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THE CYCLICITY OF THE PERIOD ANNULUS
OF TWO CLASSES OF CUBIC ISOCHRONOUS

SYSTEMS∗
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Abstract In this paper, we investigate the cyclicity of the period annulus of
two classes of cubic isochronous systems. By using the Chebyshev criterion,
we prove that the two systems have respectively at most three and four limit
cycles produced from the period annulus around the isochronous center under
cubic perturbations.

Keywords Isochronous center, limit cycle, cubic perturbations.

MSC(2000) 34C05, 34C07, 34C14.

1. Introduction

The problem of finding the maximal number of limit cycles for polynomial differen-
tial systems is the second part of the Hilbert’s 16th problem. Until now the problem
still remains unsolved even for planar polynomial systems of degree 2. Thereby, a
weak version of this problem is proposed by Arnold [1] to study the zeros of A-
belian integrals obtained integrating polynomial 1-forms over ovals of polynomial
Hamiltonian, that is the weak Hilbert’s 16th problem.

Consider the perturbed system of a Hamiltonian system

ẋ = Hy(x, y) + εP (x, y),

ẏ = −Hx(x, y) + εQ(x, y),
(1.1)

where H(x, y) is a polynomial of degree n+ 1, ε is a small parameter, P (x, y) and
Q(x, y) are polynomials of degree m in the plane. Suppose that system (1.1)ε=0

has at least one center surrounded by the compact connected component Γh of real
algebraic curve H(x, y) = h, h ∈ (a, b). We can define the displacement map d(h, ε)
of system (1.1) on a section to the flow, which is parameterized by the Hamiltonian
value h. Then, the displacement function (see [15]) of system (1.1) is

d(h, ε) = ε(I(h) +O(ε)),

where I(h) =
∮
Γh

Pdy − Qdx, which is called Abelian integral of system (1.1)(or

the first order Melnikov function) and O(ε) is a higher-order term of ε. The weak
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Hilbert’s 16th problem is to find the least upper bound of the number of real zeros
of the Abelian integral I(h). If I(h) is not identically zero, then the number of real
zeros of I(h) provides an upper bound for the number of limit cycles of system (1.1)
which bifurcate from the period annulus around the center.

If the unperturbed system is integrable but non-Hamiltonian, one has to use a
integrating factor, say M(x, y). Then the Abelian integral can be defined as

I(h) =

∮
Γh

M(x, y)P (x, y)dy −M(x, y)Q(x, y)dx. (1.2)

By the same mechanisms the integral I(h) gives the first approximation of the
displacement function. If I(h) ̸≡ 0, then I(h) is called sometimes the generating
function and the upper bound of the number limit cycles which bifurcate from the
period annulus is called the cyclicity of the period annulus.

Many authors have studied the bifurcation of limit cycles in planar quadratic
systems under quadratic perturbations, in particular for quadratic systems with
centers of genus one. We refer to [2,4–6], [9,12], [17,18,20,21], the survey paper [8]
and references therein. The paper [10] estimated the number of limit cycles that
bifurcate from the periodic orbits of cubic reversible isochronous centers having all
their orbits formed by conics inside the class of all polynomial systems of degree n.
In the paper [11], the authors study the bifurcation of limit cycles from the periodic
orbits of certain centers of planar systems which are the sum of a linear center and
homogeneous nonlinearities. The authors of [3] obtained an upper bound for the
number of limit cycles from cubic Pleshkan’s isochronous system S∗

1 under a small
polynomial perturbation of degree n. Wu & Zhao [19] study the number of limit
cycles that bifurcate from the periodic orbits of a cubic reversible isochronous center
under cubic perturbations.

