]. Up to
today, there has been no corresponding mathematical theory to study the exis-
tence and stability of the lurching waves. These are important open problems in
mathematical neuroscience worth of rigorous mathematical analysis.

4.2. Some Related Results

We present some interesting results related to the nonlinear scalar integral differ-
ential equation ([1.1)) and to the nonlinear singularly perturbed system of integral

differential equations (|1.3))-(1.4)).
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Theorem 4.1. Suppose that the assumptions (1.9 (u) (-) hold. If &€ > 0 almost
everywhere on some open interval (0,co), for a positive constant ¢y > 0, then there
exists only standing wave fronts to the nonlinear scalar integral differential equation
. In another word, if there exists a traveling wave front with a positive wave
speed o to the nonlinear scalar integral differential equation , then & =
almost everywhere on (0, cy), for some positive constant co > 0.

Proof. Suppose that there exists a traveling wave front u(z,t) = U(z + pot) to
the nonlinear scalar integral differential equation

00 [0t (s (- Y- l) )]
5 [ | [ Wi -ttt - ) - )] ar

where g > 0 represents the wave speed and z = = + pot represents a moving coor-
dinate. Then the traveling wave front and the wave speed g satisfy the equation

w040 =a [ e | [ K-t (U (521~ 4l) - 0) ay] ac
0 R
5 [ | [ Wi - pH - o) - )1y
0 R
Suppose that the traveling wave front meets the boundary conditions

lim U(z) =0, lim U(z) =a+ 8, lim U'(z) =

zZ——00 zZ—00 z—+o0

Suppose that U < 6 on (—o0,0), U(0) =60, U’(0) > 0and U > 6 on (0, 0). Suppose
also that U < © on (—00, Zy), U(Zy) = O, U'(Zp) > 0 and U > O on (Zy, o0), for
some nonnegative constant Zy > 0, to be determined later. As before, Zy = 0 if
0 =0 and Z; > 0 if 6 < ©. Now, for the first integral, we have

a/mf( /Q(z— (y—ng—m)—@dgdc
—a/ £(c /Q(z— U(y——fz— )—@dydc
+a/ g% /j(z— H(U(y—gﬁz—w) )d@dc
= QQJA H’U(y |zfy079)@{dc

+ o Mf()/ K(z—y H(U(y—|z—y|)—0>dy]dc

0

+a Oﬂog(c) /Z K(z—y)H (U (y—%|z—y|) —0) dy} de.

We will simplify the last three integrals by using three cases. (I) Let 0 < pg < c.
Let

w—y—gﬂz—w



50 L. H. Zhang & A. Hutt

Then
gy
(s HO oy
= (=) [1+ s —y)]
(s HO oy
=(z—vy) [14— Cs(z w)}
Hence
c
Y= c—l—s(z—w)uo(z_w)’
and
c cho ,
dy = dw — — — w)dw.
e ) T e o T At et

Therefore, we have
/RK(Z—y)H (U(y— %‘)\z—yI) —9) dy
N /RO: + S(ZC— W)MOK <C +C£fziw°3)ﬂo> HUw) = O)dw
| e ()

cz/(c+s(2)mo0)
:/ K(x)dzx,

— 00
where
c
= z—w),
c+s(z — w)uo( )
and
c Clho /
de = —————dw + z—w)s (z —w)dw.
TR T s T A
(IT) Let po > c and 2z > y. Let
w=y— "z _y.
c
Then
sy By
Ho
= (=) [1+ 2 - y)]
=(z—vy) [1—|—%s(z—w)} .
Hence

