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Abstract The paper is concerned with the numerical analysis of high-order
exponential Rosenbrock-type integrators for large-scale systems of stiff dif-
ferential equations. The analysis is performed in a semigroup framework of
semilinear evolution equations in Banach space. By expanding the errors of
the numerical methods in terms of the solution, we further derive new order
conditions and thus allows us to construct higher-order methods. A new and
more general stiff error analysis is presented to show the converge results for
variable step sizes.
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1. Introduction

In this paper we consider high order numerical methods for the time integration of
large systems of stiff differential equations

u′(t) = F (u(t)), u(t0) = u0, (1.1)

by exponential Rosenbrock-type methods. Such equations typically arise from spa-
tial discretizations of nonlinear time dependent partial differential equations.

The idea of exponential integrators is an old one and has been proposed indepen-
dently by many authors. Although the first exponential integrators were proposed
many years ago, such methods have not been regarded as practical for a long time.
This view, however, has changed recently as new methods for computing or ap-
proximating the product of a matrix exponential function with a vector have been
developed. In recent years, some numerical comparisons presented in [10,11,13,14]
reveal exponential integrators turned out to be very competitive for stiff problems.
For a detailed overview of such integrators and their implementation, we refer to [9].
The main idea behind these methods is to treat the linear part of problem (1.1)
exactly and the nonlinearity in an explicit way.
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Motivated by recent interest in exponential integrators for stiff problems [1, 5,
6, 8], in this paper, we consider exponential Rosenbrock-type methods which were
introduce in [3,7], they were based on a continuous linearization of the vector field
along the numerical trajectory. In [7], the stiff order conditions were derived up to
order 4. Very recently, in [12], a new approach was proposed to derive stiff order
conditions for exponential Rosenbrock-type methods up to order five. With these
order conditions at hand, we are going to derive stiff order conditions up to sixth-
order in this paper. By a careful analysis of the local error, we are able to deduce
the desired conditions. A new and more general stiff error analysis is presented to
illustrate this procedure for methods up to order 6.

The outline of the paper is organized as follows. In Section 2, we review the
problem and the numerical methods for further analysis. In Section 3, the local
error analysis of the methods is carried out and some order conditions are derived
which eventually guarantee convergence for stiff problems. Section 4 is devoted
to the global convergence analysis. For this purpose, we propose a more general
method that allows us to prove convergence up to six.

Throughout the paper, C will denote a generic constant that may have different
values at different occurrences.

2. Exponential Rosenbrock-type methods

In this paper, we consider the numerical solution of stiff differential equations of
the form (1.1). The numerical schemes considered are based on a continuous lin-
earization of (1.1) along the numerical solution. For a given point un in the state
space, this linearization is

u′(t) = Jnu(t) + gn(u(t)), u(t0) = u0. (2.1)

where

Jn = J(un) =
∂F

∂u
(un), gn(u(t)) = F (u)− Jnu(t). (2.2)

with Jn denoting the Jacobian of F and gn the nonlinear remainder, evaluated at
un, respectively.

Throughout the paper, we restrict our attention to semilinear problems

u′(t) = F (u(t)) = Au(t) + g(u(t)), u(t0) = u0. (2.3)

This implies that (2.2) takes the form

Jn = A+
∂g

∂u
(un), gn(u) = F (u)− Jnu = g(u(t))− ∂g

∂u
(un)u. (2.4)

Applying an explicit exponential Rosenbrock-type methods to (2.1) , we obtain the
following class of explicit one-step methods:

Uni = ecihnJnun + hn
i−1∑
j=1

aij(hnJn)gn(Unj), 1 ≤ i ≤ s,

un+1 = ehnJnun + hn
s∑

j=1

bi(hnJn)gn(Uni).
(2.5)
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Here, hn = tn+1 − tn > 0 denotes the time step size and ci are the nodes.
The methods are fully explicit and don’t require the solution of linear or nonlinear
systems of equations. As usual in exponential integrators, the coefficients aij(z),
bi(z) are linear combinations of the φj(ciz), φj(z) functions, respectively. These φ
functions are given by

φj(z) =

∫ 1

0

e(1−θ)z
θj−1

(j − 1)!
dθ, j ≥ 1. (2.6)

They satisfy the following recurrence relations

φj+1(z) =
φj(z)− 1

j!

z
, φ0(z) = ez. (2.7)

