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Abstract In this paper, we consider a system of highly nonlinear multi-
species diffusion-reaction equations with homogeneous Neumann boundary
condition. All reactions are reversible (see (1.1)). For this system, the exis-
tence and uniqueness of the weak solution are proved on the interval [0, T )
for any T > 0. We obtain, global in time, L∞- estimates of the solution
with the help of a Lyapunov functional. For the existence of the solution, we
use Schaefer’s fixed point theorem, maximal regularity and Lyapunov type
arguments.
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1. Introduction

Recently Kräutle (cf. [9], [10]) has shown the global existence and uniqueness of
the solution in [H1,p((0, T );Lp(Ω)) ∩ Lp((0, T );H2,p(Ω))]I of a system of diffusion-
reaction equations for a multi-species reactive transport problem, where Ω is the
given porous medium, I is the number of chemical species and p > n+1. He showed
that with the help of a Lyapunov functional, we can be able to obtain some a-priori
estimates which are global in time and these estimates will help us to show the
existence of a unique weak solution on the time interval S := [0, T ) for any T > 0.
But to our knowledge, it seems that this idea has not been fully excavated to its
full strength when the solution u(t) has derivative only upto the first order, i.e., if
only u(t) ∈ H1,p(Ω). In this paper, we show the global existence and uniqueness of
the weak solution of a system of nonlinear multi-species diffusion-reaction equations
under appropriate initial and boundary conditions (see equations (1.2) - (1.8)) in
[H1,p(0, T ;H1,q(Ω)∗) ∩ Lp(0, T ;H1,p(Ω))]I for p > n + 2, where 1

p + 1
q = 1. The

lower regularity of the data involved gives more freedom for applications and it
seems that this is an appropriate setting for dealing with homogenization problems
(cf. [14]). The ingredients for the existence of the solution are a Lyapunov functional,
Schaefer’s fixed point theorem and a result from [17] which is based on the maximal
regularity of differential operators. We investigate the following model:a

Let Ω ⊂ Rn (n ≥ 2) be a bounded domain with sufficiently smooth boundary
∂Ω. Let I be the number of mobile species present in the carrier substance (e.g.

†the corresponding author: mahato@math.uni-bremen.de(H.S. Mahato)
1Center of Industrial Mathematics, University of Bremen, Bibliothekstr.1,
28359 Bremen, Germany

aThe proposed mathematical model is inspired from the work of Kräutle, see pages 13-16, 66, 74
in [9].
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water) in the domain Ω. These species diffuse and react with each other. The
reactions are reversible and given by

τ1jX1 + τ2jX2 + ...+ τIjXI 
 ν1jX1 + ν2jX2 + ...+ νIjXI , for 1 ≤ j ≤ J, (1.1)

where Xi, 1 ≤ i ≤ I, denotes the chemical species involved in J reactions. The
stoichiometric coefficients −τij ∈ Z−

0 and νij ∈ Z+
0 respectively. Let ui denote

the concentration of Xi and set u := (u1, u2, ..., uI). Then the system of diffusion-
reaction equations of these species is given by

∂u

∂t
−∇ ·D∇u = SR(u) in (0, T )× Ω, (1.2)

−D ∇u · n⃗ = 0 on (0, T )× ∂Ω, (1.3)

u(0, x) = u0(x) in Ω. (1.4)

where SR(u) is the reaction term and D > 0 is constant. Here S is the I × J-th
order stoichiometric matrix with entries sij = νij − τij for 1 ≤ i ≤ I and 1 ≤ j ≤ J ,
and R = (Rj)1≤j≤J is the J-th order reaction rate vector whose j-th component is
given as

Rj(u) = Rf
j (u)−Rb

j(u), (1.5)

where

Rf
j (u) = forward reaction rate = kfj

I∏
m=1
smj<0

u−smj
m (1.6)

and

Rb
j(u) = backward reaction rate = kbj

I∏
m=1
smj>0

usmj
m , (1.7)

where kfj and kbj > 0 are the forward and backward reaction rate factors respectively.
Therefore the reaction rate term for the i-th species is given by

(SR(u))i =
J∑

j=1

sijRj(u)

=

J∑
j=1

sij

(
Rf

j (u)−Rb
j(u)

)

=
J∑

j=1

sij

kfj I∏
m=1
smj<0

u−smj
m − kbj

I∏
m=1
smj>0

usmj
m

 . (1.8)

We denote the problem (1.2) - (1.8) by (P ).

2. Notations and some preliminaries

Let 1 < p, q < ∞ be such that 1
p + 1

q = 1. As usual, Lp(Ω) is the space of real-

valued measurable functions u such that |u(·)|p is Lebesgue integrable with the



Global solution of a semilinear equation 359

usual modification for p = ∞ and the corresponding norm is given by

||u||Lp(Ω) =


[∫

Ω

|u(x)|p dx
] 1

p

for 1 ≤ p <∞,

ess sup
x∈Ω

|u(x)| for p = ∞.

(2.1)

H1,p(Ω) is the usual Sobolev space w.r.t. the norm

||u||H1,p(Ω) =


[
||u||pLp(Ω) + ||∇u||pLp(Ω)

] 1
p

for 1 ≤ p <∞,

ess sup
x∈Ω

[|u(x)|+ |∇u(x)|] for p = ∞.
(2.2)

H1,q(Ω)∗ denotes the dual of H1,q(Ω). We define a continuous embedding Lp(Ω) ↪→
H1,q(Ω)∗ as

⟨f, v⟩H1,q(Ω)∗×H1,q(Ω) = ⟨f, v⟩Lp(Ω)×Lq(Ω) for f ∈ Lp(Ω), v ∈ H1,q(Ω). (2.3)

For k ∈ Z+
0 , C

k(Ω̄) denotes the Banach space of all k-times continuously differen-
tiable functions w.r.t. the norm

||u||Ck(Ω̄) =
∑
|α|≤k

sup
x∈Ω̄

|Dαu(x)| . (2.4)

Suppose that 0 < γ ≤ 1. Cγ(Ω̄) consists of all functions u ∈ C(Ω̄) such that

||u||Cγ(Ω̄) = ||u||C(Ω̄) + sup
x,y∈Ω
x̸=y

{
|u(x)− u(y)|

|x− y|γ
}
<∞. (2.5)

We introduce the Sobolev-Bochner space as

F := F p(Ω) :=

{
u ∈ Lp((0, T );H1,p(Ω)) :

du

dt
∈ Lp((0, T );H1,q(Ω)∗)

