EXISTENCE OF SOLUTIONS FOR A ONE-DIMENSIONAL ALLEN-CAHN **EQUATION**

Alain Miranville

Abstract Our aim in this paper is to prove the existence and uniqueness of solutions for a one-dimensional Allen-Cahn type equation based on a modification of the Ginzburg-Landau free energy proposed in [10]. In particular, the free energy contains an additional term called Willmore regularization and takes into account anisotropy effects.

Keywords Allen-Cahn equation, Willmore regularization, anisotropy effects, well-posedness.

MSC(2000) 35B45, 35K55.

1. Introduction

The Allen-Cahn equation,

$$\frac{\partial u}{\partial t} - \Delta u + f(u) = 0, \tag{1.1}$$

where u is the order parameter and $f(s) = s^3 - s$, describes important processes related with phase separation in binary alloys, namely, the ordering of atoms in a lattice (see [1]). This equation is obtained by considering the Ginzburg-Landau free energy,

$$\Psi_{\rm GL} = \int_{\Omega} \left(\frac{1}{2} |\nabla u|^2 + F(u)\right) dx,\tag{1.2}$$

where Ω is the domain occupied by the material and $F(s) = \frac{1}{4}(s^2 - 1)^2$. Assuming a relaxation dynamics, i.e., writing

$$\frac{\partial u}{\partial t} = -\frac{D\Psi_{\rm GL}}{Du},\tag{1.3}$$

where $\frac{D}{Du}$ denotes a variational derivative, we obtain (1.1). In [10] (see also [2]), the authors introduced the following modification of the Ginzburg-Landau free energy:

$$\Psi_{\text{AGL}} = \int_{\Omega} \left(\delta\left(\frac{\nabla u}{|\nabla u|}\right)\left(\frac{1}{2}|\nabla u|^2 + F(u)\right) + \frac{\beta}{2}\omega^2\right) dx, \ \beta > 0, \tag{1.4}$$

$$\omega = -\Delta u + f(u),\tag{1.5}$$

where $G(u) = \frac{1}{2}\omega^2$ is called nonlinear Willmore regularization, β is a small regularization parameter and the function δ accounts for anisotropy effects. The Willmore

Email address: Alain.Miranville@math.univ-poitiers.fr Université de Poitiers, Laboratoire de Mathématiques et Applications, UMR

regularization is relevant, e.g., in determining the equilibrium shape of a crystal in its own liquid matrix, when anisotropy effects are strong. Indeed, in that case, the equilibrium interface may not be a smooth curve, but may present facets and corners with slope discontinuities (see, e.g., [8]), which can lead to an ill-posed problem and requires regularization.

The Allen-Cahn equation associated with (1.4) has been studied in [5] in the particular cases $\delta \equiv 1$ (isotropic case) and $\delta \equiv -1$ (in that case, $\Psi_{\rm AGL}$ is also called functionalized Cahn-Hilliard energy in [7]). In particular, well-posedness results have been obtained. The Cahn-Hilliard equation associated with (1.4) (obtained by writing $\frac{\partial u}{\partial t} = \Delta \frac{D\Psi_{\rm AGL}}{Du}$) has been studied in [4], again, in the isotropic case $\delta \equiv 1$; we also refer the reader to [2] and [11] for numerical studies.

In one space dimension, i.e., taking $\Omega=(0,L),$ and setting β equal to one, (1.4) reads

$$\Psi_{\text{AGL}} = \int_0^L \left(\delta\left(\frac{\frac{\partial u}{\partial x}}{\left|\frac{\partial u}{\partial x}\right|}\right) \left(\frac{1}{2}\left(\frac{\partial u}{\partial x}\right)^2 + F(u)\right) + \frac{1}{2}\omega^2\right) dx. \tag{1.6}$$

