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DYNAMIC ANALYSIS OF A FRACTIONAL
ORDER PHYTOPLANKTON MODEL

Mohamad Javidi1,† and Nemat Nyamoradi2

Abstract The fractional order phytoplankton model (PM) can be writ-

ten as dαPs
dtα

= rPs

(
1 − Ps

K

)
− υPsPi

Ps+1
+ γ1Pi,

dαPin
dtα

= υPsPi
Ps+1

− βPin,
dαPi
dtα

=
β1Pin − δPi, Ps(ξ) = ϱ0, Pi(ξ) = ϱ1, Pin(ξ) = ϱ2, where Ps and Pi be
the population densities of susceptible and infected phytoplankton respective-
ly and Pin be the population density of population in incubated class. In
this paper, stability analysis of the phytoplankton model is studied by using
the fractional Routh-Hurwitz stability conditions. We have studied the local
stability of the equilibrium points of PM. We applied an efficient numerical
method based on converting the fractional derivative to integer derivative to
solve the PM.
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1. Introduction

Phytoplankton are microscopic plants that live in the ocean. These small plants are
very important to the ocean and to the whole planet! They are at the base of the
food chain. Many small fish and whales eat them. Then bigger fish eat the little
fish, etc. The food chain continues and at some point in time we (people) come
into it when we eat the fish. So the energy of plankton becomes our energy too!.
It has a major role in stabilizing the environment and survival of living population
as it consumes half of the universal carbon-dioxide and releases oxygen. So far,
there is a number of studies which show the presence of pathogenic viruses in the
plankton community [7,13]. A good review of the nature of marine viruses and their
ecological as well as their biological effects is given in [14]. Some researchers have
shown using an electronic microscope that these viral diseases can affect bacteria
and phytoplankton in coastal area and viruses are held responsible for the collapse
of Emiliania huxleyi bloom in Mesocosms [10, 15]. Baghel et al. [3], proposed a
three dimensional mathematical model of phytoplankton dynamics with the help
of reaction-diffusion equations that studies the bifurcation and pattern formation
mechanism. They provide an analytical explanation for understanding phytoplank-
ton dynamics with three population classes: susceptible, incubated, and infected.
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In 2010, Dhar and Sharma [5] investigated the stability of the phytoplankton system

dPs(t)

dt
= rPs[1−

Ps

K
]− υPsPi + γPi,

dPi(t)

dt
= υPsPi − βPi,

(1.1)

where Ps, Pi are the population densities of susceptible and infected phytoplankton
at any instant of time t. r is the intrinsic growth rate of the population of sus-
ceptible phytoplankton, K is the carrying capacity of the population of susceptible
phytoplankton, υ is the disease contact rate of the disease phytoplankton popula-
tion, β is the removal rate of the disease phytoplankton population, out of which γ
fraction of infected phytoplankton rejoin the susceptible phytoplankton population.
Also the same system investigated by applying a frequency domain approach with
time delay by Xu [18]. He use the delay as a bifurcation parameter; as it passes
through a sequence of critical values, Hopf bifurcation occurs. A family of periodic
solutions bifurcate from the equilibrium when the bifurcation parameter exceeds a
critical value. Ghosh [9], proposed the interrelationship of latency period in viral
infection and overall infection process in host community are of critical importance
in context of pest control program. Both of them regulate the overall system stabil-
ity as they are dynamically linked to predation by natural enemies in the system.
In 2010, Dhar and Sharma [5], proposed the role of viral infection in phytoplankton
dynamics without and with incubation population class is studied. It is observed
that phytoplankton species in the absence of incubated class are unstable around
an endemic equilibrium but the presence of delay in the form of incubated class has
made it conditionally stable around an endemic equilibrium.

The authors of [16] proposed a prey-predator model for the phytoplankton-
zooplankton system with the assumption that the viral disease is spreading only
among the prey species, and, though the predator feeds on both the susceptible
and infected prey, the infected prey is more vulnerable to predation as is seen in
nature (see references quoted earlier). The dynamical behaviour of the system is
investigated from the point of view of stability and persistence. The model shows
that infection can be sustained only above a threshold of force of infection. Gakkhar
and Negi [8] investigate the dynamical behaviour of toxin producing phytoplankton
(TPP) and zooplankton. The phytoplanktons are divided into two groups, namely
susceptible phytoplankton and infected phytoplankton. The conditions for coexis-
tence for the populations are presented. Chattopadhyay et al. [4], deals with the
problem of a nutrient-phytoplankton (N-P) populations where phytoplankton pop-
ulation is divided into two groups, namely susceptible phytoplankton and infected
phytoplankton. Conditions for coexistence or extinction of populations are derived
taking into account general nutrient uptake functions and Holling type-II functional
response as an example.