C

e P

z—y=



Traveling wave solutions in neuronal networks

51

and
_ c B cto N
dy = PSR P dw et 50 — )l (z —w)s'(z — w)dw.
Moreover
C K(s— _Ho ) -
/_OOK(Z y)H (U (y 1z yl) 9) dy
i c c(z —w)
= K H —0)d
|e— (c+dz—mm) (O] = O)dw
:H(z)/ ¢ K ( oz = w) > dw
0 ¢+ s(z—w)uo ¢+ s(z —w)po
cz/(c+s(2) o)
:H(z)/ K(z)dz,
0
where
c
SR e
and
c Clo

dx =

—————dw+
¢+ 5(z —w)po e+ s(z — w)po)]?
(IIT) Let po > c and z < y. Let

Ko
w=y =2z —yl

Then
S TR
— (s Ho (., _
=(z—v) [1+ -5z y)}
(s _Ho
=(z—y) [1 - s(z w)} .
Hence
z— = ;(z—w)
YT T oo ’
and
c Clo /
dy = dw + z—w)s (z —w)dw.
R e e PR EA A
Moreover

’ ¢ e(z —w)
:/*oo c—s(z— W)MOK (C —s(z — W)ﬂo> H{U ) = f)dw

=H(z) /OZ c— S(ZC— w)MOK (C —CS((ZZ_—WLE)MJ w

0
=H(2) / K(z)dz,
ez /(e=s(=)po)

(z —w)s'(z — w)dw.
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where
C
i e A
and
c Cllo /
e Yl e e wn SRR LAY

Now the first integral in the traveling wave equation becomes
a/ &(e) [/K(zy)H(U(yMCOLzyDG)dy]dc
0 R

oo cz/(c+s(2)po)
:a/ﬂo &(e) [/_Oo ' K(x)da:} de

Ho cz/(c+s(z)po)
—|—a/0 &(c) [H(z)/o K(x)dx] de

Ho 0
a c) | H(z K(z)dz| de.
+ /0 5( )l ( )/cz/(cs(Z)MO) ( ) ]

Now the above traveling wave equation becomes

oo cz/(c+s(z)po)
MOU’—&—U:a/ £(e) / K(z)dz| de

Ho —0o0

Ko cz/(c+s(z)po)
+a (o) H(z)/ K(x)dz| de
0 0

o 0
+ &(c) H(z)/ K(ac)dx] de

0 z/(c—s(2)po)

+5/OOO n(r) /Z_W_ZO W(x)dx] dr.

—0o0

This is a first order nonhomogeneous linear differential equation. Solving it by using
the method of integrating factor, we obtain the solution

V) —a /:o ) [ /cz/(c+8(z)H0) K(I)dxl N

0 —0oQ

Ho [ cz/(c+s(z)po)
o o) |HE) / K (2)dz | de
0 0

Ho 0
+a &(e) H(z)/ K(x)dac] de
c2/(e= (=)o)

o] z—poT—2o
+ 8 n(T) / W(ac)da:] dr

0 —0o0
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- /:’ @ [/_; P (xu_oz) c+ SEI)MOK (C + 5?@”)#0) dx} de
- a/o O ) |:/Zoo P (xﬂ_oz> H(x)c+ s x)MoK <C+ s(xﬂf)/m) dm} de
" a/o <@ Uoo P (xu—o»2> H@) = x)uoK (C - géﬁ)ﬂo) dx} e

) z—poT—2o _
— Bexp (i(j) /0 n(r)e” [/_DO exp xuoz) W(m)dx] dr.

Setting z = 0 and z = Zy, U(0) = 6 and U(Zy) = O, respectively, we have the
system of compatible equations

o [Teo [ xen]aces [T [
co[Teo [ e () w0 Z o] e
— Bexp (i?) /OOO n(r)e” [ S exp (;) ] dr =0,

0 cZo/(c+s(Zo)po)
a/ &(e) / K(z)dz| de
Ho —00

/CZO/(CJrS(ZO)HO)

(
(

—poT— Zo

)dx] dr

va [ e | H(20)

K(x)dx] de
0 0

va [ e B2 / K(x)dx] de

0 Zo/(c—5(Zo) o)
0o uoT
+5/ n(r) }dT
0

/.

