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THE SHAPE OF LIMIT CYCLES FOR A CLASS
OF QUINTIC POLYNOMIAL DIFFERENTIAL

SYSTEMS∗
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Abstract We consider the problem of finding limit cycles for a class of
quintic polynomial differential systems and their global shape in the plane.
An answer to this problem can be given using the averaging theory. More
precisely, we analyze the global shape of the limit cycles which bifurcate from
a Hopf bifurcation and periodic orbits of the linear center ẋ = −y, ẏ = x,
respectively.
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1. Introduction

It is well known that Hilbert presented a list consisting of 23 mathematical problems
in 1900. The second part of the 16th problem appear to be one of the most persistent
in that list, second only to the 8th problem, the Riemann conjecture. Limit cycle
theory plays the key role in the second part of the 16th problem. The study of limit
cycles mainly consists of two aspect: one is the existence, stability and instability,
number and relative positions of limit cycles, and the other is the creating and
disappearing of limit cycles along with the varying of the parameters in the system
(e.g. bifurcation). Since the research on the exact number of the limit cycles and
relative positions for a polynomial system is difficult, it is still an open problem
even for the case n = 2. However, for a planar polynomial differential systems
the number of limit cycles is finite, see [6, 7, 13]. A classical way for studying the
number of limit cycles which bifurcate from the periodic orbits of a period annulus
of a center is the averaging method, see [1, 5, 11, 17, 18]. This method additionally
can give the shape of the bifurcated limit cycles up to any order of the perturbation
parameter. Moreover, the averaging method has been applied to solve the center
problem, see for instance Garćıa & Giné [8]. In the past years the question of
the shape of limit cycles of polynomial differential systems has attracted increasing
interest. Prohens & Torregrosa [19] studied the shape of limit cycles bifurcating from
the period annulus of a class of radial Hamiltonians. Giacomini etc. [9] studied the
global shape of the bifurcated limit cycles from an analytic Hamiltonian center when
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it was perturbed by an arbitrary analytic vector field. Then Giacomini etc. [10]
continue their study on the shape of the limit cycles which bifurcate from non-
Hamiltonian centers under small analytic perturbations. Llibre [15] showed the
existence of bifurcating limit cycles for quadratic systems and obtained their global
shape. Similar studies for the cubic systems and the quartic systems can be found
in [16,2], respectively.

In this paper, we will use the averaging method to consider the global shape of
the limit cycles for a class quintic polynomial differential systems of the form

ẋ = P1(x, y) + P5(x, y),

ẏ = Q1(x, y) +Q5(x, y),
(1.1)

where Pn and Qn denote homogeneous polynomials of degree n. In fact, due to the
determinant of coefficients∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 −5 −3 −1 1 −3 5

−10 −2 2 2 −2 −10 0 0 0 0 0 0
0 0 0 0 0 0 −10 −2 −2 2 2 −10
5 −3 1 1 −3 5 0 0 0 0 0 0
0 0 0 0 0 0 −1 1 −1 1 −1 1
0 0 0 0 0 0 1 1 1 1 1 1
5 3 1 −1 −3 −5 0 0 0 0 0 0
0 0 0 0 0 0 −10 −2 2 2 −2 −10
10 2 2 −2 −2 10 0 0 0 0 0 0
0 0 0 0 0 0 5 −3 1 1 −3 5
1 −1 1 −1 1 −1 0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