In this paper we will study the cyclicity of the period annulus of two classes of
cubic Pleshkan’s isochronous systems

S∗
3 :

{
ẋ = −y + 3x2y,

ẏ = x− 2x3 + 9xy2,
S̄∗
3 :

{
ẋ = −y − 3x2y,

ẏ = x+ 2x3 − 9xy2.
(1.3)

Pleshkan has proved in the paper [16] that the origin is an isochronous center of
systems S∗

3 and S̄∗
3 . It is easy to know that system S∗

3 has a first integral

H1(x, y) =
(x− 2x3)2 + y2

2(1− 3x2)3
= h1 (1.4)

with the integrating factor M1(x, y) = 1/(1− 3x2)4. There is an unbounded period
annulus between the invariant lines x = −

√
3/3 and x =

√
3/3. Since H1 has a

local minimum 0 at the origin, h1 ∈ (0,+∞). System S̄∗
3 has a first integral

H2(x, y) =
(x+ 2x3)2 + y2

2(1 + 3x2)3
= h2 (1.5)

with the integrating factor M2(x, y) = 1/(1 + 3x2)4. Similarly, H2 has a local
minimum 0 at the origin and there exists an unbounded period annulus surrounding
the origin. Then h2 ∈ (0, 2

27 ).
The main purpose in this paper is to show the cyclicity of the period annu-

lus of systems S∗
3 and S̄∗

3 under cubic perturbations. We consider the following
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perturbations of systems (1.3):{
ẋ = −y + 3x2y + εf(x, y),

ẏ = x− 2x3 + 9xy2 + εg(x, y),

{
ẋ = −y − 3x2y + εf(x, y),

ẏ = x+ 2x3 − 9xy2 + εg(x, y),
(1.6)

where

f(x, y) =

3∑
i+j=1

aij(ε)x
iyj , g(x, y) =

3∑
i+j=1

bij(ε)x
iyj

with aij(ε) and bij(ε) being analytic functions vanishing at ε = 0. By (1.2) we know
that the Abelian integrals of systems (1.6) are

Īk(hk) =

∮
Γhk

Mk(x, y)f(x, y)dy −Mk(x, y)g(x, y)dx, k = 1, 2, (1.7)

where Γhk
is the compact component of Hk = hk defined by (1.4) and (1.5), respec-

tively.
The main result of this paper is following theorem.

Theorem 1.1. For cubic perturbed systems of S∗
3 and S̄∗

3 , when h1 ∈ (0,+∞) and
h2 ∈ (0, 2

27 ), the maximal number of zeros (taking into account the multiplicity) of
the Abelian integral Īk(hk) in (1.7) is equal to three and four, respectively.

To prove Theorem 1.1, we introduce some definitions of Chebyshev property and
lemmas that we shall use in Section 2. In Section 3, we shall change the Abelian
integral Īk(hk)(k = 1, 2) in (1.7) to a linear combination of four integrals and use
Chebyshev criterion to prove that the four integrals form an extended complete
Chebychev system. Accordingly, we obtain the number of zeros of the generating
function by some purely algebraic computations.

Since Īk(hk) are not identically zero, Theorem 1.1 immediately implies the fol-
lowing result.

Theorem 1.2. The cyclicity of the period annulus around the isochronous center
at the origin in cases S∗

3 and S̄∗
3 under small cubic perturbations is three and four,

respectively.

2. Criterion of Chebyshev systems

In order to study the cyclicity of period annulus of systems S∗
3 and S̄∗

3 under cubic
perturbations, we will use Chebyshev criterion of certain functions (see [4]) to study
the maximal number of zeros of Abelian integrals Īk(hk) by some purely algebra-
ic computations. For this purpose we will firstly introduce some definitions and
criterion of Chebyshev systems. The reader is referred to [4] in detail.

Definition 2.1. Let f0(x), f1(x), · · · , fn−1(x) be analytic functions on an open
interval L of R.

(a) (f0(x), f1(x), · · · , fn−1(x)) is a Chebyshe system (for short, a T-system) on L
if any nontrivial linear combination

α0f0(x) + α1f1(x) + · · ·+ αn−1fn−1(x)

has at most n− 1 isolated zeros for x ∈ L.
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(b) (f0(x), f1(x), · · · , fn−1(x)) is a complete Chebyshev system (for short, a CT-
system) on L if (f0(x), f1(x), · · · , fk−1(x)) is a T-system for all k = 1, 2, · · · , n.