_O‘/:£< /iexp x_Z(J)c+s§x)u0K(c+gfw)uo>dxl «
/
/

o [V m_ZO)H(x)c+si )Ho (C+5 ) 1
x— Zy

0
+a/0w§(c) o 110 )H(x)c—;l‘)uo (C_S > ]

von () [0 [ o (52 o

Of course, there exists no solution to this system of compatible equations, unless
& =0on (0,c). This is a contradiction to the initial assumption that there exists
a traveling wave front. Therefore, there exists no such traveling wave solution
u(x,t) = U(z + pot) with a positive wave speed o > 0. The proof of Theorem
is finished. O
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@
»
o
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Theorem 4.2. Suppose that the assumptions (1.5 (w ' hold. There exist three
fast exponentially stable fast traveling pulse solutions

(u(z,t), w(x,1)) = (Utast—putse (€, *), Wrast—pulse (€, *))
to the nonlinear singularly perturbed system of integral differential equations -
.
(I) The first traveling pulse solution
(u(z, 1), w(x, 1)) = (Upuise-1(&; ), Wputse-1(€, -))
satisfies the following traveling wave equations and boundary conditions

( )U1/+U1+W1

/ [/K z—y)H (U (y — H10(5)|z—y|) —H)dy}dc,

pi(e)Wy' = e(Uy —yWh),
im (U1(2), Wa(2)) = (0,0), lim (Uy/(2), W1'(2)) = (0,0),

z—+oo

where z = x + p1(e)t. Additionally, there exists a unique positive constant
Zpuise—1(€) > 0, such that Uy(e,0) = 0 and Ui (e, Zpuise—1(€)) =6, Uy > 6 on
(0, Zpuise—1(€)) and Uy < 8 on (—00,0) U (Zpuige—1(€),00).

(II) The second traveling pulse solution
(u(xa t)7 U)(l‘, t)) = (Upulse—2<57 ')7 Wpulse—2(57 ))

satisfies the following traveling wave equations and boundary conditions

p2(e)Us" + Us + Wo ZB/OOO [/W (z —y)H(Us(y — pa2(e)t) — ©)dy | dT,

pa(e)Wo' = (U — yWa),
Jim (U5(2), Wal2) = (0.0)._lim_(0/(2). () = (0.0,

where z = x + po(e)t. Additionally, there exists a unique positive constant
Zouise—2(€) > 0, such that Uz(e,0) = © and Us(e, Zpuse—2(¢)) = O, Uy > ©
on (0, Zpuise—2(€)) and Uz < © on (—00,0) U (Zpuise—2(€), 00).

(III) The large traveling pulse solution
(u(x, t)a U)(ZL’, t)) = (Upulsc—3 (57 '), Wpulsc—S(Ea ))
satisfies the following traveling wave equations and boundary conditions

13(€)Us" + Uz + W

—a [ o] KGe-ypH (U (y—"221—y)) —0) dy| de
R Gl O RO

+5/ [/Wz— H(Us(y - ps(e)7) — @)dy} dar,
=¢e(Us — yWs),
hm( AL Wa(2) = (0,0, Tim (Us'(2), Wy'(2) = (0,0),

z—*+o0 z—+too
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where z = x + us(e)t. Additionally, there exist three positive constants I'(e) >
0, A(e) > 0 and Zpuise—3(e) > 0, such that Us(e,0) = 0 and Us(e, Zpuise—3(€)) =
0, Us > 0 on (0, Zpuise—3(€)) and Us < 6 on (—00,0) U (Zpuise—3(€), 00); sim-
ilarly, Us(T'(e)) = © and Us(A(e)) = ©, Uz > © on (T'(e),A(e)) and Us < ©
on (—o0,T'(e)) U (A(g), 00).

Proof. The results in Theorem [£:2] will be accomplished in another paper. O

5. Appendix - Some Technical Lemmas

The following technical lemmas have been used in this paper.

Lemma 5.1. Let a >0, 8 > 0 and p > 0 be positive constants, let X be a complex
constant, such that ReA > —1.

