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EXISTENCE OF SOLUTIONS FOR A
ONE-DIMENSIONAL ALLEN-CAHN
EQUATION

Alain Miranville

Abstract Our aim in this paper is to prove the existence and uniqueness of
solutions for a one-dimensional Allen-Cahn type equation based on a modi-
fication of the Ginzburg-Landau free energy proposed in [10]. In particular,
the free energy contains an additional term called Willmore regularization and
takes into account anisotropy effects.
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1. Introduction

The Allen-Cahn equation,
— —Au+ f(u) =0, (1.1)

where u is the order parameter and f(s) = s3 — s, describes important processes

related with phase separation in binary alloys, namely, the ordering of atoms in a
lattice (see [1]). This equation is obtained by considering the Ginzburg-Landau free
energy,

1
Uar, =/(§|VU|Q+F(U))da@, (1.2)
Q
where © is the domain occupied by the material and F(s) = (s — 1)?. Assuming
a relaxation dynamics, i.e., writing

Ou _ DVUgqg
ot Du '’

(1.3)

where % denotes a variational derivative, we obtain (1.1).
In [10] (see also [2]), the authors introduced the following modification of the
Ginzburg-Landau free energy:

PacL = A(M%)(%IWP + F(u) + §w2)dat, B3>0, (1.4)
w=—Au+ f(u), (1.5)

where G(u) = %wQ is called nonlinear Willmore regularization, 3 is a small regular-
ization parameter and the function é accounts for anisotropy effects. The Willmore
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regularization is relevant, e.g., in determining the equilibrium shape of a crystal in
its own liquid matrix, when anisotropy effects are strong. Indeed, in that case, the
equilibrium interface may not be a smooth curve, but may present facets and cor-
ners with slope discontinuities (see, e.g., [8]), which can lead to an ill-posed problem
and requires regularization.

The Allen-Cahn equation associated with (1.4) has been studied in [5] in the
particular cases ¢ = 1 (isotropic case) and 6 = —1 (in that case, Yy, is also called
functionalized Cahn-Hilliard energy in [7]). In particular, well-posedness results
have been obtained. The Cahn-Hilliard equation associated with (1.4) (obtained by
writing %1; = APJaoL) has been studied in [4], again, in the isotropic case § = 1;
we also refer the reader to [2] and [11] for numerical studies.

In one space dimension, i.e., taking Q = (0, L), and setting 5 equal to one, (1.4)
reads

L
aen = [ GEIGEDR 4 Pl + 5 s (16)

We actually consider the following natural regularization of Uaqr:

L du w
YRAGL = /O (5((64—(8(51;)2)%)(;(21')2 + F(u)) + %wQ) dx, € > 0. (1.7)

In that case, we have, formally,

DVgracL

L ou
= / ((5((6+(81 23 )(gzaéiu f(u)Du) + wDw) dx

¢ / % 1 1 Ouy U @ T
+/ e (s e i) P
= /0(5((6_'_(8(;) )é)(gzaéiu—|—f(u)Du)—|—wf’(u)Du—waaxD;L)da:

L Qu 1 1, 0u. 4 dDu
! Oz u))—— dx.
Jr6/0 5((6+ % ) u )2 )3( (ax) T EW) Oz d

Therefore,
D\I/RAGL 0 % ou %
— = a0 —F— 1)) +4( 1) f(u)
Du o0 (et (gp o) T e ()
d u 1 1,0u
—eo (0 () 5 (5 (5 ) + F(w) (18
0 et (23 (4 (377 20
0w
/ R —
twfi(u) = 5
In this paper, we will consider the simplest case §(s) = s (note that % =1if

;»\@
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du
9u ~ (0 and 4= = —1 if 24 < 0), hence,
ox | G| ox
DVgracL 9 (%) gu
Du — gt agnt! ™
(1.9)
0 1 1 0u., y O*w
P G S el Gt Ja e
o @ el ) el -
Assuming again a relaxation dynamics,
Ou _ DVpacr
ot Du ’
we finally obtain the following (regularized) anisotropic Allen-Cahn system:
o 9 () W
u 1 u 1
O D (cr (JF T (et (37)3
0 1 1 0u., y 9w
e (———— (= F 22 =0, (110
G @ el P el W - 52 =0 (1o
2%u
w —@ +f(U) (111)

Our aim in this paper is to prove the existence and uniqueness of solutions to

(1.10)-(1.11).