A desirable property of numerical methods (2.5) is that they preserve equilibria
u∗ of the autonomous problems (2.3). Requiring Uni = un = u∗ for all i and n ≥ 0
immediately yields the necessary and sufficient conditions. It turns out that the
coefficients of the methods have to satisfy

i−1∑
j=1

aij(z) = ciφ1(ciz),

s∑
j=1

bj(z) = φ1(z), 1 ≤ i ≤ s, (2.8)

which implies c1 = 0 and consequently Un1 = un.
Without further mention, we will assume throughout the paper that the con-

ditions (2.8) are fulfilled. With the help of (2.8), the numerical scheme (2.5) then
takes the equivalent form

Uni = un + cihnφ1(cihnJn)F (un) + hn
i−1∑
j=2

aij(hnJn)Dnj ,

un+1 = un + hnφ1(hnJn)F (un) + hn
s∑

j=1

bi(hnJn)Dnj ,
(2.9)

with Dnj = gn(Uni)− gn(un), 2 ≤ j ≤ s.

3. Local error analysis

Our analysis will be based on an abstract framework of analytic semigroups on
a Banach space X with norm ∥ · ∥. Background information on semigroups can
be found in the textbook [4]. Throughout the paper we consider the following
assumptions.

Assumption 1. The linear operator J is the infinitesimal generator of an
analytic semigroup etJ on X. This assumption implies that there exist constants C
and ω such that

∥etJ∥X←X ≤ Ceωt, t ≥ 0, (3.1)

holds uniformly in a neighborhood of the exact solution of (2.3). In particular, the
expressions φk(z) and consequently the coefficients aij(hnJ) and bi(hnA) of the
methods are bounded operators. This property is crucial in our proofs.

Assumption 2. We suppose that (2.3) possesses a sufficiently smooth solution
u : [t0, T ] −→ X with derivatives in X and that g : X −→ X is sufficiently often
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Fréchet differentiable in a strip along the exact solution. All occurring derivatives
are assumed to be uniformly bounded. Assumption 2 implies that the Jacobian of
F (u) satisfies the Lipschitz condition

∥J(u)− J(v)∥X←X ≤ C∥u− v∥. (3.2)

For the local error analysis of scheme (2.9), as usual, we consider one step with
initial value ũn = u(tn) on the exact solution, i.e.

Ûni = ũn + cihnφ1(cihnJ̃n)F (ũn) + hn
i−1∑
j=2

aij(hnJ̃n)D̃nj ,

ûn+1 = ũn + hnφ1(hnJ̃n)F (ũn) + hn
s∑

j=2

bj(hnJ̃n)D̃nj ,
(3.3)

with

J̃n =
∂F

∂u
(ũn) = A+

∂g

∂u
(ũn),

g̃n(u) = F (u)− J̃nu,

D̃nj = g̃n(Ûnj)− g̃n(ũn), 2 ≤ j ≤ s.

(3.4)

Let ũ
(k)
n denote the kth derivative of the exact solution u(t) of (2.3), evaluated

at time tn. For k = 1, 2, we use the common notation ũ
′

n ,ũ
′′

n for simplicity.
Expanding D̃ni in (3.4) in a Taylor series at ũn and substituting it into the

second equation of (3.3). Note that

∂g̃n
∂u

(ũn) = 0. (3.5)

We get the representation

ûn+1 = ũn + hnφ1(hnJ̃n)F (ũn)

+

s∑
i=2

bi(hnJ̃n)

k∑
q=2

hq+1
n

q!

∂q g̃n
∂uq

(ũn)(Vi, Vi, · · · , Vi) +O(hk+2
n ).

(3.6)

with

Vi =
1

hn
(Ûni − ũn) = cihnφ1(cihnJ̃n)F (ũn) + hn

i−1∑
j=2

aij(hnJ̃n)D̃nj . (3.7)

In order to derive stiff order conditions up to 6, we set k = 5.
Let

ψj(z) =

s∑
i=2

bi(z)
cj−1i

(j − 1)!
− φj(z), (3.8)

ψj,i(z) =
i−1∑
k=2

aik(z)
cj−1k

(j − 1)!
− cjiφj(ciz). (3.9)

The following two lemmas are important to deriving the order conditions. They
are straightforward by some adjustments for Lemma 3.1 and Lemma 3.2 in [12],
respectively. We omit the details.
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Lemma 3.1. Under Assumptions 1 and 2, we have for all t ≥ 0

φ1(tJ̃n)ũ
′

n = ũ
′

n +
t

2!
ũ

′′

n +
t2

3!