(c) (f0(x), f1(x), · · · , fn−1(x)) is an extend complete Chebyshev system (for short,
an ECT-system) on L if for all k = 1, 2, · · · , n, any nontrivial linear combina-
tion

α0f0(x) + α1f1(x) + · · ·+ αn−1fk−1(x)

has at most k − 1 isolated zeros on L counted with multiplicities.

Remark 2.1. If (f0(x), f1(x), · · · , fn−1(x)) is an ECT-system on L, then, for each
k = 1, 2, · · · , n− 1, there exists a linear combination with exactly k simple zeros on
L (see [13] and [7] for instance).

Definition 2.2. Let f0(x), f1(x), · · · , fk−1(x) be analytic functions on an open
interval L of R. The continuous Wronskian of (f0(x), f1(x), · · · , fk−1(x)) at x ∈ L
is

W [f0, f1, · · · , fk−1](x) = Det(f
(i)
j (x))0≤i,j≤k−1 =

∣∣∣∣∣∣∣∣
f0(x) · · · fk−1(x)
f ′
0(x) · · · f ′

k−1(x)
· · · · · · · · ·

f
(k−1)
0 (x) · · · f

(k−1)
k−1 (x)

∣∣∣∣∣∣∣∣ .
Lemma 2.1. (f0(x), f1(x), · · · , fn−1(x)) is an ECT-system on L if and only if, for
each k = 1, 2, · · · , n,

W [fk](x) ̸= 0 for all x ∈ L.

Now we consider the first integral of system with the form

H(x, y) = A(x) +B(x)y2m, (2.1)

where H(x, y) is an analytic function in some open subset of the plane that has a
local minimum at the origin. We fix that H(0, 0) = 0, then there exists a period
annulus by the set of ovals Γh ∈ {(x, y)|H(x, y) = h}, which is parameterized by
the Hamiltonian value h ∈ (0, h0) for some h0 ∈ (0,+∞]. It is easy to verify that
xA′(x) > 0 for any x ∈ (xl, xr)\0, where (xl, xr) is the projection of the period
annulus Γh on the x-axis. Thus, there exists an analytic involution σ(x) (σ ◦σ = Id
and σ ̸= Id) such that

A(x) = A(σ(x)) for all x ∈ (xl, xr)

and σ(0) = 0.

Lemma 2.2. ( [4]) Let us consider the Ablian integrals

Ii(h) =

∫
Γh

fi(x)y
2s−1dx, i = 0, 1, · · · , n− 1,

where, for each h ∈ (0, h0), Γh is the oval surrounding the origin inside the level
curve {A(x)+B(x)y2m = h}. Let σ be the involution associated to A, and we define

li(x) =

(
fi

A′B
2s−1
2m

)
(x)−

(
fi

A′B
2s−1
2m

)
(σ(x)).

Then (I0, I1, · · · , In−1) is an ECT-system on (0, h0) if s > m(n−2) and (l0, l1, · · · , ln−1)
is a CT-system on (0, xr).
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3. Proof of Theorem 1.1

In this section we will estimate the number of zeros of corresponding Abelian inte-
grals Ik(hk) by using Chebyshev criterion (Lemma 2.2) as in section 2.

Lemma 3.1. (i) The generating function Ī1(h1) defined by (1.7) can be rewritten
as

Ī1(h1) = α0I0(h1) + α1I1(h1) + α2I2(h1) + α3I3(h1), (3.1)

where

I0(h1) =

∫
Γh1

y3

(1− 3x2)4
dx, I1(h1) =

∫
Γh1

x2y

(1− 3x2)4
dx,

I2(h1) =

∫
Γh1

y

(1− 3x2)4
dx, I3(h1) =

∫
Γh1

y3

(1− 3x2)5
dx,

α0, α1, α2 and α3 are arbitrary constants.