2. A priori estimates

We consider the following initial and boundary value problem:

w0 (5 G gy €0 (&)
Ot Oz (e+(54)%)2  (e+(54)?)7 20z (e + (34)7)?
0 F(u) , 0w
P e A - = 2.1
Drer (g T T T =y
0%u
w__82+f(u)a 22)
u(0) =u(L) = w(0) =w(L) =0, (2.3)
ult=o = o, 2.4)
where )
f(s)=8—s, F(s)= 1(82 —1)% (2.5)
We denote by ((+,-)) the usual L?-scalar product, with associated norm || - ||, and
we denote by || - ||x the norm in the Banach space X.

Throughout the paper, the same letter ¢ (and, sometimes, ¢’) denotes constants
which may vary from line to line. Similarly, the same letter ) denotes monotone
increasing (with respect to each argument) functions which may vary from line to

line.
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We multiply (2.1) by v and have, integrating over (0, L) and by parts and owing
to (2.2),

ld, 12 (54)? ou du .
2dt” | +(((e+(%)2)178x)) (e—f—(%)?)%f( ), u))
< (%)2 Ou c F(u) ou
2(((€+(%)2)378$))+ (((€+(%)2)%,ax)) (2.6)

We note that

L
[ @ @f - s de > al fwl* - o, @>0. @)
0
and
uf”(u) > 0. (2.8)
Furthermore,
(84)2 ou ou o
(— T ) < 2115 (2.9)
(e+(2)2)z Ox Ox
ou
oz € 2 2
|((Wf@)w))l < I lllull < S NF @I +eflul®, - (2.10)
ou\2
€ (%%) ou €
z ! ) < = .
2|(((e+(lg)2)%’ax))|* 5 (2.11)
and Fu) 5
U U Co 2
— I < F(u)|dx < —|| f(uw)|]” +c. 2.12
Wy gy g < [ IF@l e < 7] (212)
We thus deduce from (2.6)-(2.12) that
Ll + 2]wlf? < 2 ' 2.13
gl + 2lwll” < ellullf o,y + ¢ (2.13)
We then note that
f'> —ca, 2 >0, (2.14)
which yields
0%u ou
2 > == 2 2 72
el 2 NS5 12 + £ @)I” — 22l 50 7 (215)
We thus obtain
d 0%u
Sl + 205517 + 20 f @) < ellullf o,z + ¢ (2.16)

Employing the interpolation inequality

1,0%u 1
Jull sy < elulF) ], .17
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we finally find

*ll ||2+|| ||2+||f( )? < eflull® + ¢ (2.18)
We then multiply multiply (2 1) by 5 " and obtain, owing to (2.2),
o (54 ou o ou
|| ||2 (2 7 )+ (G f(u), 5)
o (v gk o) et (g o
€, 0 (9u)2 ou 0 F(u) ou 1d, o
5((7W77)) 6((@ma§))+§$” I* =
(2.19)
We have
0 (B9 2y (3o
Oz (e + (32)2)F (e +(54)%)% O2%
so that
o ()2 ou du 1 Ou , )
Z /)< 3 = .
7oy aayyr a0 < g 1571 < gl 1+ A4 @)
Furthermore
ou
5 Ju 1, 0u
ox - < 72 2
(o g/ ) < I < gl Gl el @I, @2
Then
R S T ) G
P (e (30T (4 (@] (er ()] a7
which yields
(Ge)? du 5 0%u 1, 0u 2, 9
G e e a1 < 3 g < gl P+ AZ4E e
Finally,
0 Fw _ fwg  3Fwg Pu
0r (1 (F (4 (Q)F (et ()F 0
hence, owing to Agmon’s inequality (see, e.g., [9]) and (2.17),
o} F(u) ou
dg-—.—— 37l
<e+<%>>
1 0%u
< I (w )HII ||+3 T IE@=0.nl5 2H|| |l
<l (u )Hll ||7L (2 +1)||@HH*||
= ce iz o,n) a 21 (2.23)
ou
< 2
o O [ e M A ey iy
0%u 0%, Ou
3 Y o
< NFENIBEN + el g DI
1,0u
< gl 1+ ce™?(flul® || ||2+1)|| ||2+0Hf( )%
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It thus follows from (2.19)-(2.23) that

|| ||2+|| ||2 < ce?(JJul® || H2+1)(H ||2+||f( )I?). (2.24)