̸= 0,

it is clear that the expression of system (1.1) is equivalent to the form of

ẋ = λx− y + (α1 + α2 + α3 + α4 + α5 + α6)x
5 + (−5β1 − 3β2 − β3 + β4

+3β5 + 5β6)x
4y + (−10α1 − 2α2 + 2α3 + 2α4 − 2α5 − 10α6)x

3y2

+(−10β1 − 2β2 − 2β3 + 2β4 + 2β5 − 10β6)x
2y3 + (5α1 − 3α2 + α3

+α4 − 3α5 + 5α6)xy
4 + (−β1 + β2 − β3 + β4 − β5 + β6)y

5,

ẏ = x+ λy + (β1 + β2 + β3 + β4 + β5 + β6)x
5 + (5α1 + 3α2 + α3 − α4

−3α5 − 5α6)x
4y + (−10β1 − 2β2 + 2β3 + 2β4 − 2β5 − 10β6)x

3y2

+(10α1 + 2α2 + 2α3 − 2α4 − 2α5 + 10α6)x
2y3 + (5β1 − 3β2 + β3

+β4 − 3β5 + 5β6)xy
4 + (α1 − α2 + α3 − α4 + α5 − α6)y

5

(1.2)
when the origin is a focus. In order to simplify our calculations, we shall study
the global shape of the limit cycles which born in Hopf bifurcation at the origin
of system (1.2) and also the global shape of the limit cycles of system (1.2) which
bifurcate from periodic orbits of the center ẋ = −y, ẏ = x.

We can say that the averaging method gives a quantitative relation between
the solutions of some non-autonomous differential system and the solutions of the
averaged differential system, which is an autonomous one. It is necessary that the
system (1.2) is transformed into a particular case of an Abelian differential equation
to use this method. We will state the specific results about Abelin equation and
Averaging theory in Section 3 and 4, respectively.
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2. Statement of the main results

We use the second order approximation of the averaging method to investigate the
the periodic solutions which bifurcate from the origin of the quintic system

ẋ = −y + (α1 + α2 + α3 + α4 + α5 + α6)x
5 + (−5β1 − 3β2 − β3 + β4

+3β5 + 5β6)x
4y + (−10α1 − 2α2 + 2α3 + 2α4 − 2α5 − 10α6)x

3y2

+(−10β1 − 2β2 − 2β3 + 2β4 + 2β5 − 10β6)x
2y3 + (5α1 − 3α2 + α3

+α4 − 3α5 + 5α6)xy
4 + (−β1 + β2 − β3 + β4 − β5 + β6)y

5 + ε2α0x,

ẏ = x+ (β1 + β2 + β3 + β4 + β5 + β6)x
5 + (5α1 + 3α2 + α3 − α4

−3α5 − 5α6)x
4y + (−10β1 − 2β2 + 2β3 + 2β4 − 2β5 − 10β6)x

3y2

+(10α1 + 2α2 + 2α3 − 2α4 − 2α5 + 10α6)x
2y3 + (5β1 − 3β2 + β3v

+β4 − 3β5 + 5β6)xy
4 + (α1 − α2 + α3 − α4 + α5 − α6)y

5 + ε2α0y,

(2.1)

at ε = 0. By the same method, we study the limit cycles which bifurcate from the
periodic orbits of linear center ẋ = −y, ẏ = x when we perturb it inside the quintic
systems

ẋ = −y + ε[(a1 + a2 + a3 + a4 + a5 + a6)x
5 + (−5b1 − 3b2 − b3 + b4

+3b5 + 5b6)x
4y + (−10a1 − 2a2 + 2a3 + 2a4 − 2a5 − 10a6)x

3y2

+(−10b1 − 2b2 − 2b3 + 2b4 + 2b5 − 10b6)x
2y3 + (5a1 − 3a2 + a3

+a4 − 3a5 + 5a6)xy
4 + (−b1 + b2 − b3 + b4 − b5 + b6)y

5] + ε2α0x,

ẏ = x+ ε[(b1 + b2 + b3 + b4 + b5 + b6)x
5 + (5a1 + 3a2 + a3 − a4

−3a5 − 5a6)x
4y + (−10b1 − 2b2 + 2b3 + 2b4 − 2b5 − 10b6)x

3y2

+(10a1 + 2a2 + 2a3 − 2a4 − 2a5 + 10a6)x
2y3 + (5b1 − 3b2 + b3

+b4 − 3b5 + 5b6)xy
4 + (a1 − a2 + a3 − a4 + a5 − a6)y

5] + ε2α0y.