}
= H1,p((0, T );H1,q(Ω)∗) ∩ Lp((0, T );H1,p(Ω)), (2.6)

where du
dt is the distributional time derivative of u and for u ∈ F ,

||u||F := ||u||Lp((0,T );H1,p(Ω))+||u||Lp((0,T );H1,q(Ω)∗)+

∣∣∣∣∣∣∣∣dudt
∣∣∣∣∣∣∣∣
Lp((0,T );H1,q(Ω)∗)

. (2.7)

For 0 < θ < 1, let(
H1,q(Ω)∗,H1,p(Ω)

)
θ,p

− the real-interpolation space between H1,q(Ω)∗ and

H1,p(Ω) (2.8)

and[
H1,q(Ω)∗,H1,p(Ω)

]
θ
− the complex-interpolation space between H1,q(Ω)∗ and

H1,p(Ω), (2.9)

endowed with one of their usual equivalent norms (cf. [3], [18], [12]). Finally, C
denotes a generic positive constant which is not same all the time.
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Lemma 2.1. F ↪→ C([0, T ]; (H1,q(Ω)∗, H1,p(Ω))1− 1
p ,p

).

Proof. See theorem 4.10.2 in [1], or proposition 1.2.10 and remark 1.2.11 in [12].

Lemma 2.2. Let p > n+ 2, then F ↪→↪→ L∞((0, T )× Ω).

Proof. Step 1. We notice that

||v(t)− v(t0)||H1,q(Ω)∗ =

∣∣∣∣∣∣∣∣∫ t

t0

v
′
(s) ds

∣∣∣∣∣∣∣∣
H1,q(Ω)∗

≤
∫ t

t0

∣∣∣∣∣∣v′
(s)
∣∣∣∣∣∣
H1,q(Ω)∗

ds

≤
[∫ t

t0

∣∣∣∣∣∣v′
(s)
∣∣∣∣∣∣p
H1,q(Ω)∗

ds

] 1
p
[∫ t

t0

ds

] 1
q

≤ ||v||H1,p((0,T );H1,q(Ω)∗) |t− t0|
1
q

=⇒
||v(t)− v(t0)||H1,q(Ω)∗

|t− t0|
1
q

≤ ||v||H1,p((0,T );H1,q(Ω)∗) . (2.10)

This implies H1,p((0, T );H1,q(Ω)∗) ↪→ Cδ([0, T ];H1,q(Ω)∗), where δ = 1
q = 1− 1

p .

Step 2. The condition p > n+ 2 implies 1
2 + n

2p < 1− 1
p . Choose λ ∈

((
1
2 + n

2p

)
(
1− 1

p

)−1

, 1

)
and set η := λ(1 − 1

p ). Then by the reiteration theorem on real-

interpolation

||v(t)− v(t0)||(H1,q(Ω)∗,H1,p(Ω))η,1

|t− t0|δ(1−λ)

=

||v(t)− v(t0)||(H1,q(Ω)∗,H1,p(Ω))
λ(1− 1

p
),1

|t− t0|δ(1−λ)

=

||v(t)− v(t0)||(H1,q(Ω)∗,(H1,q(Ω)∗,H1,p(Ω))
(1− 1

p
),p

)λ,1

|t− t0|δ(1−λ)

≤C
||v(t)− v(t0)||1−λ

H1,q(Ω)∗

|t− t0|δ(1−λ)
× ||v(t)− v(t0)||λ(H1,q(Ω)∗,H1,p(Ω))

1− 1
p
,p

≤C

(
||v(t)− v(t0)||H1,q(Ω)∗

|t− t0|δ

)1−λ

× 2 sup
t∈(0,T )

||v(t)||λ(H1,q(Ω)∗,H1,p(Ω))
1− 1

p
,p

≤C

(
||v(t)− v(t0)||H1,q(Ω)∗

|t− t0|δ

)1−λ

× ||v||λC([0,T ];(H1,q(Ω)∗,H1,p(Ω))
1− 1

p
,p
) . (2.11)

Therefore, by step 1 and lemma 2.1, it follows that F ↪→ Cβ([0, T ]; (H1,q(Ω)∗,
H1,p(Ω))η,1), where

1
2 + n

2p < η < 1− 1
p and β = δ(1− λ).

Step 3. We have the following embeddings (cf. theorem 1.3.3.d in [18] and corollary
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5.28 in [13])

(H1,q(Ω)∗,H1,p(Ω))η,1 ↪→ (H1,q(Ω)∗,H1,p(Ω))η,p ↪→ H2η−1,p(Ω) ↪→ Cα(Ω̄),

where α = 2η − 1− n
p > 0. Therefore combining the steps 2 and 3, we obtain

F ↪→ Cβ([0, T ];Cα(Ω̄)) ↪→ Cσ([0, T ]× Ω̄) ↪→↪→ L∞((0, T )× Ω),

where σ = min(α, β).

Lemma 2.3. Let p > n+ 2. Then (H1,q(Ω)∗,H1,p(Ω))1− 1
p ,p

↪→↪→ L∞(Ω).

Proof. Let us denote E0 := H1,q(Ω)∗, E1 := H1,p(Ω) and E1− 1
p ,p

:= (H1,q(Ω)∗,

H1,p(Ω))1− 1
p ,p

. By lemma 3.4 in [8]: [E0, E1] 1
2
↪→ Lp(Ω). From this and the

reiteration theorem on real-interpolation, we obtain

E1− 1
p ,p

:= ([E0, E1] 1
2
, [E0, E1]1)1− 2

p ,p
↪→ (Lp(Ω),H1,p(Ω))1− 2

p ,p
= H1− 2

p ,p(Ω).

There exists a t > 0 such that p > n + 2 ⇒ 1 − n+2
p > t > 0 ⇒ 1 − 2

p > t + n
p .

From theorem 4.6.1 (e) in [18]: H1− 2
p ,p(Ω) ↪→ Ct(Ω̄). Since Ct(Ω̄) ↪→↪→ L∞(Ω),

H1− 2
p ,p(Ω) ↪→ Ct(Ω̄) ↪→↪→ L∞(Ω). Therefore (H1,q(Ω)∗, H1,p(Ω))1− 1

p ,p
↪→↪→

L∞(Ω).

Lemma 2.4 (Schaefer’s fixed point theorem). Let X be Banach space. Assume that
Z : X → X is a continuous and compact mapping and the solution of the set

{u ∈ X|∃λ ∈ [0, 1] : u = λZ(u)}

is bounded. Then Z has a fixed point.