We actually consider the following natural regularization of Ψ_{AGL} :

$$\Psi_{\text{RAGL}} = \int_0^L \left(\delta\left(\frac{\frac{\partial u}{\partial x}}{\left(\epsilon + \left(\frac{\partial u}{\partial x}\right)^2\right)^{\frac{1}{2}}}\right) \left(\frac{1}{2}\left(\frac{\partial u}{\partial x}\right)^2 + F(u)\right) + \frac{1}{2}\omega^2\right) dx, \ \epsilon > 0.$$
 (1.7)

In that case, we have, formally,

$$D\Psi_{\text{RAGL}}$$

$$= \int_{0}^{L} \left(\delta\left(\frac{\frac{\partial u}{\partial x}}{(\epsilon + (\frac{\partial u}{\partial x})^{2})^{\frac{1}{2}}}\right) \left(\frac{\partial u}{\partial x} \frac{\partial Du}{\partial x} + f(u)Du\right) + \omega D\omega\right) dx$$

$$+\epsilon \int_{0}^{L} \delta'\left(\frac{\frac{\partial u}{\partial x}}{(\epsilon + (\frac{\partial u}{\partial x})^{2})^{\frac{1}{2}}}\right) \frac{1}{(\epsilon + (\frac{\partial u}{\partial x})^{2})^{\frac{3}{2}}} \left(\frac{1}{2} \left(\frac{\partial u}{\partial x}\right)^{2} + F(u)\right) \frac{\partial Du}{\partial x} dx$$

$$= \int_{0}^{L} \left(\delta\left(\frac{\frac{\partial u}{\partial x}}{(\epsilon + (\frac{\partial u}{\partial x})^{2})^{\frac{1}{2}}}\right) \left(\frac{\partial u}{\partial x} \frac{\partial Du}{\partial x} + f(u)Du\right) + \omega f'(u)Du - \omega \frac{\partial^{2}Du}{\partial x^{2}}\right) dx$$

$$+\epsilon \int_{0}^{L} \delta'\left(\frac{\frac{\partial u}{\partial x}}{(\epsilon + (\frac{\partial u}{\partial x})^{2})^{\frac{1}{2}}}\right) \frac{1}{(\epsilon + (\frac{\partial u}{\partial x})^{2})^{\frac{3}{2}}} \left(\frac{1}{2} \left(\frac{\partial u}{\partial x}\right)^{2} + F(u)\right) \frac{\partial Du}{\partial x} dx.$$

Therefore,

$$\frac{D\Psi_{\text{RAGL}}}{Du} = -\frac{\partial}{\partial x} \left(\delta\left(\frac{\frac{\partial u}{\partial x}}{(\epsilon + (\frac{\partial u}{\partial x})^2)^{\frac{1}{2}}}\right) \frac{\partial u}{\partial x}\right) + \delta\left(\frac{\frac{\partial u}{\partial x}}{(\epsilon + (\frac{\partial u}{\partial x})^2)^{\frac{1}{2}}}\right) f(u)$$

$$-\epsilon \frac{\partial}{\partial x} \left(\delta'\left(\frac{\frac{\partial u}{\partial x}}{(\epsilon + (\frac{\partial u}{\partial x})^2)^{\frac{1}{2}}}\right) \frac{1}{(\epsilon + (\frac{\partial u}{\partial x})^2)^{\frac{3}{2}}} \left(\frac{1}{2} (\frac{\partial u}{\partial x})^2 + F(u)\right)\right) + \omega f'(u) - \frac{\partial^2 \omega}{\partial x^2}.$$
(1.8)

In this paper, we will consider the simplest case $\delta(s)=s$ (note that $\frac{\frac{\partial u}{\partial x}}{|\frac{\partial u}{\partial x}|}=1$ if