(2.2)

The main results are the following theorems.

Theorem 2.1. Consider system (2.1) with α1 = − 8
5α3 and α0 ·M > 0, where

M = −105α1β1 + 40(α1β3 + α3β1 + α4β1 + α1β4) + 64(α3β3 + α2β4 + α4β2)

+24(α1β5 + α5β1)− 80(α2β1 + α1β2),

there is a limit cycle bifurcating from the origin for ε = 0. Moreover, for any ε > 0
sufficiently small, the expression of this limit cycle in polar coordinates (r, θ) is
given by

r(θ, ε) = ε1/4σ
1/4
0 + 1

4ε
5/4σ

5/4
0 b(θ) + 1

4ε
5/4σ

5/4
0 c(θ) + 5

16ε
9/4σ

9/4
0 b(θ)c(θ)

+ 5
32ε

9/4σ
9/4
0 b2(θ)− 3

32ε
9/4σ

9/4
0 c2(θ) + o(ε)13/4,

(2.3)

where

σ0 =

√
64α0

M
,
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b(θ) = ( 158 α1 + α2 − α4) sin(2θ) + (− 5
8β1 + β2 + β4) cos(2θ) + (α1 − α5) sin(4θ)

+(−1
4β1 + β5) cos(4θ) + (− 5

8α1 − α6) sin(6θ) + ( 58β1 + β6) cos(6θ)

+( 58β1 + β3),

c(θ) = (−25
8 α1 + α2 + 3α4) sin(2θ) + ( 358 β1 + β2 − 3β4) cos(2θ)

+(−5
4α1 + 2α5) sin(4θ) + ( 54β1 − 2β5) cos(4θ) + ( 2524α1 +

5
3α6) sin(6θ)

+(−25
24β1 − 5

3β6) cos(6θ).

Theorem 2.2. Consider system (2.2) with a1 = 8
5a3 and α0 ·N > 0, where

N = −105a1b1 + 40(a1b3 + a3b1 + a4b1 + a1b4) + 64(a3b3 + a2b4 + a4b2)

+24(a1b5 + a5b1)− 80(a2b1 + a1b2),

there is a limit cycle, which is bifurcated from a circular periodic solution of linear

center with radius ρ0 =
√

64α0

N of the linear center for ε = 0. Moreover, for ε > 0

sufficiently small, the expression of this limit cycle in polar coordinates (r, θ) is
given by

r(θ, ε) = ρ
1/4
0 + 1

4ερ
5/4
0 b(θ) + 1

4ερ
5/4
0 c(θ) + 5

16ε
2ρ

9/4
0 b(θ)c(θ)

+ 5
32ε

2ρ
9/4
0 b2(θ)− 3

32ε
2ρ

9/4
0 c2(θ) + o(ε)3,

(2.4)

where b(θ) and c(θ) are define as in theorem 2.1 with only formal changes to sub-
stitute αi and βi with ai and bi, respectively.

3. The system in polar coordinates and the Abelian
equation

The aim of this section is to present the Abelian equation theory as it was obtained
in Li etc. [14]. We deal with the class of real planar polynomial differential systems
of the form

ẋ = λx− y + Pn(x, y), ẏ = x+ λy +Qn(x, y), (3.1)

where Pn and Qn are homogeneous polynomial of degree n. Using polar coordinates
(r, θ), system (3.1) becomes

ṙ = λr + f(θ)rn, θ̇ = 1 + g(θ)rn−1, (3.2)

where
f(θ) = cos θPn (cos θ, sin θ) + sin θQn (cos θ, sin θ),

g(θ) = cos θQn (cos θ, sin θ)− sin θPn (cos θ, sin θ).

We remark that f and g are homogeneous polynomials of degree n+1 in the variables
cos θ and sin θ. It is clear that the expression of system (3.1) is equivalent to the
differential equation

dr

dθ
=

λr + f(θ)rn

1 + g(θ)rn−1
(3.3)

in the region S = {(r, θ) : 1 + g(θ)rn−1 > 0}. Since any periodic orbit surrounding
the origin of system (3.1) is in S, but does not intersect the curve £ : θ̇ = 0 (for



The shape of limit cycles 295

more details see the Appendix of Carbonell & Llibre [3]), there exist periodic orbits
of equation (3.3).