Proof. See theorem 4 in section 9.2.2 in [7].
Next we introduce the norms on the vector-valued function spaces. Let I ∈ N

and u : Ω → RI , and set

[Lp(Ω)]
I
:= Lp(Ω)× Lp(Ω)× ...× Lp(Ω)︸ ︷︷ ︸

I-times

. (2.12)

For u ∈ [Lp(Ω)]
I
the corresponding norm is given as

|||u|||[Lp(Ω)]I :=

[
I∑

i=1

||ui||pLp(Ω)

] 1
p

. (2.13)

Similarly,

|||u|||[L∞(Ω)]I := max
1≤i≤I

||ui||L∞(Ω) , (2.14)

|||u|||[H1,p(Ω)]I :=

[
I∑

i=1

||ui||pH1,p(Ω)

] 1
p

, (2.15)

|||u|||[H1,∞(Ω)]I := max
1≤i≤I

||ui||H1,∞(Ω) , (2.16)

|||u|||[H1,q(Ω)∗]I :=

[
I∑

i=1

||ui||pH1,q(Ω)∗

] 1
p

. (2.17)
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We define

Fu
p :=

[
H1,p((0, T );H1,q(Ω)∗) ∩ Lp((0, T );H1,p(Ω))

]I
(2.18)

and

X u
p :=

[(
H1,q(Ω)∗, H1,p(Ω)

)
1− 1

p ,p

]I
. (2.19)

For u ∈ Fu
p

|||u|||Fu
p
:=

[
I∑

i=1

||ui||pF

] 1
p

(2.20)

and for v ∈ X u
p

|||v|||Xu
p
:=

[
I∑

i=1

||vi||p(H1,q(Ω)∗,H1,p(Ω))
1− 1

p
,p

] 1
p

. (2.21)

Definition 2.1 (Weak formulation). A function u ∈ Fu
p is said to be a weak

solution of the problem (P ) if it satisfies

(i)

⟨
∂u(t)

∂t
, ϕ

⟩
[H1,q(Ω)∗]I×[H1,q(Ω)]I

+

∫
Ω

⟨D∇u(t, x),∇ϕ(x)⟩I dx

= ⟨SR(u(t)), ϕ⟩[H1,q(Ω)∗]I×[H1,q(Ω)]I

for every ϕ ∈ [H1,q(Ω)]I and for a.e. t. (2.22)

(ii) u(0, x) = u0(x) in Ω. (2.23)

Let the following assumptions hold:

(i) p > n+ 2, (2.24)

(ii) u0 ≥ 0, i.e., u0i ≥ 0 for all i = 1, 2, ..., I, (2.25)

(iii) u0i ∈ (H1,q(Ω)∗,H1,p(Ω))1− 1
p ,p

for i = 1, 2, ..., I, (2.26)

(iv) All reactions are linearly independent such that the stoichiometric matrix

S = (sij)1≤i≤I
1≤j≤J

has maximal column rank, i.e., rank(S) = J. (2.27)

Our main result reads as

Theorem 2.1 (Existence theorem). Let the assumptions (2.24) - (2.27) be satisfied,
then there exists a unique positive global weak solution u ∈ Fu

p of the problem (P ).

3. Maximal regularity

Definition 3.1. Let 1 < p <∞, X be a Banach space and A : X → X be a closed,
not necessarily bounded, operator, where the domain D(A) of A is dense in X. A
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is said to have the maximal Lp-regularity if for every f ∈ Lp((0, T );X) there exists
a unique solution u ∈ Lp((0, T );D(A)) ∩H1,p((0, T );X) of the problem

du(t)

dt
+Au(t) = f(t) for t > 0, (3.1)

u(0) = 0. (3.2)

which satisfies

||u||Lp((0,T );X) + ||ut||Lp((0,T );X) + ||u||Lp((0,T );D(A)) ≤ C ||f ||Lp((0,T );X) , (3.3)

where C > 0 is a constant independent of f .

For a detailed overview on maximal regularity, we refer to [2, 5, 11, 15, 16] and
references therein. Now we set D(A) := H1,p(Ω) and X := H1,q(Ω)∗. Clearly,

D(A)
d
⊆ X.∗ Let µ = (µij)1≤i≤n

1≤j≤n

be a positive definite symmetric matrix-field,

where µij ∈ C(Ω̄) and there is a constant C > 0

n∑
i,j=1

µij(x)ζiζj ≥ C|ζ|2 for all ζ ∈ Rn and x ∈ Ω. (3.4)

We define a sesquilinear form a(u, v) : H1,p(Ω)×H1,q(Ω) → R by

a(u, v) :=

∫
Ω

µ∇u · ∇v dx+ κ

∫
Ω

uv dx for u ∈ H1,p(Ω) and v ∈ H1,q(Ω), (3.5)

where κ > 0. We further define an operator A : H1,p(Ω) → H1,q(Ω)∗ associated
with the form a(u, v) by

⟨Au, v⟩ := a(u, v) for u ∈ H1,p(Ω) and v ∈ H1,q(Ω). (3.6)

In [4] and [5], it is shown that: (i)
∣∣∣∣Ais

∣∣∣∣
L(X)

≤ Keθ|s| for some 0 < θ < π
2 , s ∈ R,

whereK > 0 and (ii) (−∞, 0] ⊂ ρ(A) (resolvent of A) and
∣∣∣∣(λ+A)−1

∣∣∣∣
L(X)

≤ C
1+|λ|

for every λ ∈ [0,∞), where C > 0. By a theorem of Dore and Venni (cf. [6]), A has
maximal Lp-regularity on H1,q(Ω)∗.

4. Proof of theorem 2.1

Strategy of the proof: We modify some parts of the methodology of Kräutle
(cf. [10]) in order to prove the positivity, existence and uniqueness of the global
solution of the problem (P ). Before dealing with (P ), we consider a slightly modified
problem and introduce the rate function R̄ : RI → RJ as

R̄(u) := R(u+), (4.1)

where u+ is the positive part of u defined componentwise as

∗A
d
⊆ B means that A is dense in B.
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u+i := max(ui, 0),

u−i := max(−ui, 0) = −min(ui, 0)

and ui = u+i − u−i .

 (4.2)

Replacing R by R̄ in (1.2), we get

∂u

∂t
−∇ ·D∇u = SR̄(u) in (0, T )× Ω, (4.3)

u(0, x) = u0(x) in Ω, (4.4)

−D∇u · n⃗ = 0 on (0, T )× ∂Ω. (4.5)

Let us denote this problem by (P+). We will prove the existence of a global solution
of (P+). Since we show that the solution of (P+) is non-negative, it solves (P ).
We conclude this section by proving the uniqueness of the solution of (P ). We
commence our investigation with the positivity of the solution of (P+).