 $\frac{\partial u}{\partial x} > 0$ and $\frac{\frac{\partial u}{\partial x}}{\left|\frac{\partial u}{\partial x}\right|} = -1$ if $\frac{\partial u}{\partial x} < 0$), hence,

$$\frac{D\Psi_{\text{RAGL}}}{Du} = -\frac{\partial}{\partial x} \frac{(\frac{\partial u}{\partial x})^2}{(\epsilon + (\frac{\partial u}{\partial x})^2)^{\frac{1}{2}}} + \frac{\frac{\partial u}{\partial x}}{(\epsilon + (\frac{\partial u}{\partial x})^2)^{\frac{1}{2}}} f(u)
-\epsilon \frac{\partial}{\partial x} (\frac{1}{(\epsilon + (\frac{\partial u}{\partial x})^2)^{\frac{3}{2}}} (\frac{1}{2} (\frac{\partial u}{\partial x})^2 + F(u))) + \omega f'(u) - \frac{\partial^2 \omega}{\partial x^2}.$$
(1.9)

Assuming again a relaxation dynamics,

$$\frac{\partial u}{\partial t} = -\frac{D\Psi_{RAGL}}{Du},$$

we finally obtain the following (regularized) anisotropic Allen-Cahn system:

$$\frac{\partial u}{\partial t} - \frac{\partial}{\partial x} \frac{\left(\frac{\partial u}{\partial x}\right)^2}{\left(\epsilon + \left(\frac{\partial u}{\partial x}\right)^2\right)^{\frac{1}{2}}} + \frac{\frac{\partial u}{\partial x}}{\left(\epsilon + \left(\frac{\partial u}{\partial x}\right)^2\right)^{\frac{1}{2}}} f(u)$$

$$-\epsilon \frac{\partial}{\partial x} \left(\frac{1}{\left(\epsilon + \left(\frac{\partial u}{\partial x}\right)^2\right)^{\frac{3}{2}}} \left(\frac{1}{2} \left(\frac{\partial u}{\partial x}\right)^2 + F(u)\right)\right) + \omega f'(u) - \frac{\partial^2 \omega}{\partial x^2} = 0, \quad (1.10)$$

$$\omega = -\frac{\partial^2 u}{\partial x^2} + f(u). \quad (1.11)$$

Our aim in this paper is to prove the existence and uniqueness of solutions to (1.10)-(1.11).

2. A priori estimates

We consider the following initial and boundary value problem:

$$\frac{\partial u}{\partial t} - \frac{\partial}{\partial x} \frac{\left(\frac{\partial u}{\partial x}\right)^2}{\left(\epsilon + \left(\frac{\partial u}{\partial x}\right)^2\right)^{\frac{1}{2}}} + \frac{\frac{\partial u}{\partial x}}{\left(\epsilon + \left(\frac{\partial u}{\partial x}\right)^2\right)^{\frac{1}{2}}} f(u) - \frac{\epsilon}{2} \frac{\partial}{\partial x} \frac{\left(\frac{\partial u}{\partial x}\right)^2}{\left(\epsilon + \left(\frac{\partial u}{\partial x}\right)^2\right)^{\frac{3}{2}}} - \epsilon \frac{\partial}{\partial x} \frac{F(u)}{\left(\epsilon + \left(\frac{\partial u}{\partial x}\right)^2\right)^{\frac{3}{2}}} + \omega f'(u) - \frac{\partial^2 \omega}{\partial x^2} = 0,$$
(2.1)

$$\omega = -\frac{\partial^2 u}{\partial x^2} + f(u), \tag{2.2}$$

$$u(0) = u(L) = \omega(0) = \omega(L) = 0,$$
 (2.3)

$$u|_{t=0} = u_0, (2.4)$$

where

$$f(s) = s^3 - s, \ F(s) = \frac{1}{4}(s^2 - 1)^2.$$
 (2.5)

We denote by $((\cdot, \cdot))$ the usual L^2 -scalar product, with associated norm $\|\cdot\|$, and we denote by $\|\cdot\|_X$ the norm in the Banach space X.

Throughout the paper, the same letter c (and, sometimes, c') denotes constants which may vary from line to line. Similarly, the same letter Q denotes monotone increasing (with respect to each argument) functions which may vary from line to line.