(ii) The generating function Ī2(h2) defined by (1.7) can be rewritten as

Ī2(h2) = µ0Ĩ0(h2) + µ1Ĩ1(h2) + µ2Ĩ2(h2) + µ3Ĩ3(h2), (3.2)

where

Ĩ0(h2) =

∫
Γh2

y3

(1 + 3x2)4
dx, Ĩ1(h2) =

∫
Γh2

x2y

(1 + 3x2)4
dx,

Ĩ2(h2) =

∫
Γh2

y

(1 + 3x2)4
dx, Ĩ3(h2) =

∫
Γh2

y3

(1 + 3x2)5
dx,

µ0, µ1, µ2 and µ3 are arbitrary constants.

Proof. (i) It follows from (1.4) that H1(−x, y) = H1(x, y) = H1(x,−y). Then,
from (1.7) we have that∫

Γh1

xiyj

(1− 3x2)4
dy = 0 for i = 2m, m ∈ N,

∫
Γh1

xiyj

(1− 3x2)4
dx = 0 for j = 2m, m ∈ N.

On the other hand, using the formula of integration by parts we have∫
Γh1

xy

(1− 3x2)4
dy =

∫
Γh1

(1 + 21x2)y2

2(1− 3x2)5
dx = 0.

Finally, by applying Green’s formula and direct computation, we obtain the result
(3.1).

(ii) Using the same argument as above, we can get the expression (3.2).
In what following, we are going to apply Lemma 2.2 to prove that (I0(h1), I1(h1),

I2(h1), I3(h1)) in (3.1) is an ECT-system on (0,+∞). However, we discover that
m = 1, n = 4 and s = 1, 2, so that the conditions s > m(n− 2) is not satisfied. To
solve this problem, we give the following lemma.
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Lemma 3.2. ( [4]) Let Γh be an oval inside the level curve {A(x)+B(x)y2m = h}
and we consider a function F such that F

A′ is analytic at x = 0. Then, for any
k ∈ N, ∫

Γh

F (x)yk−2dx =

∫
Γh

G(x)ykdx,

where G(x) = 2
k (

BF
A′ )

′(x)− (B
′F
A′ )(x).

3.1. Proof of the case S∗
3

We write (1.4) as

H1(x, y) = A1(x) +B1(x)y
2 = h1, h1 ∈ (0,+∞), (3.3)

where

A1(x) =
(x− 2x3)2

2(1− 3x2)3
, B1(x) =

1

2(1− 3x2)3
. (3.4)

Denote by (xl, xr) the projection of the unbound period annulus Γh1 around the

origin on the x-axis. It is easy to see that H1(0, 0) = 0 and (xl, xr) = (−
√
3
3 ,

√
3
3 ).

Then we can find an involution σ1(x) such that A1(x) = A1(σ1(x)) for all x ∈
(−

√
3
3 ,

√
3
3 ).

By using Lemma 3.2, we can rewrite I1(h1) and I2(h1) in (3.1) as

I1(h1) =

∫
Γh1

(1− 10x2 + 12x4)y3

3(−1 + 2x2)2(−1 + 3x2)4
dx,

I2(h1) =

∫
Γh1

−y3

3x2(−1 + 2x2)2(−1 + 3x2)4
dx.

It follows from (3.3) that

I0(h1) =
1

h1

∫
Γh1

(A1(x) +B1(x)y
2)y3

(1− 3x2)4
dx

=
1

h1

∫
Γh1

A1(x)y
3 +B1(x)y

5

(1− 3x2)4
dx.

Applying Lemma 3.2 to I0(h1), we obtain

I0(h1) =
1

h1
J0(h1) =

1

h1

∫
Γh1

f0(x)y
5dx, (3.5)

where

f0(x) =
−3(1− 3x2 + 6x4)

5(−1 + 3x2)7
.