Lemma 4.1. Let (2.24)-(2.27) hold and a function u ∈ Fu
p be the solution of (P+).

Then ui ≥ 0 on (0, T )× Ω for all i.

Proof. The proof follows exactly as the one for lemma 2 given in [10]: Let Ωp−

i (t)
be the support of u−i (t). We multiply the i-th PDE of (4.3) by −u−i (t) and integrate

over Ωp−

i (t). The rest follows by Gronwall’s inequality.

Now we show the existence of a global weak solution of (P+). For technical
reasons, we add an extra term on both sides of (P+), i.e., for a constant κ > 0 we
have

∂u

∂t
−∇ ·D∇u+ κu = SR̄(u) + κu in (0, T )× Ω, (4.6)

u(0, x) = u0(x) in Ω, (4.7)

−D∇u · n⃗ = 0 on (0, T )× ∂Ω. (4.8)

We denote (4.6) - (4.8) by (P+
M ). We see that the solution of (P+

M ) is also the
solution of (P+). We prove the global existence of a weak solution of (P+

M ).

4.1. Fixed point operator

Let us define a fixed point operator Z1 : Fu
p → Fu

p via

Z1(v) = u, (4.9)

where u is the solution of the linear problem

∂u

∂t
−∇ ·D∇u+ κu = SR̄(v) + κv in (0, T )× Ω, (4.10)

u(0, x) = u0(x) in Ω, (4.11)

−D∇ui · n⃗ = 0 on (0, T )× ∂Ω (4.12)

for i = 1, 2, ..., I.
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Remark 4.1. The reformulation of (4.10)-(4.12) is given by

du

dt
+Au = f(v), (4.13)

u(0) = u0, (4.14)

where f(v) = SR̄(v) + κv and the operator A : H1,p(Ω)I → [H1,q(Ω)∗]I is defined
as Au := (A1u1, A2u2, ..., AIuI) such that for 1 ≤ i ≤ I,

⟨Aiui, wi⟩ :=
∫
Ω

D∇ui(x) · ∇wi(x) dx

+ κ

∫
Ω

ui(x)wi(x) dx for ui ∈ H1,p(Ω) and wi ∈ H1,q(Ω).

The assumption (2.24) guarantees u0 ∈ X u
p . By lemma 2.2: Since v ∈ Fu

p , v ∈
L∞((0, T )× Ω)

I
. This shows that f(v) = SR̄(v) + κv ∈ [Lp((0, T );H1,q(Ω)∗)]I .†

Moreover section 3 ensures the maximal regularity of A on [H1,q(Ω)∗]I .‡ Therefore
theorem 2.5 in [17] gives the existence of a unique solution u ∈ Fu

p of the problem
(4.13) - (4.14). Thus the operator Z1 is well-defined.

Remark 4.2. Every fixed point of Z1 is a solution of the problem (P+
M ).

In order to use Schaefer’s fixed point theorem, we need to verify the following
conditions:

(i) The operator Z1 is continuous and compact.

(ii) The set {u ∈ Fu
p |∃λ ∈ [0, 1] : u = λZ1(u)} is bounded, i.e., there exists a

constant C > 0 such that any arbitrary solution u ∈ Fu
p of the equation

u = λZ1(u) (4.15)

satisfies

∥|u∥|Fu
p
≤ C, (4.16)

where C is independent of λ, u and t. Equations (4.10)-(4.12) and (4.15)
imply

∂u

∂t
−∇ ·D∇u+ κu = λSR̄(u) + λκu in (0, T )× Ω, (4.17)

u(0, x) = λu0(x) in Ω, (4.18)

−D∇u · n⃗ = 0 on (0, T )× ∂Ω. (4.19)

We denote the problem (4.17)-(4.19) as (P+
Mλ

).

4.1.1. Introduction of the Lyapunov functions

Let µ0 ∈ RI be a solution of the linear system

STµ0 = − logK, (4.20)

†We have used Lp(Ω) ↪→ H1,q(Ω)∗.
‡The operator A is said to have maximal regularity on [H1,q(Ω)∗]I if each Ai has maximal

regualrity on H1,q(Ω)∗.
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where K ∈ RJ is the vector of equilibrium constants Kj =
kf
j

kb
j

related to the J

kinetic reactions. Due to assumption (2.25), the system (4.20) has a solution µ0.
Following [10], we define the following functions:

Let gi : R+
0 → R and g : R+

0

I → R be defined as§

gi(ui) = (µ0
i − 1 + log ui)ui + e(1−µ0

i ) for each i = 1, 2, ..., I (4.21)

and

g(u) =
I∑

i=1

gi(ui). (4.22)

For r ∈ N, we define fr : R+
0

I → R and Fr : L∞
+ (Ω)I → R as

fr(u) = [g(u)]r (4.23)

and

Fr(u) =

∫
Ω

fr(u(x)) dx. (4.24)

Proposition 4.1. For all i = 1, 2, ..., I,

g(u) ≥ gi(ui) ≥ ui ≥ 0 (4.25)

and
Fr(u) ≥ ||ui||rLr(Ω) . (4.26)

Proof. It can be easily seen that the minimum of the function ψ(ui) := gi(ui)−ui
is zero which implies inequality (4.25). For (4.26) see that

Fr(u) =

∫
Ω

fr(u(x)) dx =

∫
Ω

[g(u(x))]
r
dx ≥

∫
Ω

|ui(x)|r dx.

Proposition 4.2. Let α > 0. Then the following inequalities hold

gi(ui) ≤ C (1 + u1+α
i ) for all i, (4.27)

g(u) ≤ C (1 + |u|1+α
I ) (4.28)

and
fr(u) ≤ C (1 + |u|r(1+α)

I ), (4.29)

where C > 0 is a constant depending on α and µi but is independent of ui.

Proof. The proof follows directly from the definitions of gi, g and fr.
From (4.26) it is clear that the Lr - norm of ui will be finite if we can obtain

an upper bound of Fr(u). Thus obtaining an upper bound for Fr(u) is the main
concern of the following theorem:

Theorem 4.1. Let r ∈ N (r ≥ 2), 0 ≤ t ≤ T , p > n + 2 and 0 ≤ λ ≤ 1. Further
assume that u ∈ Fu

p is a solution of (P+
Mλ

). Then the following inequality holds:

Fr(u(t)) ≤ eIrκ(e(e−1))−1t Fr(u(0)) for all r and for a.e. t. (4.30)

§Here we have considered the natural logarithm, i.e. loge · · ·.
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To prove this theorem, we need the following lemmas as basic ingredients. For
p > n + 1 and ζ ∈ [H1,p((0, T );Lp(Ω)) ∩ Lp((0, T );H2,p(Ω))]I , these lemmas have
been proved in [10], but they can be adapted for the functions in Fu

p with p > n+2.