(
ũ(3)n − 3!φ3(tJ̃n)

∂2g̃n
∂u2

(ũ
′

n, ũ
′

n)
)

+ t3φ4(tJ̃n)
(
ũ(4)n − ∂3g̃n

∂u3
(ũ

′

n, ũ
′

n, ũ
′

n)− 3
∂q g̃2
∂u2

(ũn)(ũ
′

n, ũ
′′

n)
)
.

(3.10)

Lemma 3.2. Under Assumptions 1 and 2, we have

Vi = ciũ
′

n +
ci

2hn
2

ũ
′′

n +
ci

3h2n
3!

ũ(3)n + h2nψ3,i
∂2g̃n
∂u2

(ũn)(ũ
′

n, ũ
′

n) + c4ih
3
nφ4(cihnJ̃n)ũ

(4)
n

+ h3nψ4,i

(∂3g̃n
∂u3

(ũn)(ũ
′

n, ũ
′

n, ũ
′

n) + 3
∂2g̃n
∂u2

(ũn)(ũ
′

n, ũ
′′

n)
)
+O(h4n).

(3.11)

Substituting the above expansion of Vi into (3.6), as

∂2g̃n
∂u2

(ũn)(Vi, Vi)

=
∂2g̃n
∂u2

(ũn)

(
c2i (ũ

′

n, ũ
′

n) + c3ihn(ũ
′

n, ũ
′′

n) +
2c4ih

2
n

3!
(ũ

′

n, ũ
(3)
n )

+ 2cih
2
n

(
ũ

′

n, ψ3,i
∂2g̃n
∂u2

(ũn)(ũ
′

n, ũ
′

n)
)
+ 2c4ih

3
n

(
ũ

′

n, φ4(cihnJ̃n)ũ
(4)
n

)
+ 2cih

3
n

(
ũ

′

n, ψ4,i
∂3g̃n
∂u3

(ũn)(ũ
′

n, ũ
′

n, ũ
′

n)
)
+ 6cih

3
n

(
ũ

′

n, ψ4,i
∂2g̃n
∂u2

(ũn)(ũ
′

n, ũ
′′

n)
)

+
c4ih

2
n

4
(ũ

′′

n, ũ
′′

n) +
2c5ih

3
n

3!
(ũ

′′

n, ũ
(3)
n ) + 2c2ih

3
n

(
ũ

′′

n, ψ3,i
∂2g̃n
∂u2

(ũn)(ũ
′

n, ũ
′

n)
))

,

(3.12)

∂3g̃n
∂u3

(ũn)(Vi, Vi, Vi)

=
∂3g̃n
∂u3

(ũn)

(
c3i (ũ

′

n, ũ
′

n, ũ
′

n) +
3c4ihn

2
(ũ

′

n, ũ
′

n, ũ
′′

n) +
3c5ih

2
n

4
(ũ

′

n, ũ
′′

n, ũ
′′

n)

+
c5ih

2
n

2!
(ũ

′

n, ũ
′

n, ũ
(3)
n ) + 3c2ih

2
n

(
ũ

′

n, ũ
′

n, ψ3,i
∂2g̃n
∂u2

(ũn)(ũ
′

n, ũ
′

n)
))

,

(3.13)

∂4g̃n
∂u4

(ũn)(Vi, Vi, Vi, Vi)

=
∂4g̃n
∂u4

(ũn)
(
c4i (ũ

′

n, ũ
′

n, ũ
′

n, ũ
′

n) + 2c5ihn(ũ
′

n, ũ
′

n, ũ
′

n, ũ
′′

n)
)
,

(3.14)

∂5g̃n
∂u5

(ũn)(Vi, Vi, Vi, Vi, Vi) = c5i
∂5g̃n
∂u5

(ũn)(ũ
′

n, ũ
′

n, ũ
′

n, ũ
′

n, ũ
′

n). (3.15)

