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BIFURCATIONS OF PERIODIC SOLUTIONS
AND CHAOS IN DUFFING-VAN DER POL

EQUATION WITH ONE EXTERNAL
FORCING∗

Zhiyan Yang1, Tao Jiang1,† and Zhujun Jing2

Abstract The Duffing-Van der Pol equation with fifth nonlinear-restoring
force and one external forcing term is investigated in detail: the existence
and bifurcations of harmonic and second-order subharmonic, and third-order
subharmonic, third-order superharmonic and m-order subharmonic under s-
mall perturbations are obtained by using second-order averaging method and
subharmonic Melnikov function; the threshold values of existence of chaot-
ic motion are obtained by using Melnikov method. The numerical simula-
tion results including the influences of periodic and quasi-periodic and all
parameters exhibit more new complex dynamical behaviors. We show that
the reverse period-doubling bifurcation to chaos, period-doubling bifurcation
to chaos, quasi-periodic orbits route to chaos, onset of chaos, and chaos
suddenly disappearing, and chaos suddenly converting to period orbits, d-
ifferent chaotic regions with a great abundance of periodic windows (peri-
ods:1,2,3,4,5,7,9,10,13,15,17,19,21,25,29,31,37,41, and so on), and more wide
period-one window, and varied chaotic attractors including small size and
maximum Lyapunov exponent approximate to zero but positive, and the
symmetry-breaking of periodic orbits. In particular, the system can leave
chaotic region to periodic motion by adjusting the parameters p, β, γ, f and
ω, which can be considered as a control strategy.
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1. Introduction

In this paper, we consider the following Duffing-Van der Pol (DVP) equation with
fifth nonlinear force and one external forcing

ẍ+ p(x2 − 1)ẋ+ ω2
0x+ βx3 + γx5 = f cosωt, (1.1)
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where p, ω0, β, γ, f, ω are real parameters. Physically, p can be regarded as dissipa-
tion or damping, β and γ are the strength of nonlinearity, f and ω as the amplitude
and frequency of the external force.

The Duffing equation (i.e.,p = 0 in (1.1)) and Van der Pol equation (i.e., β =
0, γ = 0 in (1.1)) have been extensively studied from analytical and numerical
investigations. The bifurcations of periodic solution, bifurcation structures and
chaotic behaviors with complex period windows are shown in [2,5, 6, 10, 22,25].

The Duffing-Van der Pol equation is a combination of Duffing and Van der
Pol equations and has application in the simulation of nonlinear oscillation sys-
tems [9, 20]. The dynamical behaviors of the Duffing-Van der Pol equation as the
parameters varying are considered in [8, 14, 15, 19]. In the previously work [7], we
investigate the Duffing-Van der Pol equation with two external forcings, and give
the threshold values of existence of chaos under the periodic perturbation, and the
criterion of existence of chaos in averaged system under quasi-periodic perturbation
for ω2 = nω1 + ϵσ, n = 1, 3, 5, and can’t prove the criterion of existence of chaos in
second-order averaged system under quasi-periodic perturbation for ω2 = nω1+ ϵσ,
n = 2, 4, 6, 7, 8, 9, 10, where σ is not rational to ω1, and obtain rich dynamical be-
haviors by numerical simulations. In this paper, the bifurcations of periodic orbits,
and chaos for (1.1) are investigated by using second-order averaging method and
Melnikov methods in [1, 3–5, 11–13, 16–18, 21, 23, 24]. We give the existence and
bifurcations of harmonics and second-order subharmonic, and third-order subhar-
monic, third-order superharmonic and m-order subharmonic under small perturba-
tions, and the criterion of existence of chaos. We also give numerical simulations
including bifurcation diagrams of fixed points and system, computation of maxi-
mum Lyapunov exponents, phase portraits, and Poincaré map, and consider the
influences of periodic and quasi-periodic and all parameters. We show that the
reverse period-doubling bifurcation to chaos, period-doubling bifurcation to chaos,
quasi-period route to chaos, onset of chaos, and chaos suddenly disappearing and
chaos suddenly converting to period orbits, different chaotic regions with a great
abundance of periodic windows (periods: 1, 2, 3, 4, 5, 7, 9, 10, 13, 15, 17, 19, 21,
25, 29, 31, 37, 41, and so on), and more wide period-one window, and varied chaotic
attractors including small size and maximum Lyapunov exponent approximate to
zero but positive, and the symmetry-breaking of periodic orbits. In particular, the
system can leave chaotic region to periodic motion by adjusting the parameters
p, β, γ, f and ω, which can be considered as a control strategy.

The paper is organized as follows. Analytical results for the conditions of ex-
istence and bifurcations of harmonic and second-order subharmonics are given in
section 2 and 3, respectively. In section 4, we provide the conditions of existence and
bifurcation for the third-order subharmonic resonance. In section 5, the criterion
for the existence of m-order subharmonics is proved by using subharmonic Melnikov
function. In section 6, we present the conditions of existence and bifurcation for
the third-order superharmonic resonance. In section 7, Melnikov’s method is used
to prove the existences of homoclinic bifurcation and heteroclinic bifurcation. The
numerical simulations including bifurcation diagrams in (x− f), (x− ω0), (x− γ),
(x − β), (x − p), and (x − ω) planes, the computation of maximum Lyapunov ex-
ponent corresponding to bifurcation diagram, the phase portrait and Poincaré map
at neighborhood of critical values, are given in section 8. Finally, we give remark
in section 9.
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2. Primary Resonance and Bifurcation

In this section, we consider primary resonance using the second-order averaging
method. Introduce a small parameter ϵ, such that 0 < ϵ ≪ 1 and replace p and f
by ϵp and ϵ

3
2 f respectively, then (1.1) can be rewritten as{

ẋ = y,

ẏ = −ω2
0x− βx3 − γx5 − ϵp(x2 − 1)y + ϵ

3
2 f cosωt.

(2.1)

Let (x0, 0) be a center of (2.1) for ϵ = 0 and the frequency of periodic orbit near
the center is approximately given by

a1 =
√

ω2
0 + 3βx2

0 + 5γx4
0. (2.2)

If the ratio of ω and a1 is a rational number, then the resonance behavior may
occur in (2.1). We now consider the case of primary resonance ω ≈ a1 for (2.1).
Assume that

ω2 ≈ a21, ϵΩ = ω2 − a21. (2.3)

Let

a2 = 3βx0 + 10γx3
0, a3 = −β − 10γx2

0, α = x2
0 − 1, x = x0 +

√
ϵz. (2.4)

Then (2.1) can be rewritten as

z̈ + a21z = −
√
ϵa2z

2 + ϵ(a3z
3 − pαż + f cosωt) +O(ϵ

3
2 ). (2.5)

We use the Van der Pol transformation(
u
v

)
=

(
cosωt − 1

ω sinωt
− sinωt − 1

ω cosωt

)(
z
ż

)
, (2.6)

and carry out averaging up to second-order for (2.5). We obtain the following
averaged equation

u̇ =
ϵ

2a1
(Ωv − pαa1u+ b0v(u

2 + v2)),

v̇ =
ϵ

2a1
(−Ωu− pαa1v − b0u(u

2 + v2)− f), (2.7)

where b0 =
9a2

1a3+10a2
2

12a2
1

.