2. Preliminaries

Definition 2.1. The Riemann-Liouville fractional integral operator of order α > 0,
of function f ∈ L1(R+) is defined as

Iαt0f(t) =
1

Γ(α)

∫ t

t0

(t− s)α−1f(s)ds,
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where Γ(·) is the Euler gamma function.

Definition 2.2. The Riemann-Liouville and Caputo fractional derivative of order
α > 0, n− 1 < α < n, n ∈ N is defined as

aD
α
t f(t) =

1

Γ(n− α)

( d

dt

)n
∫ t

a

(t− s)n−α−1f(s)ds,

and

c
aD

α
t0f(t) =

1

Γ(n− α)

∫ t

a

f (n)(s)

(t− s)α+1−n
ds,

where the function f(t) have absolutely continuous derivatives up to order (n− 1).

The initial value problem related to Definition 2.2 is{
Dαx(t) = f(t, x(t)),

x(t)|t=0+ = x0,
(2.1)

where 0 < α < 1 and Dα = Dα
0 .

Now, some stability theorems on fractional-order systems are introduced.

Theorem 2.1 ( [12]). The following autonomous system:

dαx

dtα
= Ax, x(0) = x0, (2.2)

with 0 < α ≤ 1, x ∈ Rn and A ∈ Rn×n, is asymptotically stable if and only if
| arg(λ)| > απ

2 is satisfied for all eigenvalues of matrix A. Also, this system is stable
if and only if | arg(λ)| ≥ απ

2 is satisfied for all eigenvalues of matrix A with those
critical eigenvalues satisfying | arg(λ)| = απ

2 having geometric multiplicity of one.
The geometric multiplicity of an eigenvalue λ of the matrix A is the dimension of
the subspace of vectors v for which Av = λv.

Theorem 2.2 ( [6]). Consider the following commensurate fractional-order system:

dαx

dtα
= f(x), x(0) = x0, (2.3)

with 0 < α ≤ 1 and x ∈ Rn. The equilibrium points of system (3.1) are calculated
by solving the following equation: f(x) = 0. These points are locally asymptotically
stable if all eigenvalues λi of the Jacobian matrix J = ∂f

∂x evaluated at the equilibrium
points satisfy: | arg(λi)| > απ

2 .

3. Mathematical Model

Let Ps and Pi be the population densities of susceptible and infected phytoplankton
respectively. The population of susceptible phytoplankton is assumed to be growing
logistically with intrinsic growth rate r and carrying capacity K. Now let Pin be
the population density of population in incubated class. Here, we will use nonlin-
ear Holling Type II functional responses for disease spreading because the disease
conversion rates become saturated as victim densities increase. Let υ be the disease
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contact rate and it is volume-specific encounter rate between susceptible and in-
fected phytoplankton, which is equivalent to the inverse of the average search time
between successful spreading of disease. The coefficients δ and β are the total re-
moval of phytoplankton from the infected and incubated class because of the death
(including recovered) from disease and due to natural causes respectively. Again, γ1
be the fraction of the population recovered from infected phytoplankton population
and joined in the susceptible phytoplankton population and β1 is the fraction of
the incubated class population which will move to the infected class. Therefore,
quantitatively δ > γ1 and β > β1. Using these assumptions the dynamics of the
system can be governed by the following set of differential equations:

dPs

dt
= rPs

(
1− Ps

K

)
− υPsPi

Ps + 1
+ γ1Pi,

dPin

dt
=

υPsPi

Ps + 1
− βPin,

dPi

dt
= β1Pin − δPi,

Ps(0) > 0, Pi(0) > 0, Pin(0) > 0.

(3.1)

The Holling type-II the functional response υPsPi

Ps+1 is used [11] and many other re-
searchers. In this paper we investigate the following fractional order phytoplankton
model with initial population; i.e., Ps(ξ) > 0, Pin(ξ) > 0, Pi(ξ) > 0 and the total
population at any instant t is N(t) = Ps(t) + Pin(t) + Pi(t):

dαPs

dtα
= rPs

(
1− Ps

K

)
− υPsPi

Ps + 1
+ γ1Pi,

dαPin

dtα
=

υPsPi

Ps + 1
− βPin,

dαPi

dtα
= β1Pin − δPi,

Ps(ξ) = ϱ0, Pi(ξ) = ϱ1, Pin(ξ) = ϱ2.