Then

ûn+1 = ũn + hnφ1(hnJ̃n)ũn + h3n

s∑
i=1

bi
c2i
2

∂2g̃n
∂u2

(ũn)(ũ
′

n, ũ
′

n) + h4n

s∑
i=1

bi
c3i
3!
Mn

+ h5n

s∑
i=1

bi
c4i
4!
Nn + h5nN̂n + h6n

s∑
i=1

bi
c5i
5!
Ln + h6nL̂n +O(h7n),

(3.16)
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with

Mn = 3
∂2g̃n
∂u2

(ũn)(ũ
′

n, ũ
′′

n) +
∂3g̃n
∂u3

(ũn)(ũ
′

n, ũ
′

n, ũ
′

n), (3.17)

Nn = 4
∂2g̃n
∂u2

(ũn)(ũ
′

n, ũ
(3)
n ) + 3

∂2g̃n
∂u2

(ũn)(ũ
′′

n, ũ
′′

n) + 6
∂3g̃n
∂u3

(ũn)(ũ
′

n, ũ
′

n, ũ
′′

n)

+
∂4g̃n
∂u4

(ũn)(ũ
′

n, ũ
′

n, ũ
′

n, ũ
′

n),

(3.18)

N̂n =

s∑
i=1

bici
∂2g̃n
∂u2

(ũn)
(
ũ

′

n, ψ3,i
∂2g̃n
∂u2

(ũn)(ũ
′

n, ũ
′

n)
)
, (3.19)

Ln = 10
∂2g̃n
∂u2

(ũn)(ũ
′′

n, ũ
(3)
n ) + 15

∂3g̃n
∂u3

(ũn)(ũ
′

n, ũ
′′

n, ũ
′′

n)

+ 10
∂3g̃n
∂u3

(ũn)(ũ
′

n, ũ
′

n, ũ
(3)
n ) + 10

∂4g̃n
∂u4

(ũn)(ũ
′

n, ũ
′

n, ũ
′

n, ũ
′′

n)

+
∂5g̃n
∂u5

(ũn)(ũ
′

n, ũ
′

n, ũ
′

n, ũ
′

n, ũ
′

n) + 5
∂2g̃n
∂u2

(ũn)(ũ
′

n, ũ
(4)
n ),

(3.20)

L̂n =
s∑

i=1

bici
∂2g̃n
∂u2

(ũn)
(
ũ

′

n, ψ4,i
∂3g̃n
∂u3

(ũn)(ũ
′

n, ũ
′

n, ũ
′

n)
)

+ 3

s∑
i=1

bici
∂2g̃n
∂u2

(ũn)
(
ũ

′

n, ψ4,i
∂2g̃n
∂u2

(ũn)(ũ
′

n, ũ
′′

n)
)

+

s∑
i=1

bic
2
i

∂2g̃n
∂u2

(ũn)
(
ũ

′′

n, ψ3,i
∂2g̃n
∂u2

(ũn)(ũ
′

n, ũ
′

n)
)

+
s∑

i=1

bi
c2i
2

∂3g̃n
∂u3

(ũn)
(
ũ

′

n, ũ
′

n, ψ3,i
∂2g̃n
∂u2

(ũn)(ũ
′

n, ũ
′

n)
)
.

(3.21)

By the variation of constants formula, the exact solution (2.3) at tn+1 can be
expressed

ũn+1 = ehnJ̃n ũn + hn

∫ 1

0

e(1−θ)hnJ̃n g̃n
(
u(tn + θhn)

)
dθ

= ũn + hnφ1(hnJ̃n)ũ
′

n +
k∑

q=2

hq+1
n

∫ 1

0

e(1−θ)hnJ̃n
θq

q!

∂q g̃n
∂uq

(ũn)(V, V, · · · , V )dθ

+O(hk+2
n )

(3.22)
with

V =
1

θhn
(u(tn + θhn)− u(tn)) =

m∑
r=1

(θhn)
r−1

r!
ũ(r)n +O(hmn ). (3.23)

Then

ũn+1 = ũn + hnφ1(hnJ̃n)ũ
′

n + h3nφ3(hnJ̃n)
∂2g̃n
∂u2

(ũn)(ũ
′

n, ũ
′

n) + h4nφ4(hnJ̃n)Mn

+ h5nφ5(hnJ̃n)Nn + h6nφ6(hnJ̃n)Ln +O(h7n),
(3.24)
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Table 1. Stiff order conditions for exponential Rosenbrock-type methods.
Here J , K denote arbitrary square matrices, the functions φi, φji, are defined in
(3.8) and (3.9), respectively.