In polar coordinates r =
√
u2 + v2 and θ = arctan (v/u), (2.7) becomes

ṙ =
ϵ

2a1
(−pαa1r − f sin θ),

rθ̇ =
ϵ

2a1
(−Ωr − b0r

3 − f cos θ). (2.8)

The fixed points of (2.8) satisfy the following equation

b20y
3 + 2b0Ωy

2 + (p2α2a21 +Ω2)y = f2, (2.9)

where y = r2. Let

F0(y) = b20y
3 + 2b0Ωy

2 + (p2α2a21 +Ω2)y − f2, (2.10)
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and y = x− 2Ω
3b0

, then (2.9) becomes

x3 + sx+ q = 0, (2.11)

where s =
3p2α2a2

1−Ω2

3b20
, q = −2Ω3

27b30
− 2Ωp2α2a2

1

3b30
− f2

b20
.

The discriminant of (2.11) is given by

∆ = (
q

2
)2 + (

s

3
)3

=
f4

4b40
+

Ω

27b50
(Ω2 + 9p2α2a21)f

2 +
p2α2a21
27b60

(Ω2 + p2α2a21)
2. (2.12)

Let
∆ = 0, (2.13)

and ∆′ denotes the discriminant of (2.13), then ∆′ = 16
27b60

(Ω2−3p2α2a21)
3. We have

the following conclusion as b0Ω < 0.

(i) If ∆′ > 0, then there exist two real roots of (2.13) as following

f2
1 =

1

27b0
(−2Ω(Ω2 + 9p2α2a21)− 2(Ω2 − 3p2α2a21)

√
Ω2 − 3p2α2a21), (2.14)

and

f2
2 =

1

27b0
(−2Ω(Ω2 + 9p2α2a21) + 2(Ω2 − 3p2α2a21)

√
Ω2 − 3p2α2a21). (2.15)

(ii) If ∆′ < 0, then there exists not any real root of (2.13).

(iii) If ∆′ = 0, then there exists one root of (2.13), that is f2 = | 8
√
3p3α3a3

1

9b0
|.

For b0Ω > 0, ∆ is always positive.

(a) (b)

Figure 1. Super-critical and sub-critical saddle-node bifurcation curves: (a) b0 > 0;
(b) b0 < 0.

In Fig.1 we have drawn the bifurcation curves f2
1 and f2

2 in the (Ω, f)-plane and
Fig1.(a) and Fig1.(b) correspond to b0 > 0 and b0 < 0, respectively. The plane in
Fig.1 is divided into three regions (I), (II), (III) by the two branches f2

1 and f2
2 ,

which meet at (Ω1,2, f) = (±
√
3pαa1,

√
| 8

√
3(pαa1)3

9b0
|).

By the above analysis we have the following lemma:
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Lemma 2.1. (i) If (Ω, f2) lies in (I) and (III), there exist one real root of (2.9)
which corresponds to one nontrivial fixed point of (2.8); if (Ω, f2) lies in (II),
there exist three distinct real roots of (2.9) which correspond to three distinct
nontrivial fixed points of (2.8).

(ii) If (Ω, f2) lies in the curve f2
1 or f2

2 , there are three real roots of (2.9),
but two of them coincide; on f2

1 the coincidence occurs for the root y =
−2Ω+

√
Ω2−3p2α2a2

1

3b0
; on f2

2 for the root y =
−2Ω−

√
Ω2−3p2α2a2

1

3b0
, which corre-

sponds to two nontrivial fixed points of (2.8).

(iii) If (Ω, f2) lies at the point (±
√
3pαa1,

√
| 8

√
3(pαa1)3

9b0
|), there are three coinci-

dent real roots, which correspond to one nontrivial fixed point of (2.8).

(v) If b0ω > 0 or Ω2 ≤ 3p2α2a21, there is one real root of (2.9), which corresponds
to one nontrivial fixed point of (2.8).

Figure 2. A bifurcation diagram. Here β = −2, γ = 0.5, ω0 = 1, p = 0.1,Ω =
−6, a1 = 3.10755, b0 = 24.8088, α = 2.41442.

The stability of fixed point (rs, θs) of (2.8) is determined by the characteristic
values

λ1,2 = −pαa1 ±
√
p2α2a21 − F ′

0(ys), (2.16)

where ys = r2s and F ′
0(ys) = 3b20y

2
s + 4b0Ωys +Ω2 + p2α2a21.

Furthermore, we know that the averaged system (2.8) (or (2.7)) has no closed
orbit by the Dulac’s criterion.

Thus, by considering the above stability conditions and Lemma 2.1, we can get
the following conclusion for α > 0:

Lemma 2.2. (i) For b0Ω > 0 and 0 < ϵ ≪ 1, there exists one stable foci-node.

(ii) For Ω2−3p2α2a21 > 0, b0Ω < 0 and 0 < ϵ ≪ 1, there exist two stable foci-node
and one saddle in region (II); there exists a stable foci-node in region (I) and
(III). On the curves f2

1 and f2
2 there is one stable foci-node and a fixed point

which has one zero eigenvalue.
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(iii) For Ω2 − 3p2α2a21 ≤ 0, b0Ω < 0 and 0 < ϵ ≪ 1, there exists a stable foci-node

except the point (Ω, f) = (±
√
3pαa1,

√
| 8

√
3(pαa1)3

9b0
|) at which there is a fixed

point with one zero eigenvalue.

(iv) When f2 increases, the fixed point changes from one to three, passing through
f2
2 for b0 < 0 or f2

1 for b0 > 0; on f2
2 or f2

1 , there are two fixed points and
one of them has a zero eigenvalue, so f2

2 or f2
1 is supercritical saddle-node

bifurcation. When f2 decreases, the fixed point changes from one to three,
passing through f2

1 for b0 < 0 or f2
2 for b0 > 0; on f2

1 or f2
2 , there are two

fixed points and one of them has a zero eigenvalue, so f2
1 or f2

2 is subcritical
saddle-node bifurcation.

Fig.2 shows a bifurcation diagram indicating how the fixed points of (2.8) are
created or annihilated when f is varying while the other parameters remain fixed.

For α < 0, the stable foci-node becomes unstable and the stability of other fixed
points does not change in Lemma 2.2.

Thence, we can give the following theorem by the averaging theorem ( [5,21,24]).

Theorem 2.1. For (2.1), we have:

(i) For b0Ω > 0 and 0 < ϵ ≪ 1, there exists a stable resonant harmonic solution
for α > 0 and an unstable resonant harmonic solution for α < 0.

(ii) For b0Ω < 0,Ω2 − 3p2α2a21 > 0, and 0 < ϵ ≪ 1, there exist two stable
resonant harmonic solutions for α > 0 and two unstable resonant harmonic
solutions for α < 0 and one unstable resonant harmonic solution in region
(II); there is a stable resonant harmonic solution for α > 0 and an unstable
resonant harmonic solution for α < 0 in regions (I) and (III). When α > 0, a
stable harmonic appears near the supercritical bifurcation curve f2

2 or f2
1 and

a stable harmonic disappears near the subcritical bifurcation curve f2
1 or f2

2

for b0 > 0 or b0 < 0, respectively. When α < 0, an unstable harmonic appears
near the supercritical bifurcation curve f2

2 or f2
1 and an unstable harmonic

disappears near the subcritical bifurcation curve f2
1 or f2

2 for b0 > 0 or b0 < 0,
respectively.