(I) Suppose that Ny = Ni(z) and No = Na(z) are at least piecewise smooth func-
tions defined on R, such that

zgr_noo Ni(z) =0, Zliglo Ni(z) =1, Zlirinoo Ny (2) =0,
zEr_noo NZ(Z) =0, zli)rgo NZ(Z) =1 Zl}rinoo N2/(z) =0

Then the following boundary value problem

pU’' +U = aNy(z) + BNa(2),
lim U(z) =0, lim U(z) = a+ B,

zZ——00 zZ—00

has the bounded solution

U(z) —alNi (2) + BNa(z) — a/z exp (‘T ; Z) Ny ()dz

— 00

_ ﬁ/z exp (:17 /: Z> No'(z)dx,
U'(2) =% /; exp <x ; Z) Ny (z)dz + i/; exp (x /: Z) No'(z)da.

(ITI) Suppose that k = k(z), Ny = N1(A, z) and N2 = Na(A, z) are complex at least
piecewise smooth functions of z defined on R, such that

lim Ni(\ z) =0, lim Na(A z) =0,
Z——00 Z—>— 00

_ON ANy,
Jm 5, X2 =0, Jim 5 (A2) =0

Then the following boundary value problem

l“p/ + ()‘ + 1) = aNi(A, ZW()\’ 0) + ﬁNQ(/\7 2P\, Z) + K(2),
lim (A z) =0,

Z——00
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has the formal solution

YA, z) =C(\) exp

<_

A+1

)

A+1

I

+ % {/_; exp p (z — z) N1()\,x)dx} ¥(A,0)
+ g {/_; exp )\:1(:15 — z) Nz()\,x)dx} Y(\, Z)
+ i {/_; exp %(w — z) ﬁ(x)dx} .

Proof. The proof of (I) is simple and is omitted. Let us prove the result in (II).
Multiplying the differential equation by the integrating factor exp (%z), we

have
= {uexp (“ 12) w,z)}
—avexp <A + 1z) Ni(A, 2)0 (A, 0)
+ Bexp (A + 12) No(, 2)0(\, Z) + exp (A * 12’) k(2).
Integrating this equation with respect to z from —oo, we get
pexp (Ajlz> B(A2)
—uC(\) + a {/ exp (A + 13:) Nl()\,:c)dx} B\, 0)
+8 {/ exp (A * 13:) Ng()\,x)dx} v\ Z) + / exp (A + 13:) () da,

where C'(\) is a complex constant. Finally, we obtain the formal solution

—=C(\) exp ( z) 2

St Lo

z |:A+
exXp

1
8
w /o
The proof of Lemma [5.1] is finished.
Lemma 5.2. Let (1, Z) = (3, Z3).

(I) If there exists a real number z1, such that the large traveling wave front of

equation satisfies U(z1) = 0, then U'(z1) > 0. If there exists a real
number zo, such that the large traveling wave front of equation satisfies

U(zz) = ©, then U'(z2) > 0.

P(X, 2)
A+1

oo
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(IX) If there exists a real number z3, such that the large traveling wave back of
equation satisfies U(zs) = 0, then U'(z3) < 0. If there exists a real
number z4, such that the large traveling wave back of equation satisfies
U(z4) = ©, then U'(z4) < 0.

Proof. Suppose that there exist real numbers z; and zs, such that the large trav-
eling wave front crosses the thresholds at these points, namely, U(z1) = 6 and
U(z2) = ©, respectively. Then we find the derivatives

Vi) :% /O°° ‘@ U_m P (x ;3Z1> c+ Siw)us " (C + ::fxms) dx} ae
+ %exp (52) /O T e l [ :WZ3 exp <‘”” ;321> W(x)dx] dr

a [ cz1/(c+s(z1)ps)
=— &(c) / K(z)dz| de
3 Jo —oo

+ £ /000 n(T) [/ZI#ST% W(x)dx] dr — i >0,

— 00

U'(e) :% /O°° {© U:o P (x /:322> c+ Siw)us r <c + zéﬂx)ua) dm} de
4 %exp (ii) /O T e [ /_ Z;_W% exp (”““ ;3’"2> W(a )dx] dr

a S cza [(c+s(z2)pu3)
& £(c) / K(z)dz| de
0

"3 —o00

oo Zo—pu3T—2Z3
+ ﬁ/ n(T) [/ W(x)dm] dr — ° > 0.
K3 Jo —co H3

Suppose that there exist real numbers z3 and z4, such that the large traveling wave
back crosses the thresholds at these points, namely, U(z3) = 6 and U(z4) = O,
respectively. Then we find the derivatives