No. Order Order Condition

1 1 ψ1(z) = 0

2 2 ψ1,i(z) = 0, 2 ≤ i ≤ s

3 3 ψ3(z) = 0

4 4 ψ4(z) = 0

5 5 ψ5(z) = 0

6 5
∑s

i=1 bi(z)ciJψ3,i = 0

7 6
∑s

i=1 bi(z)c
2
iKψ3,i = 0

8 6
∑s

i=1 bi(z)ciJψ4,i = 0

9 6 ψ6(z) = 0

where Mn, Nn, Ln are defined as (3.17), (3.18), (3.20), respectively.
Let ēn+1 = ûn+1 − ũn+1 denote the local error, i.e., the difference between the

numerical solution ûn+1 after one step starting from ũn and the corresponding exact
solution of (2.3) at tn+1, then

ēn+1 = h3nψ3(hnJ̃n)
∂2g̃n
∂u2

(ũn)(ũ
′

n, ũ
′

n) + h4nψ4(hnJ̃n)Mn + h5nψ5(hnJ̃n)Nn + h5nN̂n

+ h6nψ6(hnJ̃n)Ln + h6nL̂n +O(h7n).
(3.25)

By zeroing the corresponding terms in (3.25), the stiff order conditions for methods
of order six can easily be identified and reported in Table 1. Until now, all of the
order conditions derived are listed in Table 1. Note that the first two conditions
of Table 1 are automatically satisfied in our context since they are used to derive
our reformulated scheme (2.9), and the first six conditions were already derived by
Hochbruck and Luan et al. [7, 12].

4. Convergence bounds

The purpose of this section is to give a global error analysis of scheme (2.9). We
will derive uniform error bounds on bounded time intervals. In order to bound the
global error, we begin with the following lemma.

Lemma 4.1. ( [12]) Under Assumptions 1 and 2, the following estimates

∥φk

(
tJ(u)

)
− φk

(
tJ(v)

)
∥X←X ≤ Ct∥u− v∥, (4.1)

∥aij
(
tJ(u)

)
− aij

(
tJ(v)

)
∥X←X ≤ Ct∥u− v∥, (4.2)

∥bk
(
tJ(u)

)
− bk

(
tJ(v)

)
∥X←X ≤ Ct∥u− v∥. (4.3)

hold for all i, j, k in a neighborhood of the exact solution.
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In order to get our main results, the further assumption on the estimate

∥
n−v∏
j=0

ehn−jJn−j∥X←X ≤ C, t0 ≤ tv ≤ tn = T (4.4)

holds uniformly in ν and n, where C is a constant. It was shown in [7] that such
a stability bound holds for variable step sizes, under a mild restriction on the step
size sequence. For details, we refer the reader to [7].

Lemma 4.2. Let the initial value problem (1.1) satisfy Assumptions 1 , 2, and the
stability estimates (4.4), y0 and z0 be two input values to a step with exponential
Rosenbrock-type methods (2.5), using variable step size hn, n = 0, 1, · · · , and yn,
zn be the corresponding output values. Then

∥yn − zn∥ ≤ C∥y0 − z0∥. (4.5)

Proof. Denote the stage values by Yni and Zni at time tn, respectively.
The equation

Eni = Yni − Zni = ecihnJ̄nyn − ecihnĴnzn

+h
i−1∑
j=1

(
aij(hnJ̄n)ḡn(Ynj)− aij(hnĴn)ĝn(Znj)

)
.

(4.6)

Here,

J̄n =
∂F

∂u
(yn) = A+

∂g

∂u
(yn),

Ĵn =
∂F

∂u
(zn) = A+

∂g

∂u
(zn),

ḡn(u) = F (u)− J̄nu,

ĝn(u) = F (u)− Ĵnu.

(4.7)

Since

∥ḡn(Ynj)− ĝn(Znj)∥ ≤ ∥ḡn(Ynj)− ḡn(Znj)∥+ ∥ḡn(Znj)− ĝn(Znj)∥
≤ C(∥Enj∥+ ∥yn − zn∥).