(iii) For Ω2 − 3p2α2a21 ≤ 0, b0Ω < 0 and 0 < ϵ ≪ 1, there exists a stable harmonic
solution for α > 0 and an unstable harmonic solution for α < 0. At the point

(Ω, f) = (±
√
3pαa1,

√
| 8

√
3(pαa1)3

9b0
|), there also exists a harmonic solution.

(iv) The harmonic solution of (2.1) is approximately given by

x(t) = x0 +
√
ϵrs cos (wt+ θs) +O(ϵ),

where (rs, θs) is given by the equilibrium solution of averaged (2.8). The oth-
er solutions in (2.8) correspond to the almost periodic solutions or chaotic
motions in (2.1).

3. Second-order Subharmonic Resonance and Bi-
furcation

In this section we consider the second-order subharmonic resonance ω ≈ 2a1 and
set ϵΩ = (ω2− 4a21)/4. Replace p and f by ϵp and ϵf (0 < ϵ ≪ 1), respectively, and
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then (1.1) can be written as{
ẋ = y,
ẏ = −ω2

0x− βx3 − γx5 − ϵp(x2 − 1)y + ϵf cosωt.
(3.1)

Using regular perturbation methods, one obtains harmonic of (1.1) as

x̄(t) = x0 − ϵ(f/(ω2 − a21)) cosωt+O(ϵ2). (3.2)

To investigate stability of the harmonic x̄(t), one can set

x = x̄(t) +
√
ϵz = x0 +

√
ϵz − ϵΓ cosωt+O(ϵ2), (3.3)

where Γ = f/(3a21)(= f/(ω2−a21)+O(ϵ2)), and (x0, 0) is a center of (3.1) for ϵ = 0.
Substituting (3.3) into (3.1), then (3.1) becomes

z̈ + a21 = −
√
ϵa2z

2 + ϵ(a3z
3 + 2a2zΓ cosωt− pαż) +O(ϵ3/2). (3.4)

Note that ω = 2a1 +O(ϵ2).
Using the Van der Pol transformation(

u
v

)
=

(
cos ωt

2 − 2
ω sin ωt

2
− sin ωt

2 − 2
ω cos ωt

2

)(
z
ż

)
, (3.5)

in (3.1) and carrying out averaging up to second order, one has

u̇ =
ϵ

2a1
((Ω− a2Γ)v − pαa1u+ b0v(u

2 + v2)),

v̇ =
ϵ

2a1
((−Ω− a2Γ)u− pαa1v − b0u(u

2 + v2)). (3.6)

In polar coordinates, (3.6) becomes

ṙ =
ϵ

2a1
(−pαa1 − a2Γ sin 2θ)r,

rθ̇ =
ϵ

2a1
(−Ω− b0r

3 − a2Γ cos 2θ). (3.7)

By analyzing the fixed points of (3.7), we have the following conclusion.

Lemma 3.1. (i) (3.6) always has a trivial equilibrium (u, v) = (0, 0), which cor-
responds to the non-resonance harmonic x̄(t) of (3.2).

(ii) Assume that a22Γ
2 − p2α2a21 > 0, and b0(−Ω ±

√
a22Γ

2 − p2α2a21) > 0, then
(3.7) has fixed points with r > 0 at (r, θ) = (r±, θ±), and (r, θ) = (r±, θ± +π)

where r± =
−Ω±

√
a2
2Γ

2−p2α2a2
1

b0
, and if a2α > 0, then

θ+ = −1

2
arcsin

pαa1
a2Γ

, θ− =
π

2
− θ+, (3.8)

and if a2α < 0, then

θ− = −1

2
arcsin

pαa1
a2Γ

, θ+ =
π

2
− θ−. (3.9)
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Lemma 3.2. (i) (3.6) always has a trivial fixed point (0, 0), which is a saddle
point for a22Γ

2 > Ω2+p2α2a21, and which is a stable or an unstable for a22Γ
2 <

Ω2 + p2α2a21 and α > 0 or α < 0.

(ii) If b0 > 0, then the fixed points (r+, θ+) and (r+, θ+ + π) are stable foci-node
for α > 0 or unstable foci-node for α < 0 and the others are saddles. If b0 < 0,
then the fixed points (r+, θ+) and (r+, θ+ + π) are saddles and the others are
stable foci-node for α > 0 or unstable for α < 0.

(a) (b)

Figure 3. Super-critical and sub-critical saddle-node bifurcation curves: (a) b0 > 0;
(b) b0 < 0.

By the averaging theorem we get the following conclusion.

Theorem 3.1. (i) Including the trivial fixed point (0, 0), there is one, three, or
five fixed points in (3.7). Each pair of nontrivial fixed point (r±, θ±) and
(r±, θ±+π) corresponds to a single second-order subharmonic of (3.1), which
is approximately given by

x = x0 +
√
ϵ cos (

1

2
ωt+ θ±)− ϵΓ cosωt. (3.10)

(ii) There are two bifurcation curves: saddle-node bifurcations of subharmonics
occur near the curve

f2 =
9p2α2a61

a22
≡ f2

01, b0Ω < 0 (3.11)

and period doubling bifurcations of harmonics occur near the curve

f2 =
9a41(Ω

2 + p2α2a21)

a22
≡ f2

02, (3.12)

which is supercritical if b0Ω > 0 and subcritical if b0Ω < 0.

(iii) In region (I), there is a stable fixed points (0, 0) of (3.6), which corresponds
to a stable (resp. unstable) non-resonant harmonic of (3.1) for α > 0 and
an unstable fixed points (0, 0) of (3.6), which corresponds to an unstable non-
resonant harmonic of (3.1) for α < 0; in region (II), there are three fixed
points and one of them corresponds to a unstable non-resonant harmonic and
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a single stable resonant subharmonic of period-two of (3.1) for α > 0 and
a single unstable resonant subharmonic of period-two of (3.1) for α < 0;
in region (III), there are five fixed points which correspond to a stable non-
resonant harmonic and a stable resonant subharmonic for α > 0 or an unstable
non-resonant harmonic and an unstable resonant subharmonic for α < 0 and
an unstable resonant subharmonic of (3.1), where the regions(I)-(III) are in
Fig.3.

(a) (b)

Figure 4. Bifurcation diagrams of fixed points of (3.7). (a) Passing through regions
I and II in Fig.3(a) for Ω = 6; (b) passing through regions I, III and II in Fig.3(a)
for Ω = −6. Stable orbits are shown solid, and unstable orbits dashed.

Fig.4 shows a bifurcation diagram indicating how the fixed points of (3.7) are
created or annihilated, passing through the regions (I)-(III), when f is varying while
the other parameters are fixed as β = −2, γ = 0.5, ω = 1, p = 1, α = 2.41442, a1 =
3.10755, b0 = 24.8088.

4. Third-order Subharmonic Resonance and Bifur-
cation

We consider the third-order subharmonic resonance ω = 3a1 and set ϵ2Ω = (ω2 −
9a21)/9. Replace p and f by ϵ2p and ϵf (0 < ϵ ≪ 1), respectively, and then (1.1)
can be written as{

ẋ = y,
ẏ = −ω2

0x− βx3 − γx5 − ϵ2p(x2 − 1)y + ϵf cosωt.
(4.1)

Using perturbation methods, one obtains a periodic solution of period 2π/ω to
equation (4.1),

x̄(t) = x0 + ϵx1(t) + ϵ2x2(t) +O(ϵ3), (4.2)

where

x1(t) =
f

a21 − ω2
cosωt,

x2(t) = − a2f
2

2a21(a
2
1 − ω2)2

− a2f
2

2(a21 − 4ω2)(a21 − ω2)2
cos 2ωt. (4.3)
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Let

x = x̄(t) + ϵz = x0 + ϵ(z − Γ cosωt) + ϵ2(
a2Γ

2

70a21
)(35− cos 2ωt) +O(ϵ3), (4.4)

where Γ = f
8a2

1
(= f

ω2−a2
1
+O(ϵ2)), and (x0, 0) is a center of (4.1) for ϵ = 0.