Furthermore, as above and employmg (2.17),

V

0
lol? > 9 H2+||f( W2 = 2col 52

1
>7 2
Sl

(2.25)
+ [ FW)*) = ellul®.

3. Existence and uniqueness of solutions

We have the

Theorem 3.1. We assume that ug € H?(0,L) N H}(0,L). Then, (2.1)-(2.4) pos-
sesses a unique solution u such that w € L*°(0,T; HQ(O,L) N H(0,L)), 2 €
L2(0,T; L2(0, L)) and f(u) € L=(0,T; L2(0, L)), VT > 0.

Proof. a) Existence:

The proof of existence is based on a standard Galerkin scheme and the a priori
estimates derived in the previous section.

A weak (variational) formulation for (2.1)-(2.4) reads

L A SO T
0+ (B o)+ (a0 0)
€ (%)2 v . F(u) Ov
5 ) T )
2U
+((wf'(u),v)) = ((w, %)) =0, Yo € H*(0,L) N Hy(0, L), (3.1)
2’(1}

((u, w)) = ((f (), w)) + (v, g S-3)), Yw € H*(0,L) N Hy(0,L), (3.2)
U|t:0 = Up. (33)

Let vy, va, ... be an orthonormal (in L2(0, L)) and orthogonal (in HE (0, L)) fam-
ily associated with the eigenvalues 0 < A; < As... of the operator f% associated
with Dirichlet boundary conditions. We set V,,, = Span(vy, ..., vy, ) and consider the

approximated problem
Find (um,wm) : [0,T] = Vi, X V;,, such that

o) 4 (B2 v B ) w

im0+ (g o) + (g o))
P v Fluw) v

G T S )

) ) ~ (o, 53)) = 0, Yo € Vi, (3.4

((tm, w)) = ((f(um), w)) + (W, 271;)))’ Vw € Vin, (3.5)

um|t:0 = U0, m; (36)
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where ug ,, = Pu, Py, being the orthogonal projector from L?(0, L) onto V,, (for
the L?-norm).

The existence of a local (in time) solution is standard, as we have to solve a
(continuous) finite system of ODE’s. It then follows from the a priori estimates
derived in the previous section that this solution is global.

In particular, it follows from (2.18) (which holds at the approximated level)
that u,, is bounded in L>(0,7T; L*(0, L)) N L%(0,T; H*(0, L)), independently of m.
Having this, it follows from (2.24)-(2.25) that w,, is bounded in L*(0,T; H?(0, L)),
f(un) is bounded in L*°(0,T; L?(0, L)) and 2%= is bounded in L?(0,T; L?(0, L)).

It then follows from classical Aubin-Lions compactness results that, up to a
subsequence which we do not relabel (also note that % ag; is bounded in L?(0,T;
H1(0, 1)),

Um — u in L=(0,T; H?(0, L))weak star, L2(0,T;L?(0,L))and a.e.,
f(um) = f(u)in L?(0,T; L*(0, L))and a.e.

(indeed, || (um) — f(u)]] < elllunlZn .z + Nul3m .0 + Dlltm — ul) and

) )
% - a—z in L>(0, T; H(0, L)) weak star, L*(0,T;L2(0,L)) and a.e..