In the same way, we get

Ii(h1) =
1

h1
Ji(h1) =

1

h1

∫
Γh1

fi(x)y
5dx, i = 1, 2, 3, (3.6)
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where

f1(x) =
−3 + 45x2 − 166x4 + 300x6 − 216x8

15(−1 + 2x2)2(−1 + 3x2)7
,

f2(x) =
2

15x2(−1 + 2x2)2(−1 + 3x2)7
,

f3(x) =
3(1− 2x2 + 4x4)

5(−1 + 3x2)8
.

We can see that (I0(h1), I1(h1), I2(h1), I3(h1)) is an ECT-system on (0,+∞) if
and only if (J0(h1), J1(h1), J2(h1), J3(h1)) is an ECT-system. Therefore we apply
Lemma 2.2 to (J0(h1), J1(h1), J2(h1), J3(h1)) with m = 1, n = 4 and s = 3. Denote
by σ the involution associated to A1(x)(i.e. A1(x) = A1(σ1(x)). We have

li(x) = gi(x)− gi(z) =

(
fi

A′
1B

5
2
1

)
(x)−

(
fi

A′
1B

5
2
1

)
(z), i = 0, 1, 2, 3, (3.7)

where

gi(x) =
4
√
2(1− 3x2)

23
2 fi(x)

x(1− 2x2)
. (3.8)

Since system S∗
3 is symmetrical with respect to x-axis and y-axis, it is easy to see

that
z = σ1(x) = −x. (3.9)

Now we apply Lemma 2.1 to check that (l0(x), l1(x), l2(x), l3(x)) is an ECT-

system on (0,
√
3
3 ). Therefore, we shall computeWronskian of (l0(x), l1(x), l2(x), l3(x))

for x ∈ (0,
√
3
3 ). The whole computation will be fulfilled by Mathematica software.

Lemma 3.3. (l0(x), l1(x), l2(x), l3(x)) is an ECT-system on (0,
√
3
3 ).

Proof. By the definition of the Wronskian of (l0(x), l1(x), l2(x), l3(x)), we need to
prove that

W [lk](x) ̸= 0, for x ∈ (0,
√
3
3 ) and for each k = 0, 1, 2, 3.

It follows from (3.5)-(3.9) that

u(x)l0(x) = v0(x) = 9x2(1− 3x2)(−1 + 2x2)2(1− 3x2 + 6x4),

u(x)l1(x) = v1(x) = x2(1− 3x2)(3− 45x2 + 166x4 − 300x6 + 216x8),

u(x)l2(x) = v2(x) = 2(−1 + 3x2),

u(x)l3(x) = v3(x) = 9x2(−1 + 2x2)2(1− 2x2 + 4x4),

where

u(x) =
−8

√
2(1− 3x2)

7
2

15x3(−1 + 2x2)3
.

Note that u(x) has no zeros on (0,
√
3
3 ). Therefore, it is easy to see that sys-

tem (l0(x), l1(x), l2(x), l3(x)) is an ECT-system on (0,
√
3
3 ) if and only if system

(v0(x), v1(x), v2(x), v3(x)) is an ECT-system on (0,
√
3
3 ).
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It is clear that
W [v0](x) = v0(x).

We can see that v0(x) ̸= 0 for all x ∈ (0,
√
3
3 ). Similarly, by straightforward compu-

tation, we get

W [v0, v1](x) = −72x5(−1 + 2x2)(−1 + 3x2)2(−6 + 38x2 − 111x4

+ 162x6 − 156x8 + 72x10),

W [v0, v1, v2](x) = −3456x3(−1 + 2x2)2(−1 + 3x2)3(2− 17x2 + 63x4

− 120x6 + 120x8),

and

W [v0, v1, v2, v3](x) =− 995328x6(−1 + 2x2)3(5− 18x2 − 147x4 + 1338x6

− 4635x8 + 8910x10 − 9720x12 + 6480x14).