Substituting (4.4) into (4.1), then (4.1) becomes

z̈ + a21z = −ϵa2(z − 2Γ cosωt)z + ϵ2(a3(z − Γ cosωt)3 (4.5)

−a22Γ
2

35a21
(z − Γ cosωt)(35− cos 2ωt)− pα(ż + ωΓ sinωt)) +O(ϵ3).

Note that ω = 3a1 +O(ϵ2).
Using the Van der Pol transformation(

u
v

)
=

(
cos ωt

3 − 3
ω sin ωt

3
− sin ωt

3 − 3
ω cos ωt

3

)(
z
ż

)
, (4.6)

in (4.5) and averaging up to second order, one has

u̇ =
ϵ2

2a1
(−pαa1u+ (Ω + b1Γ

2)v + b0v(u
2 + v2) + 2b2Γuv), (4.7)

v̇ =
ϵ2

2a1
(−pαa1v − (Ω + b1Γ

2)u− b0u(u
2 + v2) + b2Γ(u

2 − v2)),

where b0 =
10a2

2+9a2
1a3

12a2
1

, b1 =
15a3a

2
1−14a2

2

10a2
1

and b2 =
3a3a

2
1−2a2

2

4a2
1

.

In polar coordinates, (4.7) becomes

ṙ =
ϵ2

2a1
(−pαa1r − b2Γr

2 sin 3θ), (4.8)

θ̇ =
ϵ2

2a1
(−(Ω + b1Γ

2)− b0r
2 + b2Γr cos 3θ).

(4.7) has the trivial fixed point (u, v) = (0, 0), which corresponds to a non-
resonant harmonic x̄(t) of (4.1). The trivial fixed point is stable for α > 0 and
unstable for α < 0. The nontrivial fixed points satisfy the following equation

b20r
4 + (2b0(Ω + b1Γ)− b22Γ

2)r2 + (Ω + b1Γ
2)2 + p2α2a21 = 0. (4.9)

If

b22Γ
2 − 2b0(Ω + b1Γ

2) > 2|b0|
√
(Ω + b1Γ2)2 + p2α2a21, (4.10)

then (4.8) has nontrivial fixed points at (r, θ) = (r±, θ±+2jπ/3),(j = 0, 1, 2), where

r± =

√
2

2|b0|

√
b22Γ

2 − 2b0(Ω + b1Γ2)±
√
(b22 − 4b0b1)b22Γ

4 − 4b0b22ΩΓ
2 − 4b20p

2α2a21

(4.11)
and

θ± =
1

3
arcsin

pαa1
b2Γr±

or θ± =
π

3
− 1

3
arcsin

pαa1
b2Γr±

. (4.12)

By further detailed analysis for fixed points of (4.8), we can get the following
conclusion.
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Lemma 4.1. (i) If b22 > 4b0b1 and f2 > f2
1 , then there exist six nontrivial fixed

points and one trivial fixed point (0, 0), where

f2
1 =

128a41(2b0|b2|Ω+ 2|b0|
√
b22Ω

2 + (b22 − 4b0b1)p2α2a21)

|b2|(b22 − 4b0b1)
. (4.13)

(ii) If b22 = 4b0b1 and f2 > f2
2 , then there exist six nontrivial fixed points and one

trivial fixed point (0, 0), where

f2
2 =

−b22p
2α2a21

b0b22Ω
, b0Ω < 0. (4.14)

(iii) If b22 < 4b0b1, b0Ω < 0 and f2
1 < f2 < f2

3 , then there exist six nontrivial fixed
points and one trivial fixed point (0, 0), where

f2
3 =

128a41(2b0|b2|Ω− 2|b0|
√
b22Ω

2 + (b22 − 4b0b1)p2α2a21)

|b2|(b22 − 4b0b1)
. (4.15)

The fixed points (r+, θ+ + 2jπ/3), j = 0, 1, 2, are stable (resp. unstable) foci-
node for α > 0 (resp. α < 0), and (r−, θ− + 2jπ/3), j = 0, 1, 2 are saddles. Each
triple of fixed points (r±, θ±+2jπ/3), j = 0, 1, 2 corresponds to a single third-order
subharmonic of (4.1), which is approximately given by

x = x0 + ϵr± cos (
ωt

3
+ θ±)− ϵΓ cosωt+O(ϵ2). (4.16)

From the averaging theorem, we have the following theorem.

Theorem 4.1. (i) If b22 > 4b0b1 and f2 > f2
1 , there exist two resonant third-

order subharmonics and a nonresonant harmonic, and supercritical saddle-
node bifurcations of third-order subharmonics occur near the curve (4.13).

(ii) If b22 = 4b0b1 and f2 > f2
2 , there exist two resonant third-order subharmonis

and a nonresonant harmonic, and supercritical saddle-node bifurcations of
third-order subharmonics occur near the curve (4.14).

(iii) If b22 < 4b0b1 and f2
1 < f2 < f2

3 , there exist two resonant third-order subhar-
monics and a nonresonant harmonic, and supercritical saddle-node bifurca-
tions of subharmonics occur near the curve (4.13) and subcritical saddle-node
bifurcations occur near the curve (4.15).

5. The m-Order Subharmonics and Bifurcation

In this section we investigate the existence of m-order subharmonics of (1.1) by
using Melnikov’s method for subharmonic which is defined in [23].

Consider the perturbed system{
ẋ = y,
ẏ = −ω2

0x− βx3 − γx5 − ϵp(x2 − 1)y + ϵf cosωt.
(5.1)

Let qµ(t) = (xµ(t), yµ(t)) (µ ∈ (µ1, µ2)) denote a one-parameter family of peri-
odic orbits with period 2πm

nω of (5.1) for ϵ = 0, where µ1 and µ2 are constants, and
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m and n are relatively prime. In [24], it has been proved that Mm(t0) can have
simple zero only if n = 1, so the Melnikov function for qµ(t) of (5.1) is given by

Mm(t0) =

∫ 2πm
ω

0

yµ(t)[−p((xµ(t))2 − 1)yµ(t) + f cosω(t+ t0)]dt (5.2)

= −pAm(ω0, β, γ) + fDm(ω0, β, γ, ω) cosωt0 +Θm(ω0, β, γ, ω),

where

Am(ω0, β, γ) =

∫ 2πm
ω

0

((xµ(t))2 − 1)(yµ(t))2dt,

Bm(ω0, β, γ, ω) =

∫ 2πm
ω

0

yµ(t) cosωtdt,

Cm(ω0, β, γ, ω) =

∫ 2πm
ω

0

yµ(t) sinωtdt,

Dm(ω0, β, γ, ω) =
√
(Bm(ω0, β, γ, ω))2 + (Cm(ω0, β, γ, ω))2,

Θm(ω0, β, γ, ω) = arctan
Cm

Bm
.