We then need to pass to the limit in the nonlinear terms. We have
( Oum, )2

ox
(e + (%=)?)2

Oup,

| e

| <|

Oum \2 du \2

Therefore, since (st T — (ar) a.e. and |24 | < g € L2((0,L) x (0,T
(%2 (eH(B2))? ol = g € LU0, 0)x (0,1)

a.e. (up again to a subsequence which we do not relabel), we deduce from Lebesgue’s
Bum \2 du 2

theorem that — 22 (22" iy 12(0,T;L2(0, L)) (here, we have used

dx
the fact that L2(0,7T; L%(0, L)) is isometric to L2((0, L) x (0,7))). Similarly,

(c+(Zmy2)z " (e4(82))2

— O Um S Um )|,
e eyl < 17 (w)

Q

Qum
T

which yields that ——2=—— f(u,,) —

w) in L2(0,T; L?(0,L)), and
(e+(%5m))2 erigemt () 01

[N

)?)

oo e

(%)

_1
o (o =

)

Dum
so that —(Cae)® (&) - in L2(0,T; L?(0, L)). Furthermore,

(+(2gm)n)3 T (e+(52)2)3

so that
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F(up,) F(u) . 3 73 . .
- L3(0,T: L3 (0, L)). Finally, noting that w,, —
Y T in Lz ( 2(0, L)). Finally, noting that w w
in L2(0,T; L?(Q2)) weak, we have, for ¢ € C([0, L] x [0,T]),

hence

y ' / " (o (1) — o () d |

|/ / god:cdt|+|/ / o (F () — £ () )op da dt]

|/ / (w)p dz dt| + cl|um — ul|L2(0,7;22(2)

IN

IN

which finishes the proof of the passage to the limit, hence the existence of a solution.

b) Uniqueness:

Let u; and ug be two solutions to (2.1)-(2.3) (w1 and wy being defined as in (2.2))
with initial data ug,; and ug,2, respectively. Then, setting v = u; —u2, w = w1 —ws
and up = ug,1 — Uo,2, we have

B 15 — (52 + a1 ) — a2 ) a)
e (o2 — s 22)) - (o (B () — a2 ()
—|—w1f’(u1) — wgf'(u2) - % =0, (37)
= =T flun) — ), (39
u(0) =u(L) = w(0) =w(L) =0, (3.9)
U|t:0 = Uy, (310)
where
82 S
p1(s) = m, p2(s) = ma
52 1
p3(s) = m7 pa(s) = m
We multiply (3.7) by v and obtain, owing to (3.8),
ol + (25— on(52), T 4 (oo ) ) — oo ) () )
ooy gy T2), 0y 4 e((sm(%)ml) a2 (), 51
F((wrf'(wr) — w2 f'(uz),u)) + || ||2 = 0.
(3.11)
We have

(32— o (02), 21,

< [ etege v a9 dp
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where ) 5
, _ 2es+s
@1(8) - (E—|—S2)%
satisfies
()| <3, s €R,
so that 5 o 5
(T2 on(%2), 9y < 3 222 (3.12)
Furthermore,
(22 F) flur) — a2 ), )
ouy Ous Ous
< (el )—wz(g))f(ul)w)\+|((<p2(g)(f(ul)—f(w)),U))l
< [ [0 0022 el b

+\<<wz<%><f<u1> - Flus)) )]

Noting that

and that

so that

it follows that

(3.13)

ou
< QT uoallm . o2l 5|1

Here, we have used the fact, owing to the continuous embedding HY0,L) c c(]o, L)),
17O =(0.0) < QUlwlin0.2)) < QUlwlz(e.c)). i = 0, 1, Yo € H2(0, L). Sim-
ilarly,

ouq Oug . Ou

Ses (G0 = a(50), S

8u1 6u2
< //| £ 22 a7 202
where 5
2s 3s
!
s) = —
P = T T cr
satisfies
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so that

€ 8U1 8u2 ou 2
a2y — o %2), By < 2 20 (314
Then,
ou ou ou
(s S () = a2 F(ua), 50))
(%1 Oup Ou
< o[ [ e 0 a2
ou ou
‘HKwda )(F(u1) FWﬂ%a)M
Noting that s
lpa(s)] <€z, s€R,
and that
(s) = 3s
504 - (6 + 82)37
so that .
lpi(s)] <32, s R,
we find, proceeding as in (3.13),
ou ou ou
Ao VP () — oa(F2) Flu), T0)
(3.15)
< € 2Q(T uoallaeo,)» w02l m2o, L))||*||2
Now,
[(wif'(u1) = waf'(u2),u))
< (i (wn), u) ]+ (w2 (f (u1) = f'(u2)), u))]
< QT lluoill2 0,1y, lluo2ll a2, ) (lwllllull + w2l lwlZs o ) (316)
0%u ou .
< Q@WWAM%@MWmemmmgjWMHW‘W%
1, 0%u
< *|| ||2+Q(T lwo,1ll &2 (0,1, w02l 720, 1) )||*||2
Finally,
9%u
((Fm) ~ Fluz), )
>y 5 (3.17)
u
< || H2+Q( 0,05 [Iwo,2| 72 0, L))||87H2-