[ P ( ;323> c+ 3((:»”5)#3[( (C+ gzﬂ)%) dx] ae
- 2o (u) l/jw_zg exp (x ;3Z3> W(x)dx] dr

=— &(c) / K(z)dz| de
K3 Jo cz3/(c+s(z3)ps3)

+5/°°n<7)[/:° W(m)dx}d7—9+w3<0,

3—[H3T—23 M3

U'lea) =~ % 0°° @ [/; P <x usz4> c+ Sc(x)usK (c + gfxmg) dx] de

6 3 o) 7— 24— pu3T—23 T — 2
- gexp (/%)/0 n(r)e [/_OO exp( o )W(x)dx] dr
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-2 &(e) / K(z)dz| de
K3 Jo czq/(c+s(za)p3)

+53/000n(7)[/:0 W(x)dx}d7—6+w3<0.

4—p3T—2Z3 M3

In particular, for the large traveling wave front, we have

U'(0) :% /OOO £(c) UOOO exp <CC_M§3 m> K(x)dx} de
+ %exp (ij) /OOO n(r)e” V_:N_ZS exp (;) W(x)dx] dr

:i {0‘ : S _y_ g/ooo n(7) UOMSTZS W(m)dx} dT} >0,

and

Zs T — s c cr
i3 /_oo P ( I ) cHs@ms <C+ S(JJ)us) dx} i
8o (2 [ yimrer [ 7 wep (22
+ ” exp (M3> /0 n(r)e {/_OO exp ( ” ) W(x)da:] dr

1 [a+8 = Zs (cts(Zs)us)
MB{ D) —®+a/0 5(0)[/0 K(z)dz| de

LA [/0 W(x)dx} dr > 0.

M3 Jo —p3T—Z3

U (25) =2 / T e

The proof of Lemma [5.2] is finished. O

Lemma 5.3. Suppose that the function U = U(z) satisfies the conditions U(a) = 0
and U'(a) > 0, U(z) # 0, for all z # a, where a is a real constant. Then for all
real functions K, k and P defined in R, if neglecting higher order terms and only
keeping linear term, then we have

/ K(y)H(P(y) — 0)dy — / K(y)H(U(y) - 6)dy
R R
_K(a)

(o [P(@) ~ Uta)],

U/
/ K(y)H(P(y, 5(y)) — )dy — / K(y)H(U(y) — 6)dy
R R

K@
U'(a)

[P(a,r(a)) — U(a)].

Proof. Without loss of generality, let U’ > 0 on R. Let r = U(z) — 0. Then
the inverse function z = V(r) exists, such that r = U(V(r)) — 0 for all r and
z = V(U(z) — 0) for all z. Moreover V(0) = a because U(a) = §. Furthermore,
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dr = U’(z)dz, hence dz = U,l(z) dr = U,(é(r))dr. Therefore, we have
[ K -0y - [ K HE) - 0)dy
R R

~ / K(y)H'(U(y) ~ 6)[P(y) — U(y)]dy

VD ) - v
~ [ D) [Py - vV ()a
CEWO) o) IO
=Ty LV O) U O)] = gy [Pla) - Ul@)].
The second approximation may be proved similarly. The proof of Lemma [5.3] is
finished now. B

Lemma 5.4. Suppose that £ = E(N) is a complezx analytic function defined in the
open simply connected domain Q@ = {\ € C: Re\ > —1} in the complex plane C.
If |E(N)] attains a global mazimum at some interior point Ao € Q, then E(N) is a
constant function in €.