(5.3)

If
f

p
>

∣∣∣∣Am

Bm

∣∣∣∣ ≡ Rm(ω0, β, γ, ω), (5.4)

then Mm(t0) has a simple zero and a necessary condition for the occurrence of
subharmonics of period 2πm

ω of (5.1) is given by (5.4).
The bifurcation curve of subharmonic is created and occurs at

f

p
=

∣∣∣∣Am

Bm

∣∣∣∣ = Rm(ω0, β, γ, ω) +O(ϵ). (5.5)

6. Superharmonic Resonance and Bifurcation

In this section we consider superharmonic resonance using the second-order aver-
aging method. For the case of third-order superharmonic resonance 3ω ≈ a1, one
sets ϵ2Ω = 9ω2 − a21. Replace p and f by ϵ2p and ϵf (0 < ϵ ≪ 1), respectively, and
then (1.1) can be written as{

ẋ = y,
ẏ = −ω2

0x− βx3 − γx5 − ϵ2p(x2 − 1)y + ϵf cosωt.
(6.1)

Let
x = x0 + ϵΓ cosωt+ ϵz, (6.2)

where Γ = 9f
8a2

1
(= f

a2
1−ω2 +O(ϵ)), and (x0, 0) is a center of (6.1) for ϵ = 0.

Substituting (6.2) into (6.1), then (6.1) becomes

z̈+a21z = −ϵa2(z+Γcosωt)2+ϵ2{a3(z+Γcosωt)3−pα(ż−Γω sinωt)}+O(ϵ3). (6.3)

Using the Van der Pol transformation(
u
v

)
=

(
cos 3ωt − 1

3ω sin 3ωt
− sin 3ωt − 1

3ω cos 3ωt

)(
z
ż

)
, (6.4)
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in (6.3) and averaging up to second order, one has

u̇ =
ϵ2

2a1
(−pαa1u+ (Ω + b3Γ

2)v + b0v(u
2 + v2)), (6.5)

v̇ =
ϵ2

2a1
(−pαa1v − (Ω + b3Γ

2)u− b0u(u
2 + v2)− b4Γ

3),

where b0 =
10a2

2+9a3a
2
1

12a2
1

, b3 =
106a2

2+105a2
1a3

70a2
1

and b4 =
18a2

2+5a3a
2
1

20a2
1

.

In polar coordinates, (6.5) becomes

ṙ =
ϵ2

2a1
(−pαa1r − b4Γ

3 sin θ),

rθ̇ =
ϵ2

2a1
(−(Ω + b3Γ

2)r − b0r
3 − b4Γ

3 cos θ).

(6.6)

Fixed points of (6.6) satisfy the following equation

b20r
6 + 2b0(Ω + b3Γ

2)r4 + ((Ω + b3Γ
2)2 + p2α2a21)r

2 − b24Γ
6 = 0, (6.7)

and θ = arctan pαa1

(Ω+b3Γ3)+b0r2
.

Note that

F1 =
1

27b0
(−2((b3Γ

2+Ω)3+9p2α2a21(b3Γ
2+Ω))−2((b3Γ

2+Ω2)2−3p2α2a21)
3
2 ), (6.8)

and

F2 =
1

27b0
(−2((b3Γ

2+Ω)3+9p2α2a21(b3Γ
2+Ω))+2((b3Γ

2+Ω2)2−3p2α2a21)
3
2 ). (6.9)

By the analysis for fixed points and stability of (6.6), we obtain the following
conclusion.

Lemma 6.1. (i) If b0(Ω + b3Γ
2) > 0, then (6.6) has a nontrivial fixed point,

which is stable for α > 0 and unstable for α < 0.

(ii) If b0(Ω + b3Γ
2) < 0 and (Ω + b3Γ

2)2 ≤ 3p2α2a21, (6.6) has a nontrivial fixed
point, which is stable for α > 0 and unstable for α < 0. And if (Ω+ b3Γ

2)2 =
3p2α2a21 and b24Γ

6 = − 8
27b0

(Ω + b3Γ
2)3, (6.6) has three coincide nontrivial

fixed points with one zero eigenvalue.

(iii) If b0 > 0, Ω+b3Γ
2 < 0, and (Ω+b3Γ

2)2 > 3p2α2a21, when b24Γ
6 > F2 or b24Γ

6 <
F1, (6.6) has a nontrivial fixed point, which is stable for α > 0 and unstable
for α < 0; when b24Γ

6 = F2 or b24Γ
6 = F1, (6.6) has two distinct nontrivial

fixed points, one of which has one zero eigenvalue; when F1 < b24Γ
6 < F2,

(6.6) has three distinct nontrivial fixed points and one of them is a saddle
point and others are stable for α > 0 and unstable for α < 0.

(iv) If b0 < 0, Ω+b3Γ
2 > 0, and (Ω+b3Γ

2)2 > 3p2α2a21, when b24Γ
6 > F1 or b24Γ

6 <
F2, (6.6) has a nontrivial fixed point, which is stable for α > 0 and unstable
for α < 0; when b24Γ

6 = F1 or b24Γ
6 = F2, (6.6) has two distinct nontrivial

fixed points, one of which has one zero eigenvalue; when F2 < b24Γ
6 < F1,

(6.6) has three distinct nontrivial fixed points and one of them is a saddle
point and others are stable for α > 0 and unstable for α < 0.
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Each nontrivial fixed point (r, θ) corresponds to a third-order superharmonic of
(6.1), which is approximately given by

x = x0 + ϵΓ cosωt+ ϵr cos (3ωt+ θ) +O(ϵ2). (6.10)

From the averaging theorem, we have the following theorem.

Theorem 6.1. (i) If b0(Ω + b3Γ
2) > 0, there exists one resonant third-order

superharmonic.

(ii) If b0(Ω + b3Γ
2) < 0 and (Ω + b3Γ

2)2 ≤ 3p2α2a21, there exists one resonant
third-order superharmonic.

(iii) If b0 > 0, Ω + b3Γ
2 < 0 and (Ω + b3Γ

2)2 > 3p2α2a21, then there exists one
resonant third-order superharmonic for b24Γ

6 > F2 or b24Γ
6 < F1, and there

exist three resonant third-order superharmonics for F2 < b24Γ
6 < F1. Super-

critical saddle-node bifurcation of third-order superharmonic occurs near the
curve b24Γ

6 = F2 and subcritical saddle-node bifurcation of third-order super-
harmonic occurs near the curve b24Γ

6 = F1.

(iv) If b0 < 0, Ω + b3Γ
2 > 0 and (Ω + b3Γ

2)2 > 3p2α2a21, then there exists one
resonant third-order superharmonic for b24Γ

6 > F1 or b24Γ
6 < F2, and there

exist three resonant third-order superharmonics for F1 < b24Γ
6 < F2. Super-

critical saddle-node bifurcation of third-order superharmonic occurs near the
curve b24Γ

6 = F1 and subcritical saddle-node bifurcation of third-order super-
harmonic occurs near the curve b24Γ

6 = F2.

7. Chaos in Equation (1.1)

In this section, we discuss the chaotic behaviors of equation (1.1) in which f and p
are assumed to be small parameters with order ε. Rewriting (1.1) as an autonomous
system gives 

ẋ = y,
ẏ = −ω2

0x− βx3 − γx5 + ε(f̄ cosϕ− p1(x
2 − 1)y),

ϕ̇ = ω,
(7.1)

where εf̄ = f, εp1 = p.
The unperturbed system of system (7.1) has two homoclinic orbits Γ±

hom and
two heteroclinic orbits Γ±

het for γ > 0, β < 0 and β2 − 4γω2
0 > 0. The phase

portrait of the unperturbed system is shown in Fig.5(a) for ω0 = 1, β = −3, and
γ = 2. When the perturbation is added, the homoclinic or heteroclinic orbits break,
and may have transverse homoclinic or heteroclinic orbits. By the Smale-Birkhoff
homoclinic theorem [3,23], the existence of such orbits results in chaotic dynamics.
We therefore apply the Melnikov method to equation (7.1) for finding the criteria
of the existence of homoclinic or heteroclinic bifurcation and chaos.