(3.2)

where the parameters 0 < α ≤ 1, and dα

dtα is in the sense of the Caputo fractional
derivative defined in (2.2) with the initial time t = ξ.

4. Stability of equilibria

In this section we deal with the stability local dynamics of system (3.2). Let

dαPs

dtα
= 0,

dαPin

dtα
= 0,

dαPi

dtα
= 0. (4.1)

Solving (4.1) for its roots, we can get that system (3.2) has three equilibria points
as follows

O = (0, 0, 0), E1 = (K, 0, 0), E2 = (P ∗, Q∗, R∗) (4.2)

where

P ∗ =
δβ

υβ1 − δβ
, Q∗ =

rP ∗(P ∗ + 1)(1− P∗

K )

υP ∗ − γ1(P ∗ + 1)
, R∗ =

rδP ∗(P ∗ + 1)(1− P∗

K )

β1(υP ∗ − γ1(P ∗ + 1))
.
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If the Jacobian matrix of system (3.2) at the equilibrium point O is

J(O) =

 r γ1 0
0 0 −β1

0 −δ1 β1

 , (4.3)

with the characteristic equation

Q(λ) = det(λ− J(o)) = λ3 +
(
− r − β1

)
λ2 +

(
− δβ + rβ1

)
λ+ rδβ.

The eigenvalues corresponding to the equilibrium O are

λ1 = r,

λ2,3 =
β1±

√
β2
1+4δβ

2 .

Then we have λ1 > 0, λ2 > 0 and λ3 > 0. Whence it follows that the equilibrium O
of system (3.2) is unstable. Thus the stable manifold of the origin W s(O) is one-
dimensional and the unstable manifold of the origin Wu(O) is two-dimensional.

The Jacobian matrix of (3.2) at equilibrium point E1 = (K, 0, 0) is

J(E1) =

 −r γ1 − υK
K+1 0

0 υK
K+1 −β

0 −δ β1

 , (4.4)

with the characteristic equation

Q(λ) = det(λ− JE1) = λ3 +B1λ
2 +B2λ+B3,

where

B1 = r − υK

K + 1
− β1, B2 =

β1υK

K + 1
− δβ − r(

υK

K + 1
+ β1), B3 = r(

β1υK

K + 1
− δβ).

Let D(Q) denote the discriminant of a polynomial Q(λ). Then

D(Q) = 18B1B2B3 + (B1B2)
2 − 4B3B3

1 − 4B3
2 − 27B3

3 .

Using the proposition given in [17], we have the following result by using Routh-
Hurwitz conditions.

Theorem 4.1. The equilibrium point E1 of the system (3.2) is asymptotically stable
if one of the following conditions holds for polynomial Q:

(i) D(Q) > 0, B1 > 0, B3 > 0 and B1B2 > B3.

(ii) D(Q) < 0, B1 ≥ 0, B2 ≥ 0, B3 > 0 and α < 2
3 .

(iii) D(Q) < 0, B1 < 0, B2 < 0 and α > 2
3 .

The Jacobian matrix of (3.2) at equilibrium point E2 = (P ∗, Q∗, R∗) is

J(E2) =

 r − 2 rP∗

K − υ Q∗

(P∗+1)2 γ1 − υP∗

P∗+1 0

υ Q∗

(P∗+1)2
υP∗

P∗+1 −β

0 −δ β1

 , (4.5)
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with the characteristic equation

Q(λ) = det(λ− JE1) = λ3 +A1λ
2 +A2λ+A3,

where

A1 = −r + 2
rP ∗

K
− β1 − υ

Q∗

(P ∗ + 1)2
)− υP ∗

P ∗ + 1
− β1,

A2 = − υP ∗

P ∗ + 1
(−r + 2

rP ∗

K
+ υ

Q∗

(P ∗ + 1)2
) + υ2 (Q∗)2

(P ∗ + 1)4
− δβ,

A3 =
β1υP

∗

P ∗ + 1
(−r + 2

rP ∗

K
+ υ

Q∗

(P ∗ + 1)2
)− δβ(−r + 2

rP ∗

K
+ υ

Q∗

(P ∗ + 1)2
).

Using the proposition given in [17], we have the following result by using Routh-
Hurwitz conditions.