We multiply (2.1) by u and have, integrating over (0, L) and by parts and owing to (2.2),

$$\frac{1}{2} \frac{d}{dt} \|u\|^{2} + \left(\left(\frac{\left(\frac{\partial u}{\partial x} \right)^{2}}{\left(\epsilon + \left(\frac{\partial u}{\partial x} \right)^{2} \right)^{\frac{1}{2}}}, \frac{\partial u}{\partial x} \right) \right) + \left(\left(\frac{\frac{\partial u}{\partial x}}{\left(\epsilon + \left(\frac{\partial u}{\partial x} \right)^{2} \right)^{\frac{1}{2}}} f(u), u \right) \right)
+ \frac{\epsilon}{2} \left(\left(\frac{\left(\frac{\partial u}{\partial x} \right)^{2}}{\left(\epsilon + \left(\frac{\partial u}{\partial x} \right)^{2} \right)^{\frac{3}{2}}}, \frac{\partial u}{\partial x} \right) \right) + \epsilon \left(\left(\frac{F(u)}{\left(\epsilon + \left(\frac{\partial u}{\partial x} \right)^{2} \right)^{\frac{3}{2}}}, \frac{\partial u}{\partial x} \right) \right)
+ \|\omega\|^{2} + \int_{0}^{L} \left(uf'(u)f(u) - f(u)^{2} \right) dx + \left(\left(uf''(u) \frac{\partial u}{\partial x}, \frac{\partial u}{\partial x} \right) \right) = 0.$$
(2.6)

We note that

$$\int_{0}^{L} (uf'(u)f(u) - f(u)^{2}) dx \ge c_{0} ||f(u)||^{2} - c_{1}, \ c_{0} > 0, \tag{2.7}$$

and

$$uf''(u) \ge 0. \tag{2.8}$$

Furthermore,

$$\left|\left(\left(\frac{\left(\frac{\partial u}{\partial x}\right)^2}{\left(\epsilon + \left(\frac{\partial u}{\partial x}\right)^2\right)^{\frac{1}{2}}}, \frac{\partial u}{\partial x}\right)\right)\right| \le \left\|\frac{\partial u}{\partial x}\right\|^2,\tag{2.9}$$

$$\left| \left(\left(\frac{\frac{\partial u}{\partial x}}{(\epsilon + (\frac{\partial u}{\partial x})^2)^{\frac{1}{2}}} f(u), u \right) \right) \right| \le \|f(u)\| \|u\| \le \frac{c_0}{2} \|f(u)\|^2 + c \|u\|^2, \quad (2.10)$$

$$\frac{\epsilon}{2} \left| \left(\left(\frac{\left(\frac{\partial u}{\partial x} \right)^2}{\left(\epsilon + \left(\frac{\partial u}{\partial x} \right)^2 \right)^{\frac{3}{2}}}, \frac{\partial u}{\partial x} \right) \right) \right| \le \frac{\epsilon}{2}$$
(2.11)

and

$$\epsilon |((\frac{F(u)}{(\epsilon + (\frac{\partial u}{2a})^2)^{\frac{3}{2}}}, \frac{\partial u}{\partial x}))| \le \int_{\Omega} |F(u)| \, dx \le \frac{c_0}{2} ||f(u)||^2 + c. \tag{2.12}$$

We thus deduce from (2.6)-(2.12) that

$$\frac{d}{dt}||u||^2 + 2||\omega||^2 \le c||u||_{H^1(0,L)}^2 + c'. \tag{2.13}$$

We then note that

$$f' \ge -c_2, \ c_2 \ge 0, \tag{2.14}$$

which yields

$$\|\omega\|^2 \ge \|\frac{\partial^2 u}{\partial x^2}\|^2 + \|f(u)\|^2 - 2c_2\|\frac{\partial u}{\partial x}\|^2.$$
 (2.15)

We thus obtain

$$\frac{d}{dt}\|u\|^2 + 2\|\frac{\partial^2 u}{\partial x^2}\|^2 + 2\|f(u)\|^2 \le c\|u\|_{H^1(0,L)}^2 + c'. \tag{2.16}$$