By using Sturm’s Theorem, we can check that W [v0, v1](x) ̸= 0,W [v0, v1, v2](x) ̸= 0

and W [v0, v1, v2, v3](x) ̸= 0 for all x ∈ (0,
√
3
3 ). This finishes the proof of Lemma

3.3.
Theorem 1.1 in case S∗

3 follows from Lemmas 3.1, 3.3 and Lemma 2.1.

3.2. Proof of the case S̄∗
3

We write the first integral (1.5) as

H2(x, y) = A2(x) +B2(x)y
2 = h2, h2 ∈ (0,

2

27
), (3.10)

where

A2(x) =
(x+ 2x3)2

2(1 + 3x2)3
, B2(x) =

1

2(1 + 3x2)3
. (3.11)

The projection of the unbound period annulus Γh2 around the origin on the x-axis
is (x̃l, x̃r) = (−∞,+∞). It is clear that H2(0, 0) = 0. Then we can also find a
involution σ2(x) such that A2(x) = A2(σ2(x)) for all x ∈ (−∞,+∞).

We find that (Ĩ0(h2), Ĩ1(h2), Ĩ2(h2), Ĩ3(h2)) in (3.2) is not an ECT-system by
similar computations to the case S∗

3 above. Hence, to prove Theorem 1.1 for the
case S̄∗

3 , we first give the following lemma.

Lemma 3.4. (see [14] for instance) Consider the Ablian integrals

Ii(h) =

∫
Γh

fi(x)y
2s−1dx, i = 0, 1, · · · , n− 1,

where, for each h ∈ (0, h0), Γh is the oval surrounding the origin inside the level
curve {A(x)+B(x)y2m = h}. Let σ be the involution associated to A, and we define

li(x) =
1

2

(
fi

A′B
2s−1
2m

)
(x)− 1

2

(
fi

A′B
2s−1
2m

)
(σ(x)).

If the following conditions are verified:
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(a) W [l1, l2, · · · , li] is non-vanishing on (0, xr) for i = 0, 1, · · · , n− 2,

(b) W [l1, l2, · · · , ln−1] has k zeros on (0, xr) counted with multiplicities, and

(c) s > m(n+ k − 2),

then any nontrivial linear combination of I0, I1, · · · , In−1 has at most n+k−1 zeros
on (0, h0) counted with multiplicities.

Applying Lemma 3.2, we express Ĩ1(h2), Ĩ2(h2) in (3.2) as

Ĩ1(h2) =

∫
Γh2

(1 + 10x2 + 12x4)y3

3(1 + 2x2)2(1 + 3x2)4
dx.

Ĩ2(h2) =

∫
Γh2

−y3

3x2(1 + 2x2)2(1 + 3x2)4
dx.

We find that the condition (c) in Lemma 3.4 is not satisfied. Hence by applying
twice Lemma 3.2 to Ĩi(h2)(i = 0, 1, 2, 3) and combining with (3.11) we have

Ĩ0(h2) =
1

h2
2

∫
Γh2

[A2(x) +B2(x)y
2]2y3

(1 + 3x2)4
dx

=
1

h2
2

∫
Γh2

(A2(x))
2y3 + 2A2(x)B2(x)y

5 + (B2(x))
2y7

(1 + 3x2)4
dx.

By direct computation, we obtain

Ĩ0(h2) =
1

h2
2

J̃0(h2) =
1

h2
2

∫
Γh2

f̃0(x)y
7dx, (3.12)

where

f0(x) =
6(2 + 12x2 + 48x4 + 93x6 + 90x8))

35(1 + 3x2)10
.

The similar computations show that

Ĩi(h2) =
1

h2
2

J̃i(h2) =
1

h2
2

∫
Γh2

f̃i(x)y
7dx, i = 1, 2, 3, (3.13)

where

f̃1(x) =
2(2 + 40x2 + 244x4 + 855x6 + 1786x8 + 2100x10 + 1080x12)

35(1 + 2x2)2(1 + 3x2)10
,

f̃2(x) =
−2

35x2(1 + 2x2)2(1 + 3x2)10
,

f̃3(x) =
6(2 + 8x2 + 29x4 + 50x6 + 48x8)

35(1 + 3x2)11
.