Theorem 4.2. The equilibrium point E2 of the system (3.2) is asymptotically stable
if one of the following conditions holds for polynomial Q:

(i) D(Q) > 0, A1 > 0, A3 > 0 and A1A2 > A3.

(ii) D(Q) < 0, A1 ≥ 0, A2 ≥ 0, A3 > 0 and α < 2
3 .

(iii) D(Q) < 0, A1 < 0, A2 < 0 and α > 2
3 .

5. The numerical decomposition method

In order to solve (3.2), we shall use a numerical method introduced by Atanackovic
and Stankovic [1] to solve the single linear fractional differential equation (FDE).
Also the same authors [2] developed the method to solve the nonlinear FDE. In [1]
it was shown that for a function f(t), the fractional derivative of order α with
0 < α ≤ 1 may be expressed as

Dαf(t) =
1

Γ(2− α)

{
f (1)(t)

tα−1
[1 +

∞∑
p=1

Γ(p− 1 + α)

Γ(α− 1)p!
]

−[
α− 1

tα
f(t) +

∞∑
p=2

Γ(p− 1 + α)

Γ(α− 1)(p− 1)!
(
f(t)

tα
+

Vp(f)(t)

tp−1+α
)]

}
,

(5.1)

where

Vp(f)(t) = −(p− 1)

∫ t

0

τp−2f(τ)dτ, p = 2, 3, · · · , (5.2)

with the following properties

d

dt
Vp(f) = −(p− 1)tp−2f(t), p = 2, 3, · · · . (5.3)

We approximate Dαf(t) by using M terms in sums appearing in Eq. (5.1) as follows

Dαf(t) ≃ 1

Γ(2− α)

{
f (1)(t)

tα−1
[1 +

M∑
p=1

Γ(p− 1 + α)

Γ(α− 1)p!
]

−[
α− 1

tα
f(t) +

M∑
p=2

Γ(p− 1 + α)

Γ(α− 1)(p− 1)!
(
f(t)

tα
+

Vp(f)(t)

tp−1+α
)]

}
.

(5.4)
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We can rewrite Eq. (5.4) as follows

Dαf(t) ≃ Ω(α, t,M)f (1)(t) + Φ(α, t,M)f(t) +

M∑
p=2

A(α, t, p)
Vp(f)(t)

tp−1+α
, (5.5)

where

Ω(α, t,M) =
1 +

∑M
p=1

Γ(p−1+α)
Γ(α−1)p!

Γ(2− α)tα−1
,

R(α, t) =
1− α

tαΓ(2− α)
, A(α, t, p) = − Γ(p− 1 + α)

Γ(2− α)Γ(α− 1)p!
,

Φ(α, t,M) = R(α, t) +

M∑
p=2

A(α, t, p)

tα
.

We set

Θ1(t) = Ps(t), ΘM+1(t) = Pi(t),

Θ2M+1(t) = Pin(t), Θp(t) = Vp(Ps)(t),

Θp+M (t) = Vp(Pi)(t), Θ2M+p(t) = Vp(Pin)(t),

for p = 2, 3, · · · .
We can rewrite system (3.1) as the following form

Ω(α, t,M)Θ′
1(t) + Φ(α, t,M)Θ1(t) +

M∑
p=2

A(α, t, p)
Θp(t)

tp−1+α

= rΘ1(t)(1−
Θ1(t)

K
)− υ

ΘM+1(t)Θ1(t)

Θ1(t) + 1
+ γ1ΘM+1(t),

Ω(α, t,M)Θ′
M+1(t) + Φ(α, t,M)ΘM+1(t) +

M∑
p=2

A(α, t, p)
ΘM+p(t)

tp−1+α

= υ
ΘM+1(t)Θ1(t)

Θ1(t) + 1
− βΘ2M+1(t),

Ω(α, t,M)Θ′
2M+1(t) + Φ(α, t,M)Θ2M+1(t) +

M∑
p=2

A(α, t, p)
Θ2M+p(t)

tp−1+α

= β1Θ2M+1 − δΘM+1,

(5.6)

where

Θp(t) = −(p− 1)

∫ t

0

τp−2Θ1(t)(τ)dτ,

ΘM+p(t) = −(p− 1)

∫ t

0

τp−2ΘM+1(t)(τ)dτ,

Θ2M+p(t) = −(p− 1)

∫ t

0

τp−2Θ2M+1(t)(τ)dτ,

p = 2, 3, · · · ,M.