Employing the interpolation inequality

$$||u||_{H^1(0,L)} \le c||u||^{\frac{1}{2}}||\frac{\partial^2 u}{\partial x^2}||^{\frac{1}{2}},$$
 (2.17)

we finally find

$$\frac{d}{dt}||u||^2 + ||\frac{\partial^2 u}{\partial x^2}||^2 + ||f(u)||^2 \le c||u||^2 + c'.$$
(2.18)

We then multiply multiply (2.1) by $\frac{\partial u}{\partial t}$ and obtain, owing to (2.2),

$$\begin{split} & \|\frac{\partial u}{\partial t}\|^{2} - ((\frac{\partial}{\partial x} \frac{(\frac{\partial u}{\partial x})^{2}}{(\epsilon + (\frac{\partial u}{\partial x})^{2})^{\frac{1}{2}}}, \frac{\partial u}{\partial t})) + ((\frac{\frac{\partial u}{\partial x}}{(\epsilon + (\frac{\partial u}{\partial x})^{2})^{\frac{1}{2}}} f(u), \frac{\partial u}{\partial t})) \\ & - \frac{\epsilon}{2} ((\frac{\partial}{\partial x} \frac{(\frac{\partial u}{\partial x})^{2}}{(\epsilon + (\frac{\partial u}{\partial x})^{2})^{\frac{3}{2}}}, \frac{\partial u}{\partial t})) - \epsilon ((\frac{\partial}{\partial x} \frac{F(u)}{(\epsilon + (\frac{\partial u}{\partial x})^{2})^{\frac{3}{2}}}, \frac{\partial u}{\partial t})) + \frac{1}{2} \frac{d}{dt} \|\omega\|^{2} = 0. \end{split}$$

$$(2.19)$$

We have

$$\frac{\partial}{\partial x} \frac{\left(\frac{\partial u}{\partial x}\right)^2}{\left(\epsilon + \left(\frac{\partial u}{\partial x}\right)^2\right)^{\frac{1}{2}}} = \frac{2\epsilon \frac{\partial u}{\partial x} + \left(\frac{\partial u}{\partial x}\right)^3}{\left(\epsilon + \left(\frac{\partial u}{\partial x}\right)^2\right)^{\frac{3}{2}}} \frac{\partial^2 u}{\partial x^2},$$

so that

$$\left|\left(\left(\frac{\partial}{\partial x} \frac{\left(\frac{\partial u}{\partial x}\right)^2}{\left(\epsilon + \left(\frac{\partial u}{\partial x}\right)^2\right)^{\frac{1}{2}}}, \frac{\partial u}{\partial t}\right)\right)\right| \le 3\left\|\frac{\partial^2 u}{\partial x^2}\right\| \left\|\frac{\partial u}{\partial t}\right\| \le \frac{1}{16}\left\|\frac{\partial u}{\partial t}\right\|^2 + c\left\|\frac{\partial^2 u}{\partial x^2}\right\|^2. \tag{2.20}$$

Furthermore.

$$\left|\left(\left(\frac{\frac{\partial u}{\partial x}}{\left(\epsilon + \left(\frac{\partial u}{\partial x}\right)^{2}\right)^{\frac{1}{2}}}f(u), \frac{\partial u}{\partial t}\right)\right)\right| \leq \|f(u)\| \frac{\partial u}{\partial t}\| \leq \frac{1}{16} \|\frac{\partial u}{\partial t}\|^{2} + c\|f(u)\|^{2}. \tag{2.21}$$

Then.