Obviously, the number of zeros of any nontrivial linear combination of Ĩ0, Ĩ1, Ĩ2 and
Ĩ3 is equal to that of J̃0, J̃1, J̃2 and J̃3.

It follows from Lemma 3.4 that

l̃i(x) =
1

2

(
f̃i

A′
2B

7
2
2

)
(x)− 1

2

(
f̃i

A′
2B

7
2
2

)
(σ2(x)), i = 0, 1, 2, 3. (3.14)
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We can see that system S̄∗
3 is also symmetrical with respect to x-axis and y-axis.

Hence we have

z = σ2(x) = −x. (3.15)

Lemma 3.5. Any nontrivial linear combination of Ĩ0(h2), Ĩ1(h2), Ĩ2(h2) and Ĩ3(h2)
has at most 4 zeros on (0,+∞) counted with multiplicities.

Proof. From (3.12)-(3.14) we obtain

ũ(x)l̃0(x) = ṽ0(x) = 3x2(1 + 3x2)(1 + 2x2)2(2 + 12x2 + 48x4 + 93x6 + 90x8),

ũ(x)l̃1(x) = ṽ1(x)

= x2(1 + 3x2)(2 + 40x2 + 244x4 + 855x6 + 1786x8 + 2100x10 + 1080x12),

ũ(x)l̃2(x) = ṽ2(x) = −1− 3x2,

ũ(x)l̃3(x) = ṽ3(x) = 3x2(1 + 2x2)2(2 + 8x2 + 29x4 + 50x6 + 48x8),

where

ũ(x) =
16
√
2(1 + 3x2)

7
2

35x3(1 + 2x2)3
.

Since ũ(x) ̸= 0 for all x ∈ (0,+∞). We only need to check the Wronskian of
(ṽ0(x), ṽ1(x), ṽ2(x), ṽ3(x)) on (0,+∞).

It is clear that

W [ṽ0](x) = ṽ0(x) ̸= 0, for x ∈ (0,+∞).

By the same procedure as in the case S∗
3 above, we obtain

W [ṽ0, ṽ1](x) = 24x5(1 + 2x2)(1 + 3x2)2(10 + 120x2 + 723x4 + 2708x6 + 7091x8

+ 13782x10 + 20172x12 + 20856x14 + 13680x16 + 4320x18),

W [ṽ0, ṽ1, ṽ2](x) = −384x3(1 + 2x2)2(1 + 3x2)3(5 + 85x2 + 693x4 + 3498x6

+ 12042x8 + 28845x10 + 46710x12 + 46620x14 + 22680x16),

and

W [ṽ0, ṽ1, ṽ2, ṽ3](x)

= 276480x6(1 + 2x2)3(−5− 66x2 − 171x4 + 2936x6 + 36342x8

+221052x10 + 896577x12 + 2652444x14 + 5947911x16 + 10235646x18

+13340376x20 + 12582864x22 + 7756560x24 + 2449440x26).

Applying Sturm’s Theorem, we discover that both W [ṽ0, ṽ1](x) and W [ṽ0, ṽ1, ṽ2](x)
are non-vanishing for all x ∈ (0,+∞) and W [ṽ0, ṽ1, ṽ2, ṽ3](x) has one zero on
(0,+∞). Since s = 4,m = 1 and n = 4, this implies that any nontrivial linear
combination of Ĩ0(h2), Ĩ1(h2), Ĩ2(h2) and Ĩ3(h2) has at most 4 zeros on (0,+∞)
counted with multiplicities. Thus we have proved that Lemma 3.4 holds.

From Lemmas 3.1, 3.3, 3.5 and Lemma 2.1 we have proved Theorem 1.1 com-
pletely.
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