(4.8)

By Lemma 4.1, we have

∥Eni∥ ≤ ∥ecihnJ̄n(yn − zn)∥+ ∥(ecihnJ̄n − ecihnĴn)zn∥

+ hn∥
i−1∑
j=1

(
aij(hnJ̄n)− aij(hnĴn)

)
ḡn(Ynj)∥

+ hn∥
i−1∑
j=1

aij(hnĴn)
(
ḡn(Ynj)− ĝn(Znj)

)
∥

≤ C∥yn − zn∥+ Chn∥yn − zn∥+ Ch2n∥yn − zn∥

+ Chn

i−1∑
j=1

(∥Enj∥+ ∥yn − zn∥)

= C(1 + hn + h2n)∥yn − zn∥+ Chn

i−1∑
j=1

∥Enj∥.

(4.9)



Sixth order explicit exponential Rosenbrock-type methods 331

An application of a discrete Gronwall lemma 4 in [5] yields

∥Eni∥ ≤ C(1 + hn + h2n)∥yn − zn∥. (4.10)

Then

en+1 = yn+1 − zn+1

= ehnJ̄nyn − ehnĴnzn + hn

s∑
j=1

(
bj(hnJ̄n)ḡn(Ynj)− bj(hnĴn)ĝn(Znj)

)
= ehnJ̄n(yn − zn) + (ehnJ̄n − ehnĴn)zn

+ hn

s∑
j=1

(
bj(hnJ̄n)− bj(hnĴn)

)
ḡn(Ynj)

+ hn

s∑
j=1

bj(hnĴn)
(
ḡn(Ynj)− ĝn(Znj)

)
= ehnJ̄nen + Pn,

(4.11)
where

Pn = (ehnJ̄n − ehnĴn)zn + hn

s∑
j=1

(
bj(hnJ̄n)− bj(hnĴn)

)
ḡn(Ynj)

+ hn

s∑
j=1

bj(hnĴn)
(
ḡn(Ynj)− ĝn(Znj)

)
.

(4.12)

Applying this estimate (4.10), we have

∥Pn∥ ≤ ∥(ehnJ̄n − ehnĴn)zn∥+ hn

s∑
j=1

∥
(
bj(hJ̄n)− bj(hnĴn)

)
ḡn(Ynj)∥

+ hn

s∑
j=1

∥bj(hnĴn)
(
ḡn(Ynj)− ĝn(Znj)

)
∥

≤ Chn(1 + hn + h2n)∥en∥.

(4.13)

Solving the recursion (4.11) yields

en+1 =
n∑

v=0

n−v∏
j=1

ehn−j J̄n−jPv +
n∏

j=0

ehj J̄je0. (4.14)

Now, using the stability estimate (4.13) and the bound (4.4), we obtain

∥en+1∥ ≤ Chn

n∑
v=0

(1 + hn + h2n)∥en∥+ C∥e0∥. (4.15)

An application of a Gronwall lemma again, we concludes the desired bound (4.5).
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Next, we consider the cumulative effect of errors in many steps leading to an
error in a final output point. Denote the approximations computed by a exponential
Rosenbrock-type methods by u1, u2, · · · , un, with u0 = u(t0), and a variable stepsize
is adopted. By Lemma 4.2, the error committed in the ν step is bounded by Cēν ,
and ēν is the local truncation error at step ν. Then the total contribution to the
error would be

∥u(tn)− un∥ ≤ C
n−1∑
ν=0

ēν .

Such an idea can be find in [2]. This leads to the following

Theorem 4.1. Let the initial value problem (1.1) satisfy Assumptions 1, 2, and the
stability estimates (4.4). Consider for its numerical solution an explicit exponential
Rosenbrock-type methods (2.5) that satisfies the local truncation error at step k =
1, 2, · · · , n bounded by δk ≤ Chp+1

k . Then the global truncation error is bounded by

∥u(tn)− un∥ ≤ C
n−1∑
j=0

hp+1
j

uniformly in t0 ≤ tn ≤ T. The constant C depends on T, but it is independent of n
and h.

Corollary 4.1. Let the initial value problem (1.1) satisfy Assumptions 1 and 2.
Consider for its numerical solution an explicit exponential Rosenbrock-type methods
(2.5) that fulfills the order conditions 1-9 of Table 1. Then, under the stability
assumption (4.4), the scheme (2.5) is convergent of order 6. In particular, the
global truncation error is bounded by

∥u(tn)− un∥ ≤ C

n−1∑
j=0

h7j

uniformly in t0 ≤ tn ≤ T. The constant C depends on T, but it is independent of n
and h.
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