Lemma 4.2. The map Fr : L∞
+ (Ω)I → R is continuous.

Proof. The proof is analogous to the proof of the lemma 3.4 in [9].

Let us consider the derivative (in the classical sense) of fr : R+
0

I → RI which is
given as

∂fr(v) = ∇vfr(v)

= r[g(v)]r−1∇vg(v)

= rfr−1(v)
(
µ0 + log v

)
.

We see that ∂fr(v) is undefined for v = 0 whereas fr−1(v) is defined for all v ≥ 0.
Since we only know the nonnegativity of v, we define, for any δ > 0,

vδ := v + δ. (4.31)

Clearly, vδ ≥ δ > 0 and vδ ∈ Fu
p . From here on we work with the function vδ unless

stated otherwise. We aim to prove that for vδ ∈ Fu
p ,

∂fr(vδ) ∈ Lq((0, T );H1,q(Ω))I . (4.32)

To prove (4.32), our point of departure is the following lemma which deals with the
continuity of ∂fr.

Lemma 4.3. Let p > n+ 2 and δ > 0, then the map

vδ 7→ ∂fr(vδ), i.e., ∂fr : Fu
p → L∞((0, T )× Ω)I

is continuous.

Proof. Let vδ ∈ Fu
p . For p > n + 2, from lemma 2.2 it follows that vεδ ∈

[L∞((0, T )× Ω)]I . The rest follows as in the proof of lemma 3.6 in [9].

Lemma 4.4. (Derivative of the vector function x 7−→ ∂fr(vδ(t, x)) w.r.t. x ∈ Ω) Let
p > n+2, r ∈ N (r ≥ 2) and vδ ∈ Fu

p . We define the map w(vδ) : (0, T )×Ω → RI×n

by

w(vδ)(t, x) := {r(r − 1)fr−2(vδ)Mµ(vδ) + rfr−1(vδ)Λ 1
vδ

}∇xvδ(t, x), (4.33)

where Mµ(vδ) is the I×I-th order symmetric matrix with entries (µ0
i +log vδi)(µ

0
j +

log vδj ) and Λ 1
vδ

is the I × I-th order diagonal matrix with entries 1
vδi

. Then

∇x(∂fr(vδ)) = w(vδ) ∈ Lq((0, T );Lq(Ω))I×n, (4.34)

i.e., ∂fr(vδ) ∈ Lq((0, T );H1,q(Ω))I . (4.35)

Proof. Let vδ ∈ Fu
p . For p > n + 2, lemma 2.2 implies vδ ∈ L∞((0, T ) × Ω)I .

Since vδ ≥ δ, from the definitions of fr(vδ), Mµ(vδ) and Λ 1
vδ

, we have

r(r − 1)fr−2(vδ)Mµ(vδ) + rfr−1(vδ)Λ 1
vδ

∈ L∞((0, T )× Ω)I×I . (4.36)
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Also note that for p > n+ 2 and vδ ∈ Fu
p , ∇xvδ ∈ Lq((0, T );Lq(Ω))I×n. Therefore

w(vδ) ∈ Lq((0, T );Lq(Ω))I×n. Next we prove that ∇x (∂fr(vδ)) = w(vδ). This
follows from the density of C∞([0, T ]× Ω̄)I in Fu

p (for details cf. lemma 3.6 in [9],
e.g.).

Lemma 4.5. Let u ∈ Fu
p be the solution of the problem (P+

Mλ
) and δ > 0 be such

that uδ := u+ δ. Then we have the following inequality∫ t

0

⟨
∂u

∂τ
, ∂fr(uδ)

⟩
[H1,q(Ω)∗]I×[H1,q(Ω)]I

dτ ≤ Irκ (e(e− 1))−1

∫ t

0

Fr(uδ(τ)) dτ

+ l(t, uδ, δ) + h(t, δ, uδ) for a.e. t,
(4.37)

where h(t, δ, uδ) and l(t, uδ, δ) −→ 0 as δ −→ 0 for a.e. t.

Proof. As in the proof of lemma 4.1 it can be shown that the solution of (P+
Mλ

)
is also nonnegative, set

uδ := u+ δ ≥ δ. (4.38)

Clearly, uδ ∈ Fu
p . By lemma 4.4, ∂fr(uδ) ∈ Lq((0, T );H1,q(Ω))I . Using ∂fr(uδ) as

test function for the weak formulation of (P+
Mλ

), we obtain∫ t

0

⟨
∂u
∂τ , ∂fr(uδ)

⟩
[H1,q(Ω)∗]I×[H1,q(Ω)]I

dτ

−
∫ t

0
⟨∇D∇u, ∂fr(uδ)⟩[H1,q(Ω)∗]I×[H1,q(Ω)]I dτ + κ

∫ t

0

∫
Ω
⟨u, ∂fr(uδ(τ))⟩I dx dτ

= λ
∫ t

0

⟨
SR̄(u), ∂fr(uδ)

⟩
[H1,q(Ω)∗]I×[H1,q(Ω)]I

dt+ λκ
∫ t

0

∫
Ω
⟨u, ∂fr(uδ(τ))⟩I dx dτ,

i.e., ∫ t

0

⟨
∂u
∂τ , ∂fr(uδ)

⟩
[H1,q(Ω)∗]I×[H1,q(Ω)]I

dτ

= −
∫ t

0
⟨D∇uδ,∇x (∂fr(uδ))⟩[Lp(Ω)]I×n×[Lq(Ω)]I×n dτ

+λ
∫ t

0

⟨
SR̄(u), ∂fr(uδ)

⟩
[H1,q(Ω)∗]I×[H1,q(Ω)]I

dτ

−(1− λ)κ
∫ t

0

∫
Ω
⟨u, ∂fr(uδ(τ))⟩I dx dτ,

i.e.,∫ t

0

⟨
∂u

∂τ
, ∂fr(uδ)

⟩
[H1,q(Ω)∗]I×[H1,q(Ω)]I

dτ =: I
(t)
diff + I(t)reac + I

(t)
Ex for a.e. t,

(4.39)
where

I
(t)
diff := −

n∑
k=1

∫ t

0

∫
Ω

⟨
D

∂

∂xk
uδ,

∂

∂xk
(∂fr(uδ))

⟩
I

dx dτ, (4.40)

I(t)reac := λ

∫ t

0

⟨
SR̄(u), ∂fr(uδ)