The change of variables (r, θ) → (ρ, θ) with

ρ =
rn−1

1 + g(θ)rn−1
(3.4)

is a diffeomorphism from the region S into its image. As far as we know, the first
to use this transformation was Cherkas in [4]. If we express Eq.(3.3) with respect
to the variable ρ, we obtain

dρ

dθ
= [(n− 1)g(θ)(λg(θ)− f(θ))]ρ3 + [(n− 1)(f(θ)− 2λg(θ))− g′(θ)]ρ2 + (n− 1)λρ,

(3.5)
which is an Abelian differential equation. In fact we have proved the following
result.

Lemma 3.1. The function r = r(θ) is a periodic solution of system (3.2) surround-
ing the origin if and only if ρ(θ) = r(θ)n−1/(1 + g(θ)r(θ)n−1) is a periodic solution
of the Abelian differential equation (3.5).

4. Second-order approximation in general averag-
ing

In this section, we give the necessary results on the theory of averaging that we
will apply to prove theorem 2.1 and 2.2. First we need to introduce the following
definition.

Definition 4.1. Let f(t, y) be a continuous function in [0, T ]×D, with D ⊆ R and
T-period in t, then we define the average function of f as

f (o) =
1

T

∫ T

0

f(t, y)dt. (4.1)

Lemma 4.1. Consider the initial value problems :

ẋ = εf(t, x) + ε2g(t, x) + ε3h(t, x, ε), x(0) = x0, (4.2)

and
ẏ = εf (0)(y) + ε2f (10)(y) + εg(0)(y), y(0) = x0, (4.3)

where x, y, x0 ∈ D ⊂ R, t ∈ [0,∞), ε ∈ (0, ε0], f(t, x), g(t, x) and h(t, x, ε) are
T-periodic in t, and

f1(t, x) =
∂f

∂x
y1(t, x)− ∂y1

∂x
f (0)(x),

where

y1(t, x) =

∫ t

0

(f(s, x)− f (0)(x))ds+ w(x),

with w(x) a C1 function such that the averaged function of y1 is zero. f (0), f (10)

and g(0) denote the averaged functions of f, f1 and g, respectively. Furthermore,
suppose that:
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(a) ∂f (0)/∂y, g and h are Lypschitz in x and all these functions are defined,
continuous;

(b) |h(t, x, ε)| is uniformly bounded by a constant in [0, l
ε )× D× (0, ε0];

(c) y(t) belongs to D on the time-scale 1
ε .

Then

(1) x(t) = y(t) + εy1(t, y(t)) + ◦(ε2) on the time-scale 1
ε ;

(2) If f (0)(y) ≡ 0 and p is an equilibrium point of the averaged system (4.3) such
that

∂

∂y
(f (10)(y) + g(0)(y))|y=p ̸= 0, (4.4)

then there exists a T-periodic solution ϕ(t, ε) of Eq.(4.2) which is close to p
such that ϕ(t, ε) → p as ε → 0;

(3) If f (0)(y) ≡ 0 and (4.4) is negative, then the corresponding periodic solution
ϕ(t, ε) → p of Eq. (4.2) in the space of (t, x) is asymptotically stable for
sufficiently small ε. If (4.4) is positive, then this periodic solution is unstable.

For a proof see Llibre [15], Sanders etc. [20] and Verhulst [22].

5. The proof of Theorems

Considering the planar polynomial system (1.2), we can rewrite the system into the
form:

ż = A0z +A1z
5 +A2z

4z +A3z
3z2 +A4z

2z3 +A5zz
4 +A6z

5, (5.1)

where z = x+yi, A0 = λ+ i, An = αn+βni, (n = 1, 2, · · · , 6). Direct computations
partially provide the first four Lyapunov constants V4, V6, V8, V10 of the quintic
system (1.2). These Lyapunov constants are given by

V4 = λ, V6 = 2α3, V8 = 0, V10 = −2(α5β1 + α1β5 + α4β2 + α2β4).