$$\frac{\partial}{\partial x}\frac{(\frac{\partial u}{\partial x})^2}{(\epsilon+(\frac{\partial u}{\partial x})^2)^{\frac{3}{2}}}=(\frac{2\frac{\partial u}{\partial x}}{(\epsilon+(\frac{\partial u}{\partial x})^2)^{\frac{3}{2}}}-\frac{3(\frac{\partial u}{\partial x})^3}{(\epsilon+(\frac{\partial u}{\partial x})^2)^{\frac{5}{2}}})\frac{\partial^2 u}{\partial x^2},$$

which yields

$$\frac{\epsilon}{2} |((\frac{\partial}{\partial x} \frac{(\frac{\partial u}{\partial x})^2}{(\epsilon + (\frac{\partial u}{\partial x})^2)^{\frac{3}{2}}}, \frac{\partial u}{\partial t}))| \leq \frac{5}{2} \|\frac{\partial^2 u}{\partial x^2}\| \|\frac{\partial u}{\partial t}\| \leq \frac{1}{8} \|\frac{\partial u}{\partial t}\|^2 + c \|\frac{\partial^2 u}{\partial x^2}\|^2. \tag{2.22}$$

Finally,

$$\frac{\partial}{\partial x} \frac{F(u)}{(\epsilon + (\frac{\partial u}{\partial x})^2)^{\frac{3}{2}}} = \frac{f(u)\frac{\partial u}{\partial x}}{(\epsilon + (\frac{\partial u}{\partial x})^2)^{\frac{3}{2}}} - \frac{3F(u)\frac{\partial u}{\partial x}}{(\epsilon + (\frac{\partial u}{\partial x})^2)^{\frac{5}{2}}} \frac{\partial^2 u}{\partial x^2},$$

hence, owing to Agmon's inequality (see, e.g., [9]) and (2.17).

$$\epsilon \left| \left(\left(\frac{\partial}{\partial x} \frac{F(u)}{(\epsilon + (\frac{\partial u}{\partial x})^{2})^{\frac{3}{2}}}, \frac{\partial u}{\partial t} \right) \right) \right| \\
\leq \|f(u)\| \|\frac{\partial u}{\partial t}\| + 3\epsilon^{-1} \|F(u)\|_{L^{\infty}(0,L)} \|\frac{\partial^{2} u}{\partial x^{2}}\| \|\frac{\partial u}{\partial t}\| \\
\leq \|f(u)\| \|\frac{\partial u}{\partial t}\| + c\epsilon^{-1} (\|u\|_{L^{\infty}(0,L)}^{4} + 1) \|\frac{\partial^{2} u}{\partial x^{2}}\| \|\frac{\partial u}{\partial t}\| \\
\leq \|f(u)\| \|\frac{\partial u}{\partial t}\| + c\epsilon^{-1} (\|u\|^{2} \|\frac{\partial u}{\partial x}\|^{2} + 1) \|\frac{\partial^{2} u}{\partial x^{2}}\| \|\frac{\partial u}{\partial t}\| \\
\leq \|f(u)\| \|\frac{\partial u}{\partial t}\| + c\epsilon^{-1} (\|u\|^{3} \|\frac{\partial^{2} u}{\partial x^{2}}\| + 1) \|\frac{\partial^{2} u}{\partial x^{2}}\| \|\frac{\partial u}{\partial t}\| \\
\leq \|f(u)\| \|\frac{\partial u}{\partial t}\| + c\epsilon^{-1} (\|u\|^{3} \|\frac{\partial^{2} u}{\partial x^{2}}\| + 1) \|\frac{\partial^{2} u}{\partial x^{2}}\| \|\frac{\partial u}{\partial t}\| \\
\leq \frac{1}{4} \|\frac{\partial u}{\partial t}\|^{2} + c\epsilon^{-2} (\|u\|^{6} \|\frac{\partial^{2} u}{\partial x^{2}}\|^{2} + 1) \|\frac{\partial^{2} u}{\partial x^{2}}\|^{2} + c' \|f(u)\|^{2}.$$

It thus follows from (2.19)-(2.23) that

$$\frac{d}{dt}\|\omega\|^{2} + \|\frac{\partial u}{\partial t}\|^{2} \le c\epsilon^{-2}(\|u\|^{6}\|\frac{\partial^{2} u}{\partial x^{2}}\|^{2} + 1)(\|\frac{\partial^{2} u}{\partial x^{2}}\|^{2} + \|f(u)\|^{2}). \tag{2.24}$$