Proof. We write the complex analytic function as
EN) = Breal(N) + iBimag(\), A=z +iy,

where Erea1(A) and Eimag(A) are the real part and the imaginary part of the complex
analytic function £()\), respectively. As real harmonic functions of the real variables
x and y, both parts satisfy the mean value formula:

Ereat(Xo) = [ / Ereal(/\)dA] / [ / 1d>\] ,
B(Xo,R) B(Xo,R)

) [ [ W] |

for all B(Ag,R) = {A € C: |A— Xo| < R} C Q. See Evans [26]. Therefore, the
complex analytic function €& = £(\) also satisfies the mean value formula:

[ e /l / m],
B(Xo,R) B(Xo,R)

for all B(Ag, R) = {\ € C: |A=Xo| < R} C Q, where the complex integral is defined
by

Eimag(Ao) = l/ Eimag(A)dA
B(Ao, 1)

E(Xo) =

/ EN)dA = / Erea(N)dady + i / Eimag (V) dzdy.
B(Xo,R) B(Xo,R) B(Xo,R)

If [E(No)| = suprep(r,r) IE(N)], that is, [E(A)| attains a local maximum at an
interior point Ag € €2, then it is easy to see that

E0)] < [ / -, |5<A>dA] / [ /| -, m] < 1E00)l

Hence, |E(N)| = |E(Xo)|, for all A € B(Ag, R). Recall that the domain € is connected.
Therefore, [E(A)| = |E(Xo)| and E(A) = E(Xo), for all A € Q. The proof of Lemma
.4l is finished. O
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Lemma 5.5. Suppose that £ = E(N) is a complezx analytic function defined in the
right half complex plane Q = {\ € C: ReX > —1}.

(I) Suppose that £(0) =0, and

Sm [E()] =1, m [1-£()] =0,
sup|E(N)| =1, sup |1 —E(N)| =1.
iR iR

Then 0 < |E(A)] <1 in {\ € C: ReX > 0}.

(II) Suppose that E(A) = FEreal(A) + iEimag(A). Suppose also that Eyea(0) <
Erea1(N), for all X # 0 with ReXA > 0 and |A| < cg, for some positive con-
stant co > 0, and that Eimag' (0) = 0. Then

&'(0) > 0.

Proof. (I) Clearly, £()) is not a constant function. Thus, both |E(A)| and [1-E(N)|
cannot attain a global maximum in . In another word, the global maximum of
|E(A)| and |[1—E(A)| can only be attained on the boundary of 2. Since sup |E(A\)| =1
and sup |1 — £(N\)| = 1 over the boundary of the open simply connected domain €2,
we see |E(A)] < 1and |1 —E&(N)| < 1 inside Q. Additionally, we have the estimates

-] < [1-EM)| <1,
for all A with ReX > 0. Therefore, we find that
0<|EN)] < 1.
(II) We have
E'(0) = Ereal’ (0) 4 iEimag (0) = Ereal’(0) > 0.

The proof of the last inequality Eyca’(0) > 0 follows from the assumption and the
Hopf Lemma [26]. The proof of Lemma [5.5] is finished. O

Lemma 5.6. Suppose that the kernel function K satisfies the following conditions

K(z)| < Cexp(—pl|z]), onR,

/K =1, /K

for two positive constants C > 0 and p > 0. Then there holds the following estimate

‘/_OOO b (A:lf) K(z)dz| < /_OOO K(x)dz

for all positive constants p > 0 and for all complex constants A # 0 with Re\ > 0.