Suppose that the homoclinic or heteroclinic orbits of the unperturbed systems
are written as (x0(t), y0(t)), then the Melnikov function for system (7.1) can be
given

M(t0) = −p1

∫ +∞

−∞
(x2

0(t)− 1)y20(t)dt+

∫ +∞

−∞
y0(t)f̄ cos(ω(t+ t0))dt, (7.2)
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where t0 is the cross-section time of the Poincaré map and t0 can be interpreted as
the initial time of the forcing term.

Because it is difficult to give analytical expression of (x0(t), y0(t)), we will com-
pute x0(t) and y0(t) numerically. We note that y0(t) is a function of time from −∞
to +∞. We therefore choose a starting point P1 which is an intersecting point of
homoclinic orbit Γ±

hom1 with x-axis, and a starting point P2 which is an intersecting
point of heteroclinic orbit Γ±

het with y-axis, and y0(t) would be an odd function of
time for the homoclinic orbit and an even function of time for the heteroclinic orbit
(see Fig.5(a)).

(a) (b)

Figure 5. (a) The phase portrait of unperturbed system of (7.1). (b) The homoclinic
bifurcation curve (7.5) and heteroclinic bifurcation curve (7.8). Here β = −3, γ =
2, ω0 = 1, p = 0.1.

For the homoclinic orbits Γ±
hom1, the Melnikov function can be simplified as

M1(t0) = −2p1

∫ +∞

0

(x2
0(t)− 1)y20(t)dt− 2f̄ sin(ωt0)

∫ +∞

0

y0(t) sin(ωt)dt

= −2p1A− 2f̄ sin(ωt0)Ihom1(ω), (7.3)

where A =
∫ +∞
0

(x2
0(t) − 1)y20(t)dt is a constant once x0(t) and y0(t) are given,

Ihom1(ω) =
∫ +∞
0

y0(t) sin(ωt)dt is a function of the frequency ω when the homoclinic
orbits (x0(t), y0(t)) are given. Thus, if

f̄ >

∣∣∣∣ p1A

Ihom1(ω)

∣∣∣∣ or f >

∣∣∣∣ pA

Ihom1(ω)

∣∣∣∣ ≡ R1(ω), (7.4)

then there is a t̄0 such that M1(t̄0) = 0 and ∂M1

∂t0
|t=t̄0 ̸= 0, t̄0 ∈ [0, 2π

ω ] and the
following theorem can be obtained.

Theorem 7.1. The homoclinic bifurcation will occur at

f = R1(ω), (7.5)

this implies that if ε > 0 is sufficiently small, the transverse homoclinic orbits exist
and system (7.1) may be chaotic.
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(a) (b)

(c) (d)

Figure 6. (a) Bifurcation diagram of system (1.1) in (f, x) plane for β = −3, γ =
2, p = 0.1, ω0 = 1, ω = 1; (b) maximal Lyapunov exponent corresponding to (a);
(c) local amplification of (a) for 0.6 < f < 2.2; (d) local amplification of (a) for
3.5 < f < 5.5.

For the heteroclinic orbits, y0(t) is even, then the Melnikov function on Γ±
het can

be written as

M2(t0) = −2p1

∫ +∞

0

(x2
0(t)− 1)y20(t)dt− 2f̄ cos(ωt0)

∫ +∞

0

y0(t) cos(ωt)dt

= −2p1B − 2f̄ cos(ωt0)Ihet(ω), (7.6)

where B =
∫ +∞
0

(x2
0(t) − 1)y20(t)dt, Ihet(ω) =

∫ +∞
0

y0(t) cos(ωt)dt is a function of
the frequency ω when the heteroclinic orbits (x0(t), y0(t)) are given. Thus, if

f̄ >

∣∣∣∣ p1B

Ihet(ω)

∣∣∣∣ or f >

∣∣∣∣ pB

Ihet(ω)

∣∣∣∣ ≡ R2(ω), (7.7)

then there is a t̄′0 such that M2(t̄
′
0) = 0 and ∂M1

∂t0
|t=t̄′0

̸= 0, t̄′0 ∈ [0, 2π
ω ] and the

following theorem can be obtained.

Theorem 7.2. The heteroclinic bifurcation will occur at

f = R2(ω), (7.8)

this implies that if ε > 0 is sufficiently small, the transverse heteroclinic orbits exist
and system (1.1) may be chaotic.
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The homoclinic bifurcation (7.5) and heteroclinic bifurcation curve (7.8) are
shown in Fig.5(b) for β = −3, γ = 2, ω0 = 1, p = 0.1.

8. Numerical Simulation

(a) (b)

Figure 7. Chaotic attractors in Poincaré map of system (1.1): (a) for f = 5.5 in
Fig.6(a); (b) for f = 8.95 in Fig.6(a).

Now we present some numerical simulation results to find other complex dy-
namical behaviors of system (1.1). The bifurcation parameters are considered in
the following six cases.

(1) Varying f in the range 0 ≤ f ≤ 9 and fixing p = 0.1, β = −3, γ = 2, ω = 1
(which are the same with previously case (1) in [7]) and for rational and
irrational values of ω0.

(2) Varying ω0 in the range 0 ≤ ω0 ≤ 2 and fixing p = 1, β = −3, γ = 2, f = 2
and ω = 1, (which are the same with previously case (3) in [7])

(3) Varying γ in the range 0.1 ≤ γ ≤ 3 and fixing p = 1, β = −3, ω = 1, f = 2
(which are the same with previously case (4) in [7]) and for rational and
irrational values of ω0.

(4) Varying β in the range −6 ≤ β ≤ 2 and fixing p = 1, γ = 2, ω = 1, f = 2
(which are the same with previously case (5) in [7]) and for rational and
irrational values of ω0.

(5) Varying p in the range 0 ≤ f ≤ 7 and fixing β = −3, γ = 2, ω = 1, f = 2
(which are the same with previously case (6) in [7]) and for rational and
irrational values of ω0.

(6) Varying ω in the range 0 ≤ ω ≤ 6 and fixing p = 0.1, β = −3, γ = 2 (which are
the same with previously case (7) in [7]) for several values of f and rational
and irrational values of ω0.

Remark. In order to compare the dynamical behavior of system (1.1) with that
in [7], we take up with the same values for each case. And we show the differences
of bifurcation diagrams and dynamical behaviors of system (1.1) and the system
in [7] from the following results.
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For case (1). The bifurcation diagram of system (1.1) in (f, x) plane and the
corresponding maximum Lyapunov exponents for ω0 = 1 are given in Fig.6(a)
and (b), and the local amplified bifurcation diagrams of Fig.6(a) for f ∈ (0.6, 2.2),
f ∈ (3.5, 5.5) are shown in Fig.6(c) and (d), respectively. We observe chaotic regions
with complex period windows including period 10, 4, 21, 5, 13, 9, 2, 13, 15, 3 orbits
as f increasing, and with a more wide period one window. The chaotic attractors
in Poincaré map of system (1.1) are shown in Fig.7(a) and (b) for f = 5.5, and
f = 8.95, respectively.