Furthermore, as above and employing (2.17),

$$\|\omega\|^{2} \geq \|\frac{\partial^{2} u}{\partial x^{2}}\|^{2} + \|f(u)\|^{2} - 2c_{0}\|\frac{\partial u}{\partial x}\|^{2}$$

$$\geq \frac{1}{2}(\|\frac{\partial^{2} u}{\partial x^{2}}\|^{2} + \|f(u)\|^{2}) - c\|u\|^{2}.$$
(2.25)

3. Existence and uniqueness of solutions

We have the

Theorem 3.1. We assume that $u_0 \in H^2(0,L) \cap H^1_0(0,L)$. Then, (2.1)-(2.4) possesses a unique solution u such that $u \in L^{\infty}(0,T;H^2(0,L) \cap H^1_0(0,L))$, $\frac{\partial u}{\partial t} \in L^2(0,T;L^2(0,L))$ and $f(u) \in L^{\infty}(0,T;L^2(0,L))$, $\forall T > 0$.

Proof. a) Existence:

The proof of existence is based on a standard Galerkin scheme and the a priori estimates derived in the previous section.

A weak (variational) formulation for (2.1)-(2.4) reads

$$\frac{d}{dt}((u,v)) + \left(\left(\frac{\left(\frac{\partial u}{\partial x}\right)^{2}}{\left(\epsilon + \left(\frac{\partial u}{\partial x}\right)^{2}\right)^{\frac{1}{2}}}, \frac{\partial v}{\partial x}\right)\right) + \left(\left(\frac{\frac{\partial u}{\partial x}}{\left(\epsilon + \left(\frac{\partial u}{\partial x}\right)^{2}\right)^{\frac{1}{2}}}f(u), v\right)\right)
+ \frac{\epsilon}{2}\left(\left(\frac{\left(\frac{\partial u}{\partial x}\right)^{2}}{\left(\epsilon + \left(\frac{\partial u}{\partial x}\right)^{2}\right)^{\frac{3}{2}}}, \frac{\partial v}{\partial x}\right)\right) + \epsilon\left(\left(\frac{F(u)}{\left(\epsilon + \left(\frac{\partial u}{\partial x}\right)^{2}\right)^{\frac{3}{2}}}, \frac{\partial v}{\partial x}\right)\right)
+ \left(\left(\omega f'(u), v\right)\right) - \left(\left(\omega, \frac{\partial^{2} v}{\partial x^{2}}\right)\right) = 0, \ \forall v \in H^{2}(0, L) \cap H_{0}^{1}(0, L), \qquad (3.1)
\left(\left(u, w\right)\right) = \left(\left(f(u), w\right)\right) + \left(\left(\omega, \frac{\partial^{2} w}{\partial x^{2}}\right)\right), \ \forall w \in H^{2}(0, L) \cap H_{0}^{1}(0, L), \qquad (3.2)
u|_{t=0} = u_{0}. \qquad (3.3)$$

Let v_1, v_2, \ldots be an orthonormal (in $L^2(0, L)$) and orthogonal (in $H^1_0(0, L)$) family associated with the eigenvalues $0 < \lambda_1 \le \lambda_2 \ldots$ of the operator $-\frac{\partial^2}{\partial x^2}$ associated with Dirichlet boundary conditions. We set $V_m = \operatorname{Span}(v_1, \ldots, v_m)$ and consider the approximated problem