(5.7)
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Now we can rewrite (5.6) and (5.7) as the following form

Θ′
1(t) =

1

Ω(α, t,M)
(rΘ1(t)(1−

Θ1(t)

K
)− υ

ΘM+1(t)Θ1(t)

Θ1(t) + 1
+ γ1ΘM+1(t))

− Φ(α, t,M)Θ1(t)−
M∑
p=2

A(α, t, p)
Θp(t)

tp−1+α
),

Θ′
p(t) = −(p− 1)tp−2Θ1(t), p = 2, 3, · · · ,M,

Θ′
M+1(t) =

1

Ω(α, t,M)
(υ

ΘM+1(t)Θ1(t)

Θ1(t) + 1
− βΘ2M+1(t)

− Φ(α, t,M)ΘM+1(t)−
M∑
p=2

A(α, t, p)
ΘM+p(t)

tp−1+α
),

Θ′
M+p(t) = −(p− 1)tp−2ΘM+1(t), p = 2, 3, · · · ,M,

Θ′
2M+1(t) =

1

Ω(α, t,M)
(β1Θ2M+1 − δΘM+1)

− Φ(α, t,M)Θ2M+1(t)−
M∑
p=2

A(α, t, p)
Θ2M+p(t)

tp−1+α
),

Θ′
2M+p(t) = −(p− 1)tp−2Θ2M+1(t), p = 2, 3, · · · ,M,

(5.8)

with the following initial conditions

Θ1(ξ) = ϱ0,

Θp (ξ) = 0, p = 2, 3, · · · ,M,

ΘM+1(ξ) = ϱ1,

ΘM+p(ξ) = 0, p = 2, 3, · · · ,M,

Θ2M+1(ξ) = ϱ2,

Θ2M+p(ξ) = 0, p = 2, 3, · · · ,M.

(5.9)

Now we consider the numerical solution of system of ordinary differential equations
(5.8) with the initial conditions (5.9) by using the well known Runge-Kutta method
of order fourth.

6. Numerical Simulation

To verify the effectiveness of the obtained results, some numerical simulations for
the fractional-order system (3.2) have been conducted. All the differential equations
are solved using the method proposed in the previous section. In all numerical runs,
the solution has been approximated at ξ = ∆t = 0.005. Now we set r = 0.1, υ =
γ1 = β = β1 = δ = 0.1 and K = 1,. In figure 1-3 we plot the numerical solution of
system (3.2) at α = 0.80(0.02)0.96.

Now we set r = 5, υ = 0.5, γ1 = 0.1, β = 0.1, β1 = 0.01, δ = 0.4 and K = 100,.
In figure 4-6 we plot the numerical solution of system (3.2) at α = 0.80(0.02)0.96.

In Figs. 7-9, we display the phase plane of PM respectively for α = 0.85, 0.9, 0.95.
The parameters have been set to K = 50, υ = 50, r = 8, δ1 = 0.002, β = 0.04, β1 =
0.005, δ = 0.02 and M = 5.
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7. Conclusion

In this work, we analyze the dynamic behavior of the fractional-order phytoplankton
model. Firstly, we study the existence of extinction equilibrium and boundary
equilibria, furthermore give stability criteria of the model from local point of view
by using the fractional Routh-Hurwits criterion. The corresponding results are
illustrated by the numerical simulation. Simulation results show the effectiveness of
the method. Further, it has been shown that the supply rate α play an important
role in shaping the dynamics of the system. A stable limit cycle is observed in
Figs.7-9.
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Figure 3. The numerical solution of system (3.2) at α = 0.80(0.02)0.96
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Figure 4. The numerical solution of system (3.2) at α = 0.80(0.02)0.96
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Figure 5. The numerical solution of system (3.2) at α = 0.80(0.02)0.96
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Figure 6. The numerical solution of system (3.2) at α = 0.80(0.02)0.96
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Figure 7. Phase plane of PM at K = 50, υ = 50, r = 8, δ1 = 0.002, β = 0.04, β1 =
0.005, δ = 0.02, α = 0.85 and M = 5.
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Figure 8. Phase plane of PM at K = 50, υ = 50, r = 8, δ1 = 0.002, β = 0.04, β1 =
0.005, δ = 0.02, α = 0.9 and M = 5.
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Figure 9. Phase plane of PM at K = 50, υ = 50, r = 8, δ1 = 0.002, β = 0.04, β1 =
0.005, δ = 0.02, α = 0.95 and M = 5.