(a) (b)

(c) (d) (e)

Figure 8. (a) Bifurcation diagram of system (1.1) in (f, x) plane for β = −3, γ =

2, p = 0.1, ω0 =
√
2, ω = 1; (b) maximal Lyapunov exponent corresponding to (a);

(c) local amplification of (a) for 2.4 < f < 2.75; (d) local amplification of (a) for
2.65 < f < 2.71 (e) local amplification of (a) for 2.84 < f < 2.97.

The bifurcation diagram of system (1.1) in (f, x) plane and the corresponding
maximum Lyapunov exponents for ω0 =

√
2, are shown in Fig.8(a) and (b), respec-

tively. The local amplification of Fig.8(a) for f ∈ (2.4, 2.75) and f ∈ (2.64, 2.72)
and f ∈ (2.84, 2.97) are given in Fig.8(c), (d) and (e), respectively. We show that
the onset of chaos and chaos suddenly disappearing to periodic one orbit at f ≈ 6
in Fig.8(a), and the chaotic regions with the period-windows (periods-3, 5, 13, 17,
25, 27, 29, 31, 37, 41 orbits, and so on) and quasi-periodic orbits in Fig.8(c)-8(e).
In Fig.8(e), there are the symmetry-breakings of 13 pairs and 9 pairs. The quasi-
periodic orbits at f = 2.05 (maximum Lyapunov exponent L = 0) is given in
Fig.9.(a)(i) and (b)(i). The chaotic attractors at f = 2.7 (L = 0.028958) and at
f = 3.1 (L = 0.093943) are given in Fig.9(a)(ii), (b)(ii) and Fig.9.(a)(iii), (b)(iii),
respectively, and the local amplification of (b)(ii) is shown in Fig.9(b)(ii)∗. Com-
paring Fig.9(a)(ii) with (b)(ii) (or (b)(ii)∗), we show the obvious different of chaotic
attractor for the slight change of f .
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(a)(i) (b)(i) (a)(ii) (b)(ii)

(b)(ii)∗ (a)(iii) (b)(iii)

Figure 9. (a) Phase portraits of various of f in Fig.8(a), (b) Poincaré maps of (a).
(i) f = 2.05, (ii) f = 2.7, (iii) f = 3.1. Here (ii)∗ is local amplification of box in
(b)(ii).

(a) (b)

(c)(i) (c)(ii)

Figure 10. (a) Bifurcation diagram of system (1.1) in (ω0, x) plane for β = −3, γ =
2, p = 1, f = 2, ω = 1; (b) maximal Lyapunov exponent corresponding to (a); (c)
Invariant torus for ω0 = 1.45 in (a): (c)(i) Phase portrait, (c)(ii) Poincaré map.
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For case (2). The bifurcation diagram of system (1.1) in (ω0, x) plane and the
corresponding maximum Lyapunov exponents are given in Fig.10(a) and Fig.10(b).
From Fig.10(a) we observe that the processes of inverse period-doubling bifurca-
tion leading to chaos with period-3 window for ω0 ∈ (0, 1.15) and there are in-
variant torus regions with period windows for ω0 ∈ (1.15, 2). The phase portrait
and Poincaré map of invariant torus at ω0 = 1.45 (L=-0.000034) are shown in
Fig.10(c)(i) and (c)(ii).

For case (3). The bifurcation diagram of system (1.1) in (γ, x) plane and the
corresponding maximum Lyapunov exponents for ω0 = 1 are given in Fig.11(a) and
Fig.11(b). The local amplifications of Fig.11(a) for γ ∈ (0.9, 1.15) and γ ∈ (2.3, 2.9)
are given in Fig.11(c) and (d), respectively. There are the onset of chaos at γ ≈ 0.975
and a small chaotic region with periodic windows for γ ∈ (0.975, 1.12) and a more
wide period one window for γ ∈ (1.2, 2.34) in Fig.11(a) and (c). We also see the
interleaving occurrences of invariant torus and periodic windows (periods 19, 9, 1,
9, 15, 5) as γ increasing from 2.54 in Fig.11(d).

(a) (b)

(c) (d)

Figure 11. (a) Bifurcation diagram of system (1.1) in (γ, x) plane for β = −3, ω0 =
1, p = 1, f = 2, ω = 1; (b) maximal Lyapunov exponent corresponding to (a); (c)
local amplification of (a) for 0.9 < γ < 1.15; (d) local amplification of (a) for
2.3 < γ < 2.9.

The bifurcation diagram of system (1.1) in (γ, x) plane and corresponding max-
imum Lyapunov exponents for ω0 =

√
2 are given in Fig.12(a) and (b). The local

amplifications of Fig.12(a) for γ ∈ (0.65, 0.95) is given in Fig.12(c). We observe
that a period doubling cascade to chaos as γ ∈ (0.733, 0.765), a period-3 window
as γ ∈ (0.786, 0.806) and the symmetry-breakings of two pairs periodic orbits at
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0.859 < γ < 0.876, and chaotic regions with period and quasi-periodic windows.

(a) (b) (c)

Figure 12. (a) Bifurcation diagram of system (1.1) in (γ, x) plane for β = −3, ω0 =
1, p = 1, f = 2, ω = 1; (b) maximal Lyapunov exponent corresponding to (a); (c)
local amplification of (a) for 0.9 < γ < 1.15; (d) local amplification of (a) for
2.3 < γ < 2.9.

(a) (b)

(c) (d)

Figure 13. (a) Bifurcation diagram of system (1.1) in (β, x) plane for γ = 2, ω0 =
1, p = 1, f = 2, ω = 1; (b) maximal Lyapunov exponent corresponding to (a); (c)
local amplification of (a) for −4.8 < β < −3.6; (d) local amplification of (a) for
−4.5 < β < −4.3.

For case (4). The bifurcation diagram of system (1.1) in (β, x) plane and cor-
responding maximum Lyapunov exponents for ω0 = 1 are given in Fig.13(a) and
(b), and the local amplified bifurcation diagrams of Fig.13(a) for β ∈ (−4.8,−3.6),
and β ∈ (−4.5,−4.25) are shown in Fig.13(c)-(d). The system exhibits the onset of
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chaos from period-one orbit and the processes of inverse period-doubling bifurcation
leading to the same chaotic region, and the symmetry-breakings of two pairs peri-
odic orbits for β ∈ (−4.481,−4.472). We also note that the invariant torus regions
with periodic windows as β ∈ (−2.631, 2).

(a) (b) (c)

Figure 14. (a) Bifurcation diagram of system (1.1) in (β, x) plane for γ = 2, ω0 =√
2, p = 1, f = 2, ω = 1; (b) maximal Lyapunov exponent corresponding to (a); (c)

local amplification of (a) for −5.6 < β < −4.6.

(a) (b)

(c) (d)

Figure 15. (a) Bifurcation diagram of system (1.1) in (p, x) plane for β = −3, γ =
2, ω0 = 1, f = 2, ω = 1; (b) maximal Lyapunov exponent corresponding to (a);
(c) local amplification of (a) for 2.95 < p < 3.35; (d) local amplification of (a) for
3.95 < p < 4.2.
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The bifurcation diagram of system (1.1) in (β, x) plane and corresponding max-
imum Lyapunov exponents for ω0 =

√
2 are given in Fig.14(a) and (b), and the

local amplified bifurcation diagrams of Fig.14(a) for β ∈ (−5.6,−4.6) is shown in
Fig.14(c). As β is decreased, we observe that the process of inverse period-doubling
bifurcation leading to chaos, and the chaos suddenly disappearing at β ≈ −4.95
and period-3 orbit appearing until onset of chaos at β ≈ −5.16. We also show
the quasi-periodic orbit regions with period motions (period-6, 7 and so on) as
β ∈ (−3.744, 2).