⟩
[H1,q(Ω)∗]I×[H1,q(Ω)]I

dτ (4.41)

and

I
(t)
Ex := −(1− λ)κ

∫ t

0

∫
Ω

⟨u, ∂fr(uδ(τ))⟩I dx dτ. (4.42)
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Now we simplify the terms on the r.h.s. of (4.39) one by one. ¶

I(t)reac = λ

∫ t

0

∫
Ω

⟨
SR̄(u), ∂fr(uδ)

⟩
I
dx dτ

= λ

∫ t

0

∫
Ω

⟨
rfr−1(uδ)

(
µ0 + log uδ

)
, SR̄(u)

⟩
I
dx dτ

= λr

∫ t

0

∫
Ω

fr−1(uδ)
⟨
µ0 + log uδ, SR̄(u)

⟩
I
dx dτ. (4.43)

Following the steps of lemma 5 in [10], we can estimate the integral on the r.h.s. of
(4.43), i.e.,

I(t)reac ≤ λ r C
I∑

i=1

(∫ t

0

∫
Ω

(
δ|µ0

i |+ T |Ω|δ| log δ|
)
dx dτ

+ δ

∫ t

0

∫
Ω

(ui + δ) dx dτ
)
=: h(t, δ, uδ) for a.e. t,

where C is independent of λ and uδ, and all the other factors of h(t, δ, uδ) are
bounded and tending to zero as δ −→ 0 for a.e. t, i.e.,

I(t)reac ≤ h(t, δ, uδ) −→ 0 as δ −→ 0 for a.e. t. (4.44)

From lemma 5 in [10] we get

I
(t)
diff =−

n∑
k=1

∫ t

0

∫
Ω

⟨
D

∂

∂xk
u

δ
,
∂

∂xk
(∂fr(uδ))

⟩
I

dx dτ

=− r(r − 1)D

∫ t

0

∫
Ω

fr−2(uδ)
n∑

k=1

⟨
µ0 + log uδ, ∂xk

uδ
⟩2
I
dx dτ

− rD

∫ t

0

∫
Ω

fr−1(uδ)
I∑

i=1

n∑
k=1

1

uδi

(
∂uδi
∂xk

)2

dx dτ for a.e. t. (4.45)

Both the terms of (4.45) are nonpositive, hence

I
(t)
diff ≤ 0 for a.e. t. (4.46)

¶p > n+ 2 and u ∈ Fu
p imply u ∈ L∞((0, T )× Ω)I . This gives SR(u) ∈ Lp((0, T );Lp(Ω))I ↪→

Lp((0, T );H1,q(Ω)∗)I . Recall the definition (2.3) for the continuous embedding Lp(Ω) ↪→
H1,q(Ω)∗ as

⟨f, ζ⟩H1,q(Ω)∗×H1,q(Ω) = ⟨f, ζ⟩Lp(Ω)×Lq(Ω), for f ∈ Lp(Ω) and ζ ∈ H1,q(Ω).
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I
(t)
Ex = −κ(1− λ)

I∑
i=1

∫ t

0

∫
Ω

ui∂fr(uδ)i dx dτ

= κ(1− λ)
I∑

i=1

∫ t

0

∫
Ω

r(δ − uδi)fr−1(uδ)(µ
0
i + log uδi) dx dτ since uδi = ui + δ

= δκ(1− λ)

I∑
i=1

∫ t

0

∫
Ω

r(µ0
i + log uδi)fr−1(uδ) dx dτ

+ rκ(1− λ)

I∑
i=1

∫ t

0

∫
Ω

−uδi(µ0
i + log uδi)fr−1(uδ) dx dτ. (4.47)

It can be shown that

− uδi(µ
0
i + log uδi) ≤ e−(1+µ0

i ) ∀i. (4.48)

We have log uδi ≤ uδi ≤ gi(uδi) and gi(uδi) ≥ (e − 1)e−µ0
i . Choosing a constant

C = max
1≤i≤I

(
1 +

∣∣µ0
i

∣∣ e−µ0
i (e− 1)

)
, we obtain

µ0
i + log uδi ≤ µ0

i + gi(uδi) ≤
∣∣µ0

i

∣∣+ gi(uδi) ≤ C gi(uδi). (4.49)

Combining (4.47), (4.48) and (4.49), we get

I
(t)
Ex ≤ rδκ(1− λ)

I∑
i=1

∫ t

0

∫
Ω

Cgi(uδi)fr−1(uδ) dx dτ

+ κ(1− λ)
I∑

i=1

∫ t

0

∫
Ω

re−(1+µ0
i )fr−1(uδ) dx dτ

≤ rδκ(1− λ)C

I∑
i=1

∫ t

0

∫
Ω

g(uδ)fr−1(uδ) dx dτ

+ κ(1− λ)

I∑
i=1

∫ t

0

∫
Ω

r(e(e− 1))−1g(uδ)fr−1(uδ) dx dτ, since gi(uδi) ≤ g(uδ)

≤ r δ κ I C

∫ t

0

∫
Ω

fr(uδ) dx dτ + κ I r (e(e− 1))−1

∫ t

0

∫
Ω

fr(uδ) dx dτ,

since 0 ≤ λ ≤ 1 and fr = fr−1g for a.e. t. (4.50)

As δ → 0, fr(uδ) is bounded in L1((0, T ) × Ω). Therefore for a.e. t the first term
on the right hand side in (4.50) tends to zero as δ → 0. Denote the first term by
l(t, uδ, δ), then

I
(t)
Ex ≤ l(t, uδ, δ) + Irk(e(e− 1))−1

∫ t

0

∫
Ω

fr(uδ) dx dτ for a.e. t. (4.51)

Therefore combining (4.39), (4.44), (4.46) and (4.51) we obtain∫ t

0

⟨
∂u

∂τ
, ∂fr(uδ)

⟩
[H1,q(Ω)∗]I×[H1,q(Ω)]I

dτ

≤h(t, uδ, δ) + l(t, uδ, δ) + Irκ(e(e− 1))−1

∫ t

0

Fr(uδ) dτ for a.e. t,
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where h(t, δ, uδ) and l(t, uδ, δ) −→ 0 as δ −→ 0 for a.e. t.