We thus deduce from (3.11)—(3.17) that

ou 5

H ||2+|| ||2<Q( o)z I

which yields, employing the interpolation inequality (2.17),

HUII2 < Qe T, uoa | 20,1, luo 2l 20,0)) ul, (3.18)
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hence the uniqueness, as well as the continuous dependence with respect to the
L?-norm. O

Remark 3.1. We can more generally consider the free energy (1.7), i.e., the Allen-
Cahn system

du 9 gu du gu
€0 5 gu (9u)2 13} 5 gu F(u)
_787( ( 8u2l) 8u2§)_ 87( ( auzl) 6u2§)
20r° e+ (55)0)2 (e+(55))3 (e (52)2)7 e+ (52)Y)F
—i—f’()—az—w*() (3.19)
wfi(u) = 55 ,
0u
w*—@Jrf(u). (3.20)
Assuming that 6 is of class C' and noting that |g;:l| < 1, we can proceed

(e+(5%)2)2
exactly as above to prove the existence of a solution. Furthermore, assuming that §
is of class C2, we can easily adapt the proof of uniqueness and deduce the existence
and uniqueness of solutions.

Remark 3.2. We can note that our estimates are not independent of €, so that
we cannot pass to the limit as e goes to 0. This is not surprising, as the problem
formally obtained by taking ¢ = 0 cannot correspond to the (Allen-Cahn) problem
associated with the free energy (1.6) (see also [2] and [10]). Actually, this is related
with a proper functional setting for the limit problem and, more precisely, for the
Allen-Cahn system associated with (1.6) and will be studied elsewhere. We can
note that anisotropic versions of the Allen-Cahn equation have been studied in [3]
and the references therein, based on viscosity solutions. Such an approach is not
straightforward here, as there is no maximum/comparison principle for fourth-order
in space parabolic equations.

Remark 3.3. It is also important to study the Cahn-Hilliard system associated
with (1.7) (for d(s) = s), namely,

e L L0
O 0x2" 0w (e+(52)7)7  (e+(§)2)e
ou\2 2
268<+( ?gézz‘)?)% @ (c +F<(%)>2>% Fef =55 =0 (2
w= f% + f(u). (3.22)
Taking, for simplicity, Dirichlet boundary conditions,
0%u 0%u 8w 0w

u(0) = u(L) L) =w(0) =w(L)

= 25 (0) = 5 (1) L)=0,

= S (0) = ()
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we can rewrite (3.21) as

o2 _,0u 9 (%)2 %
) ot 0w (e+ (322 +(e+(%)2)%f(u) .
o 0 Fw o

205 (et (2221 Da (et (g3 T T 70

We thus have an equation which bears some resemblance with (2.1), except that we
have less regularity on %’;, which prevents us from proceeding as in the proof of The-
orem 3.1. However, if we consider the viscous Cahn-Hilliard equation (introduced
in [6] for the usual Cahn-Hilliard equation),

ou 9 ou 9, 9 gu)2 gu
o a9 or e eIz e RO
x 2 0r (e+(52)%)2  (e+(55)%)3 (3.24)
€ 0 (54)? 3} F(u) , Pw, .
20rer (T Deer gt W T o) T0 e
or, equivalently,
0% L ou | ou 0 (342 Gu
(—53) 15 tan — - — & —— f(u)
ox2’ Ot ot 9z (e+(99)2)z  (e+(4)2)2 (3.25)
o (v 8 Flu) , 0w '
2ot (] Drier el T T om0

then, proceeding as in the proof of Theorem 3.1, we have the existence and unique-
ness of solutions.
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