The above results are also referred to the formula of [12]. It follows easily from
the arguments of [21] that a limit cycle which bifurcates from the origin if V8 = 0,
|V6| ≪ |V10| and V6V10 < 0. Now, in order to study this Hopf bifurcation, we need
to transform the system (1.2) into an Abelian equation. Using polar coordinates
(r, θ), system (1.2) becomes

ṙ = λr + a(θ)r5, θ̇ = 1 + b(θ)r4, (5.2)

where

a(θ) = (− 15
8 β1 − β2 + β4) sin(2θ) + (− 5

8α1 + α2 + α4) cos(2θ)

+(−β1 + β5) sin(4θ) + (−1
4α1 + α5) cos(4θ) + ( 58β1 + β6) sin(6θ)

+( 58α1 + α6) cos(6θ) + ( 58α1 + α3),

b(θ) = ( 158 α1 + α2 − α4) sin(2θ) + (−5
8β1 + β2 + β4) cos(2θ) + (α1 − α5) sin(4θ)

+(− 1
4β1 + β5) cos(4θ) + (−5

8α1 − α6) sin(6θ) + ( 58β1 + β6) cos(6θ)

+( 58β1 + β3),
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denote polynomials of degree 6 with respect to the variables cos θ and sin θ. We
observe that the system (5.2) is equivalent to

dr

dθ
=

λr + a(θ)r5

1 + b(θ)r4
. (5.3)

Let

ρ =
r4

1 + b(θ)r4
,

we obtain the following Abelian differential equation

dρ

dθ
= A(θ)ρ3 +B(θ)ρ2 + 4λρ

= [4λb(θ)2 − 4a(θ)b(θ)]ρ3 + [4a(θ)− 8λb(θ)− b′(θ)]ρ2 + 4λρ,
(5.4)

with b′(θ) denote the derivative of b with respect to θ, and A(θ) and B(θ) are
trigonometric polynomial with respect to cos θ and sin θ of degree 12 and 6, respec-
tively.

By the second order approximation of the averaging method, we shall study the
periodic solutions of the system (5.4) and consequently the periodic orbits surround-
ing the origin for the quintic system (1.2). Then a good asymptotic estimation of
the shape for the limit cycle which bifurcates from the origin is obtained.

Proof of Theorem 2.1. Taking λ = α0ε
2 with ε > 0 sufficiently small, we study

the Hopf bifurcation at origin of the system (1.2) given by V8 = 0, | V6 |≪| V10 |
and V6V10 < 0. This way leads to system (2.1) with associated Abelian differential
equation (5.4). In addition, the perturbation of system (1.2) is relevant to ε2, so
we apply the second order approximation of averaging method to Abelian equation
(5.4). Now, using the change of variables ρ = σε, Eq.(5.4) becomes

dσ

dθ
= εf(θ, σ) + ε2g(θ, σ) + ε3h(θ, σ, ε), (5.5)

where f(θ, σ) = (4a(θ)−b′(θ))σ2, g(θ, σ) = 4(α0−a(θ)b(θ)σ2)σ, h(θ, σ, ε) = 4(−2+
b(θ)εσ)α0b(θ)σ

2. The functions f , g and h satisfy all the assumptions of Lemma
(4.1) with T = 2π. According to α1 = −8

5α3, we compute and obtain these following
integrals using Maple

f (0)(σ) = 0,

y1(θ, σ) = [(−25
8 α1 + α2 + 3α4) sin(2θ) + ( 358 β1 + β2 − 3β4) cos(2θ)

+ (−5
4α1 + 2α5) sin(4θ) + ( 54β1 − 2β5) cos(4θ) + ( 2524α1 +

5
3α6) sin(6θ)