Proof. First of all, the estimate is correct for nonnegative kernel functions K > 0
satisfying the above conditions. Second, the estimate is correct for all rapidly
decreasing functions K € ®, where

® = {K € C®(R) : sup [exp(p|z|*)|K (z)|] < oo, for some positive constant p > 0}.
Tz€R
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Actually, let p > 0 be a positive parameter and let z be a real number. By using

integration by parts for M times, we have
0
/ exp(px + izz) K (z)dx
—0o0

0
:/ exp(px—i—mz [ / K1) dyl]

— 00

—exp(px—l—mz / Ky dyl}

— 00

+ (p+iz) /0 exp(pz + ixz) /0 K(yl)dyl}dx

— 00

0
:(p+iz)/ exp(px + izz) [/ K(y1) dyl] dx

0
=(p+ iz)/ exp(pr + irz) / K(?ﬂ)dyldyz] dx
Y2

—00

|
= (p +i2) exp(pzx + izz { [/yo K(y dyl} dyz}

+ (p+iz)2/

0

— 00

0 0
exp(pzx + izz) / { K(y dyl} dyg} dz
—o0

:(p+iz)2/0 exp(pz + izz) {/LO Uy K(yl)dyl] dyz}dx — ...

— 00

0
=(p+iz)" / exp(px + izz)

— 00

0 0 0 0
: {/ / [ : / K (y1)dydys - - } dil/M1dyM} dz.
z Ym Y3 J Y2

Note that for all real numbers z, there holds the following estimate

0 0 (0 0 (0
‘/ exp(px + izz) {/ / [ : / K(y1)dy:1dys - - } dyM—ldyM} dz
—o0 r JYm Y Y2
0 0 (0 0 (0 ’
<[ oot ([ [ o o]
—o0 z JYm Y3 Jy2

Therefore, we have the estimate

‘/0 exp(pr + ixz) K (x)dx

’(p—i—lz M/ exp(pzx + izz)

{// [ / K (y1)dy1dys - -]dyMldyM}dw
Ym Y3 J Y2
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’ p+1z / eXp pa:

{/0 /yM [ /y3 y K(y1)dydys -- ]dyM 1dyM}dx
|(p4[—)12> [mK(x)dz

Letting p — oo, we get the estimate

‘ / " exp(inn) K (2)de

— 00

< ‘/OOO K (2)dz] .

Note that ® is dense in L!(R). For any kernel function satisfying the assumptions
in Lemma there exists a sequence of rapidly decreasing functions {K; : [ =
1,2,3,---} C ®, such that

<[ e

L. exp(

hm ‘/ | K (x (z)|dx

)Kl d:v

= 0.

Let | — oo, we finish the proof of the estimate in Lemma [5.6] O

5.1. The Nonlinear Scalar Integral Differential Equations and
the Nonlinear Singularly Perturbed Systems of Integral
Differential Equations Generalized by (1.1)) and (1.3)) -

(1.4)

The nonlinear scalar integral differential equations (|1.1)) and the nonlinear singularly
perturbed system of integral differential equations (|1.3)) -(1.4) arise from synapti-
cally coupled neuronal networks. They generalize the following model equations

7+U—Oz/K1’— (u(y,t) — 0)dy.

& ru=a / K(x— y)H(u(y.t) — 0)dy + 5 / W e — y)H (u(y,t) — ©)dy.

%—Fu—l—w—a/l{x— (u(y,t) — 0)dy,
w =e(u —yw)

ot v

i+u+w—a/Kx— (u(y,t) — 0)dy
ot

+5/Wx— (u(y. 1) — ©)dy,

ow

— =¢e(u —yw).
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a——l—u—&—w—a/Kx— (u(y,t—lm—y>—9>dy,
ot c
ow

= e(u — yw).

ot

%+u+w—a/ &(c) URK(x—y)H@(y,t—ilx—yI) —9>dy] de,

ow

o= e(u — yw).

0 0
a—?—&—u—f—wzﬁ/W(sc—y)H(u(yJ—T)—@)dy, a—?zs(u—'yw).

—+u+w_ / {/RW(z—y)H(u(y,t—T)—@)dy} dr,

= e(u — yw).

at

%—i—u—&—w—a/Kx— ( <y,t—x—y> )dy

+5/Wx— (u(y,t — ) — ©)dy,
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