Proof of theorem 4.1. Let u ∈ Fu
p be the solution of (P+

Mλ
). Due to lemma 4.1

we know that u ≥ 0. For any fixed δ > 0, let

uδ := u+ δ. (4.52)

Let η > 0 and choose a smooth function ūδ ∈ C∞([0, T ] × Ω̄)I sufficiently close to
uδ such that

ūδ ≥ δ

2
, (4.53)

||∂tūδ − ∂tuδ||Lp((0,T );H1,q(Ω)∗)I ≤ η, (4.54)

|[Fr (uδ(t))− Fr (uδ(0))]− [Fr (ūδ(t))− Fr (ūδ(0))]| ≤ δ, (4.55)

||∂fr(uδ)− ∂fr(ūδ)||L∞((0,T )×Ω)I ≤ η, (4.56)

and

η ||∂fr(uδ)||Lq((0,T );H1,q(Ω))I + η ||∂tūδ||L1((0,T )×Ω)I ≤ δ. (4.57)

Then for a.e. t

∣∣∣ ∫ t

0

⟨∂fr(uδ), ∂τuδ⟩[H1,q(Ω)]I×[H1,q(Ω)∗]I dτ

−
∫ t

0

⟨∂fr(ūδ), ∂τ ūδ⟩[H1,q(Ω)]I×[H1,q(Ω)∗]I dτ
∣∣∣

≤
I∑

i=1

∫ T

0

∣∣∣⟨∂fr(uδ)i − ∂fr(ūδ)i, ∂τ ūδi⟩H1,q(Ω)×H1,q(Ω)∗

∣∣∣ dτ
+

I∑
i=1

∫ T

0

∣∣∣⟨∂τuδi − ∂τ ūδi , ∂fr(uδ)i⟩H1,q(Ω)∗×H1,q(Ω)

∣∣∣ dτ
≤

I∑
i=1

∫ T

0

∣∣∣⟨∂fr(uδ)i − ∂fr(ūδ)i, ∂τ ūδi⟩Lq(Ω)×Lp(Ω)

∣∣∣ dτ
+

I∑
i=1

∫ T

0

∣∣∣⟨∂τuδi − ∂τ ūδi , ∂fr(uδ)i⟩H1,q(Ω)∗×H1,q(Ω)

∣∣∣ dτ
≤

I∑
i=1

[
||∂fr(uδ)i − ∂fr(ūδ)i||L∞((0,T )×Ω) ||∂tūδi ||L1((0,T )×Ω)

+ ||∂tuδi − ∂tūδi ||Lp((0,T );H1,q(Ω)∗) ||∂fr(uδ)i||Lq((0,T );H1,q(Ω))

]
≤

I∑
i=1

[
η ||∂tūδi ||L1((0,T )×Ω) + η ||∂fr(uδ)i||Lq((0,T );H1,q(Ω))

]
≤

I∑
i=1

δ = δI by (4.57).

(4.58)
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For the smooth function ūδ, we have

Fr(ūδ(t))− Fr(ūδ(0)) =

∫ t

0

d

dτ
(Fr(ūδ(τ))) dτ

=

∫ t

0

∫
Ω

∂

∂τ
fr(ūδ) dx dτ

=

∫ t

0

⟨
∂fr(ūδ),

∂ūδ
∂τ

⟩
[H1,q(Ω)]I×[H1,q(Ω)∗]I

dτ. (4.59)

This implies∣∣∣∣Fr(uδ(t))− Fr(uδ(0))−
∫ t

0

⟨∂fr(uδ), ∂τuδ⟩[H1,q(Ω)]I×[H1,q(Ω)∗]I dτ

∣∣∣∣
≤ |[Fr(uδ(t))− Fr(uδ(0))]− [Fr(ūδ(t))− Fr(ūδ(0))]|

+

∣∣∣∣∫ t

0

⟨∂fr(ūδ), ∂τ ūδ⟩[H1,q(Ω)]I×[H1,q(Ω)∗]I dτ

−
∫ t

0

⟨∂fr(uδ), ∂τuδ⟩[H1,q(Ω)]I×[H1,q(Ω)∗]I dτ

∣∣∣∣ by (4.59)

≤ δ + δI by (4.55) and (4.58)

= (I + 1)δ.

This gives

|Fr(uδ(t))− Fr(uδ(0))|

≤ (I + 1)δ +

∫ t

0

⟨∂fr(uδ), ∂τuδ⟩[H1,q(Ω)]I×[H1,q(Ω)∗]I dτ

≤ (I + 1)δ + h(t, uδ, δ) + l(t, uδ, δ)

+ I rκ (e(e− 1))−1

∫ t

0

Fr(uδ) dτ by lemma 4.5 and for a.e. t,

where h(t, uδ, δ) and l(t, uδ, δ) as δ → 0 for a.e. t. Therefore from the continuity of
Fr, we obtain

Fr(u(t)) ≤ Fr(u(0)) + Irκ(e(e− 1))−1

∫ t

0

Fr(u) dτ for a.e. t.

Gronwall’s inequality gives

Fr(u(t)) ≤ eIrκ(e(e−1))−1tFr(u(0)) for all r and for a.e. t.

This completes the proof. �
An immediate consequence of theorem 4.1 is the following corollary which gives the
a-priori estimates (global in time) of the solution of (P+

Mλ
).

Corollary 4.1. Let p > n + 2, r ∈ N and 0 ≤ λ ≤ 1. Suppose that u ∈ Fu
p is the

solution of the problem (P+
Mλ

), then the following estimates hold:

|||u(t)|||Lr(Ω)I ≤ C <∞ for all r and for a.e. t, (4.60)

and |||u(t)|||L∞(Ω)I ≤ C <∞ for a.e. t, (4.61)

where C is independent of i, u and t.
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Proof. From lemma 2.3, it follows that for p > n + 2, u0 ∈ L∞(Ω)I . For the
problem (P+

Mλ
), u(0) = λu0. Therefore from theorem 4.1, for a.e. 0 ≤ t ≤ T , we

have

Fr(u(t)) ≤ eIrκ(e(e−1))−1 t Fr(u(0)) for all r and for a.e. t.

=⇒
∫
Ω

uri (t, x) dx ≤ eIrκ(e(e−1))−1t

∫
Ω

fr(λu0(x)) dx for all r and for a.e. t.

(4.62)
From proposition 4.2, we have

fr(λu0) ≤ C
(
1 + |λu0|r(1+α)

I

)
, (4.63)

where α > 0 and C are independent of δ, λ and ui. Combining (4.62) and (4.63),
we obtain

||ui(t)||rLr(Ω) ≤ C eIrκ(e(e−1))−1t

∫
Ω

(1 + |u0|r(1+α)
I ) dx since 0 ≤ λ ≤ 1

≤ C

∫
Ω

(
1 +

(
I

1
2 ||u0||L∞(Ω)I

)r(1+α)
)
dx for a.e. t,

i.e.,

I∑
i=1

||ui(t)||rLr(Ω) ≤ I C

∫
Ω

(
1 +

(
I

1
2 ||u0||L∞(Ω)I

)r(1+α)
)
dx <∞ for a.e. t.