+ (−25
24β1 − 5

3β6) cos(6θ)]σ
2,

f (10)(σ) = 0,

g(0)(σ) = 1
16 (64α0 −Mσ2)σ,

with

M = −105α1β1 + 40(α1β3 + α3β1 + α4β1 + α1β4) + 64(α3β3 + α2β4 + α4β2)

+24(α1β5 + α5β1)− 80(α2β1 + α1β2),
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where we have used the notation of Section 4. Since α0 · M > 0, Lemma (4.1)

implies that Eq. (5.5) has a periodic solution σ(θ, ε) near to σ0 =
√

64α0

M , and

satisfying σ(θ, ε) → σ0 as ε → 0, where σ0 is an equilibrium point of the averaged
equation of Eq. (5.5). In fact, using Lemma (4.1), we have

σ(θ, ε) = σ0 + εy1(θ, σ0) + o(ε2).

We infer that Eq. (5.4) has a 2π-periodic solution near to ρ(θ, ε) = σ(θ, ε)ε such
that ρ0(θ, ε) → 0 as ε → 0. Finally, returning to the Eq. (5.3), we see that it has
the 2π-periodic solution

r(θ, ε) =

(
εσ(θ, ε)

1− εb(θ)σ(θ, ε)

)1/4

, (5.6)

with r(θ, ε) → 0 as ε → 0. So this periodic solution is produced by a Hopf’s
bifurcation at the origin of system (1.2) when ε = 0. And expression (2.3) is
obtained when we expend (5.6) in power series of ε. The proof of Theorem 2.1 is
completed.

Proof of Theorem 2.2. Now, we investigate limit cycles which bifurcate from
the linear center ẋ = −y, ẏ = x, when it is perturbed inside the class of quintic
systems (1.2). Let λ = α0ε

2, αi = εai and βi = εbi, we obtain the quintic system
(2.2). Then the corresponding Abelian equation (5.4) becomes

dρ

dθ
= εf(θ, ρ) + ε2g(θ, ρ) + ε3h(θ, ρ, ε), (5.7)

where f(θ, ρ) = (4ā(θ) − b̄′(θ))ρ2, g(θ, ρ) = 4(α0 − ā(θ)b̄(θ)ρ2)ρ and h(θ, ρ, ε) =
4(−2 + b̄(θ)ρφ)α0b(θ)ρ

2, ā(θ) = a(θ)/ε and b̄(θ) = b(θ)/ε. Note that Eq. (5.5) and
(5.7) are exactly the same with only formal changed to substitute σ, a and b by
ρ, ā and b̄, respectively. Taking into account these changes, we see that the results
obtained for σ remain also valid for ρ. Hence

ρ(θ, ε) = ρ0 + εy1(θ, ρ0) + o(ε2),

where

ρ0 =

√
64α0

N
,

with

N = −105a1b1 + 40(a1b3 + a3b1 + a4b1 + a1b4) + 64(a3b3 + a2b4 + a4b2)

+ 24(a1b5 + a5b1)− 80(a2b1 + a1b2),

y1(θ, ρ0) = [(−25
8 a1 + a2 + 3a4) sin(2θ) + ( 358 b1 + b2 − 3b4) cos(2θ)

+ (−5
4a1 + 2a5) sin(4θ) + ( 54b1 − 2b5) cos(4θ) + ( 2524a1 +

5
3a6) sin(6θ)

+ (−25
24b1 −

5
3b6) cos(6θ)]ρ

2
0.

Returning to the equation in polar coordinate (5.3), it has the 2π-periodic solution

r(θ, ε) =

(
ρ(θ, ε)

1− εb̄(θ)ρ(θ, ε)

)1/4

, (5.8)

such that r(θ, ε) → 4
√
ρ0 as ε → 0. So this periodic solution is produced by a bi-

furcation of the circular orbit of system (2.2) when ε = 0. Expanding Eq.(5.8) in
power series of ε, we obtain expression (2.4). The Theorem 2.2 is proved.
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