For case (5). The bifurcation diagram of system (1.1) in (p, x) plane and the
corresponding maximum Lyapunov exponents for ω0 = 1 are shown in Fig.15(a)
and (b), the local amplified bifurcation diagrams of Fig.15(a) for p ∈ (2.95, 3.35)
and p ∈ (3.95, 4.2) are given in Fig.15(c)and (d), respectively. We show that the
period-doubling bifurcation leading to a small chaotic region, and the inverse period-
doubling bifurcation leading to another small chaotic region, and two more wide
period-one regions.

(a) (b) (c)

Figure 16. (a) Bifurcation diagram of system (1.1) in (p, x) plane for β = −3, γ =

2, ω0 =
√
2, f = 2, ω = 1; (b) maximal Lyapunov exponent corresponding to (a);

(c) local amplification of (a) for 0 < p < 4.

(a)(i) (a)(ii) (b)(i) (b)(ii)

Figure 17. (a) Quasiperiodic orbit for p = 0.5 in Fig.16(a): (a)(i) phase portrait,
(a)(ii) Poincaré map. (b) Chaotic attractor for p = 4.75 in Fig.16(a): (b)(i) phase
portrait, (b)(ii) Poincaré map.

The bifurcation diagram of system (1.1) in (p, x) plane and corresponding max-
imum Lyapunov exponents for ω0 =

√
2 are shown in Fig.16(a) and (b), the local

amplifications of Fig.16(a) for p ∈ (0, 0.4) is given in Fig.16(c). There are the period-
one orbit suddenly converting to quasi-periodic orbits and the chaotic region with
small positive Lyapunov exponents, and complex periodic windows (periods 3, 11,
23, 11, 23, 21, 11, 19, 29, 5, 21, 39, 21 and so on) as p increasing, and they appear
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alternatively, and the final chaotic region, ending in a periodic-one orbit. The quasi-
periodic orbit at f = 0.5(L = 0) and chaotic attractor at f = 4.75(L = 0.110068)
are given in Fig.17(a) and (b), respectively.

For case (6). (i) The bifurcation diagram of system (1.1) in (ω, x) plane and
maximum Lyapunov exponents for ω0 =

√
2 are shown in Fig.18(a) and (b). The

local amplified bifurcation diagram of Fig.18(a) for ω ∈ (0, 0.4) and ω ∈ (0.136, 0.15)
are given in Fig.18(c) and (d). The system (1.1) exhibits the quasi-periodic route
to chaos in Fig.18(c), and another two routes to chaos: period-doubling bifurcation
to chaos, and inverse period-doubling bifurcation to chaos in Fig.18(a) and (d). We
also show that the interleaving occurrence of chaotic behaviors and quasi-periodic,
and the chaotic regions with period-windows, and the jumping behaviors of periodic
orbit and the symmetry-breaking of one pair period-orbit, and the chaos ending in a
periodic orbit in Fig.18(a)-(d). The phase portrait of quasi-periodic orbits is given
in Fig.18(e).

Remark. The bifurcation diagram in (ω, x) plane and maximum Lyapunov ex-
ponents for ω = 1 (in case (6)) are similar to the Fig.18(a) and (b), so omit the
Figures here.

(a) (b)

(c) (d) (e)

Figure 18. (a) Bifurcation diagram of system (1.1) in (ω, x) plane for β = −3, γ =

2, ω0 =
√
2, p = 0.1, f = 30; (b) maximal Lyapunov exponent corresponding to

(a); (c) local amplification of (a) for 0 < ω < 0.4; (d) local amplification of (a) for
0.136 < ω < 0.15; (e) phase portrait of quasi-periodic orbits for ω = 0.1 of (a).

(ii) The bifurcation diagram of system (1.1) in (ω, x) plane and the corresponding
maximum Lyapunov exponents for ω0 = 1, and f = 2 are shown in Fig.19(a) and
(b), the local amplified bifurcation diagram of (a) for ω ∈ (1.3, 1.5) is given in (c).
There are the chaotic regions with period windows (period 3, 7 and so on), and the
chaos suddenly converting to periodic one orbit.
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(iii) The bifurcation diagram of system (1.1) in (ω, x) plane for β = 0.2, γ =
1, ω0 =

√
2, p = 3 and f = 0.5 and maximum Lyapunov exponents are shown

in Fig.20(a) and(b), where we show that the maximum Lyapunov exponents are
equal or approximate to zero except for a small interval of ω. The system (1.1)
therefore presents fundamentally the quasiperiodic behaviors and chaotic behaviors
except for a small period-window. The phase portraits of the chaotic behavior
and quasiperiodic behavior for ω = 4.693 (L = 0.00039129) and ω = 5.95 (L =
−0.0020617) are given in Fig.20(c) and (d), respectively.

(a) (b) (c)

Figure 19. (a) Bifurcation diagram of system (1.1) in (ω, x) plane for β = −3, γ =
2, ω0 = 1, p = 0.1, f = 2; (b) maximal Lyapunov exponent corresponding to (a); (c)
local amplification of (a) for 1.3 < ω < 1.5.

(a) (b)

(c) (d)

Figure 20. (a) Bifurcation diagram of system (1.1) in (ω, x) plane for β = 0.2, γ =

1, ω0 =
√
2, p = 3, f = 0.5; (b) maximal Lyapunov exponent corresponding to (a);

(c) Poincaré map of chaotic attractor for ω = 4.693 of (a); (d) Poincaré map of
quasiperiodic orbit for ω = 5.95 of (a).
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9. Remark

In this paper and previously paper [7], we have investigated the dynamical behaviors
of Duffing-Van der Pol equation with an external forcing and two external forcings,
respectively. We give the conditions of existences and bifurcations for harmonic,
subharmonics, superharmonic and chaos for the system with one forcing in the
paper. And we give the threshold values of existence of chaotic motion under the
periodic perturbation for original system and under quasiperiodic perturbation for
averaged system for the system with two external forcings, but haven’t to give
the condition of various subharmonics in [7]. Moreover, comparing Fig.10, Fig.15,
Fig.18, Fig.21, Fig.24, Fig.25 in [7] with Fig.6, Fig.10, Fig.11, Fig.13, Fig.15, Fig.18
in the paper, respectively, we shown the dynamical behaviors of one external forcing
are different from that of two external forcings. In particular, there are the more
small chaotic regions (Lyapunov exponent approximating to zero and small size)
with a great abundance of periodic windows, and the system can be leave chaotic
region to periodic motion by adjusting the parameters p, β, γ, f and ω, which can be
considered as a control strategy for the system with one external forcing. But there
are the more large chaotic regions (larger Lyapunov exponent and wide region) with
quasi-periodic, periodic widows, and the system can leave chaotic region to periodic
motion by adjusting the parameter f2 and there are always the chaotic behavior
or quasi-periodic behavior as adjusting other parameters for two external forcings.
These results are useful for understanding dynamical behaviors for the Duffing-Van
der Pol system.
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