This gives (4.60). Note that C in (4.60) depends on r. Again from theorem 4.1, for
a.e. 0 ≤ t ≤ T , we have

Fr(u(t)) ≤ eIrκ(e(e−1))−1tFr(λu0) for all r and for a.e. t.

Proceeding as above, we obtain

||ui(t)||rLr(Ω) ≤ C eIrκ(e(e−1))−1t
∣∣∣∣∣∣1 + |u0|(1+α)

I

∣∣∣∣∣∣r
Lr(Ω)

=⇒ ||ui(t)||Lr(Ω) ≤
(
C eIrκ(e(e−1))−1t

) 1
r
∣∣∣∣∣∣1 + |u0|(1+α)

I

∣∣∣∣∣∣
Lr(Ω)

≤ sup
r∈N

(
C eIrκ(e(e−1))−1t

) 1
r
∣∣∣∣∣∣1 + |u0|(1+α)

I

∣∣∣∣∣∣
Lr(Ω)

∀ i and r, and for a.e. t.

Taking limit sup as r → ∞ on both sides, we obtain

||ui(t)||L∞(Ω) ≤ C
∣∣∣∣∣∣1 + |u0|(1+α)

I

∣∣∣∣∣∣
L∞(Ω)

≤ C

(
1 +

(
I

1
2 |||u0|||L∞(Ω)I

)(1+α)
)
<∞ ∀i and for a.e. t. (4.64)

By (4.64), |||u(t)|||L∞(Ω)I = max
1≤i≤I

||ui(t)||L∞(Ω) <∞ for a.e. t which is (4.61).
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Corollary 4.2. Let p > n + 2, r ∈ N and 0 ≤ λ ≤ 1. Then there exists a positive
constant C (depending only on r, T , |Ω| and I but independent of λ and u) such
that any arbitrary solution u ∈ Fu

p of the problem (P+
Mλ

) satisfies

|||u|||Fu
p
≤ C.

Proof. Choosing r ∈ N sufficiently large in corollary 4.1 and application of Hölder’s
inequality shows the r.h.s., λSR̄(u) + λκu, of (P+

Mλ
) is in Lp((0, T );Lp(Ω))I . Since

Lp(Ω) ↪→ H1,q(Ω)∗, λSR̄(u) + λκu ∈ Lp((0, T );H1,q(Ω)∗)I .
The reformulation of (4.17)-(4.19) is given by

du(t)

dt
+Au(t) = f(t), (4.65)

u(0) = λu0, (4.66)

where f(t) = λSR̄(u(t)) + λκu(t) and κ > 0. f is in Lp((0, T );H1,q(Ω)∗)I . The
operator A is defined as in remark 4.1. Moreover, by assumption (2.24) u0 ∈ X u

p .

The operator A has the maximal parabolic regularity on [H1,q(Ω)∗]I . Therefore
from the theory of linear evolution equation (cf. theorem 2.5 [17]), there exists a
C̃ > 0 such that∥

|||u|||Fu
p
≤ C̃

(
||λu0||Xu

p
+
∣∣∣∣λSR̄(u) + λκu

∣∣∣∣
Lp((0,T );H1,q(Ω)∗)I

)
≤ C̃

(
||u0||Xu

p
+
∣∣∣∣SR̄(u)∣∣∣∣

Lp((0,T );H1,q(Ω)∗)I
+ κ ||u||Lp((0,T );H1,q(Ω)∗)I

)
=: C <∞,

where C is independent of λ and u.

4.1.2. Compactness and continuity of Z1

Lemma 4.6. The fixed point operator Z1 is continuous and compact.

Proof. Here we will only show the continuity of Z1 as the compactness follows with
similar arguments. Let (vn)n≥1 be a sequence in Fu

p converging to a limit v ∈ Fu
p .

From lemma 2.2, (vn)n≥1 is convergent to v in [L∞((0, T ) × Ω)]I . This implies
that (SR(vn) + κvn)n≥1 is convergent to SR(v) + κv in [Lp((0, T ) × Ω)]I . Due to
the continuous embedding Lp(Ω) ↪→ H1,q(Ω)∗, (SR(vn) + κvn)n≥1 is convergent to
SR(v)+κv in [Lp((0, T );H1,q(Ω)∗)]I . From the linear theory of evolution equation
(cf. theorem 2.5 in [17]), we conclude that the map Z1 is continuous.

Proof of theorem 2.1. Applying Schaefer’s fixed point theorem, thanks to corol-
lary 4.2 and lemma 4.6, we get the existence of at least one fixed point, i.e., existence
of at least one solution of the problem (P+

M ) and this solution solves (P+). Due to
lemma 4.1, this solution is also a solution of (P ). Now we prove the uniqueness of
the solution of (P ). Let u1 and u2 ∈ Fu

p be two solutions of the problem (P ), where
u1 ̸= u2. Then we have

∂uk
∂t

−∇ ·D∇uk = SR(uk) in (0, T )× Ω, (4.67)

uk(0, x) = u0(x) in Ω, (4.68)

−D∇uk · n⃗ = 0 on (0, T )× ∂Ω, (4.69)

∥Note that 0 ≤ λ ≤ 1.
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for k = 1, 2. Set ū = u1−u2. Taking the difference and using ūi as the test function
in the i− th PDE, we obtain

1

2

∫ t

0

d

dτ
||ūi(τ)||2L2(Ω) dτ +D

∫ t

0

||∇ūi(τ)||2L2(Ω) dτ

≤1

2

∫ t

0

[
||SR(u1(τ))i − SR(u2(τ))i||2L2(Ω) + ||ūi(τ)||2L2(Ω)

]
dτ.

Expanding the term Rj(u1)−Rj(u2), each term in Rj(u1)−Rj(u2) contains a factor
of the type u1l − u2l , whereas all the other factors are bounded in L∞((0, T )×Ω),
therefore we obtain

||ūi(t)||2L2(Ω) ≤ C

∫ t

0

I∑
i=1

||ūi(τ)||2L2(Ω) dτ

i.e., |||ū(t)|||2L2(Ω)I ≤ C

∫ t

0

|||ū(τ)|||2L2(Ω)I dτ for a.e. t.

Gronwall’s inequality gives

|||ū(t)|||2L2(Ω)I = 0 for a.e. t,

=⇒ u1 = u2.

Hence the solution exists uniquely. �
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