Find $(u_m, \omega_m): [0, T] \to V_m \times V_m$ such that

$$\frac{d}{dt}((u_m, v)) + \left(\left(\frac{\left(\frac{\partial u_m}{\partial x}\right)^2}{\left(\epsilon + \left(\frac{\partial u_m}{\partial x}\right)^2\right)^{\frac{1}{2}}}, \frac{\partial v}{\partial x}\right)\right) + \left(\left(\frac{\frac{\partial u_m}{\partial x}}{\left(\epsilon + \left(\frac{\partial u_m}{\partial x}\right)^2\right)^{\frac{1}{2}}}f(u_m), v\right)\right)
+ \frac{\epsilon}{2}\left(\left(\frac{\left(\frac{\partial u_m}{\partial x}\right)^2}{\left(\epsilon + \left(\frac{\partial u_m}{\partial x}\right)^2\right)^{\frac{3}{2}}}, \frac{\partial v}{\partial x}\right)\right) + \epsilon\left(\left(\frac{F(u_m)}{\left(\epsilon + \left(\frac{\partial u_m}{\partial x}\right)^2\right)^{\frac{3}{2}}}, \frac{\partial v}{\partial x}\right)\right)
+ \left(\left(\omega_m f'(u_m), v\right)\right) - \left(\left(\omega_m, \frac{\partial^2 v}{\partial x^2}\right)\right) = 0, \ \forall v \in V_m, \tag{3.4}$$

$$((u_m, w)) = ((f(u_m), w)) + ((\omega_m, \frac{\partial^2 w}{\partial x^2})), \ \forall w \in V_m,$$

$$(3.5)$$

$$u_m|_{t=0} = u_{0,m}, (3.6)$$

where $u_{0,m} = P_m u$, P_m being the orthogonal projector from $L^2(0,L)$ onto V_m (for the L^2 -norm).

271

The existence of a local (in time) solution is standard, as we have to solve a (continuous) finite system of ODE's. It then follows from the a priori estimates derived in the previous section that this solution is global.

In particular, it follows from (2.18) (which holds at the approximated level) that u_m is bounded in $L^{\infty}(0,T;L^2(0,L))\cap L^2(0,T;H^2(0,L))$, independently of m. Having this, it follows from (2.24)-(2.25) that u_m is bounded in $L^{\infty}(0,T;H^2(0,L))$, $f(u_m)$ is bounded in $L^{\infty}(0,T;L^2(0,L))$ and $\frac{\partial u_m}{\partial t}$ is bounded in $L^2(0,T;L^2(0,L))$.

It then follows from classical Aubin-Lions compactness results that, up to a subsequence which we do not relabel (also note that $\frac{\partial}{\partial t} \frac{\partial u_m}{\partial x}$ is bounded in $L^2(0,T;H^{-1}(0,L)))$,

$$u_m \to u \text{ in } L^{\infty}(0, T; H^2(0, L)) \text{weak star}, \ L^2(0, T; L^2(0, L)) \text{and a.e.},$$

$$f(u_m) \to f(u)$$
in $L^2(0,T;L^2(0,L))$ and a.e.

(indeed,
$$||f(u_m) - f(u)|| \le c(||u_m||^2_{H^1(0,L)} + ||u||^2_{H^1(0,L)} + 1)||u_m - u||)$$
 and

$$\frac{\partial u_m}{\partial x} \to \frac{\partial u}{\partial x}$$
 in $L^{\infty}(0,T;H^1(0,L))$ weak star, $L^2(0,T;L^2(0,L))$ and a.e..

We then need to pass to the limit in the nonlinear terms. We have

$$\left|\frac{\left(\frac{\partial u_m}{\partial x}\right)^2}{(\epsilon + \left(\frac{\partial u_m}{\partial x}\right)^2)^{\frac{1}{2}}}\right| \le \left|\frac{\partial u_m}{\partial x}\right|.$$

Therefore, since $\frac{(\frac{\partial u_m}{\partial x})^2}{(\epsilon+(\frac{\partial u_m}{\partial x})^2)^{\frac{1}{2}}} \to \frac{(\frac{\partial u}{\partial x})^2}{(\epsilon+(\frac{\partial u}{\partial x})^2)^{\frac{1}{2}}}$ a.e. and $|\frac{\partial u_m}{\partial x}| \leq g \in L^2((0,L)\times(0,T))$ a.e. (up again to a subsequence which we do not relabel), we deduce from Lebesgue's theorem that $\frac{(\frac{\partial u_m}{\partial x})^2}{(\epsilon+(\frac{\partial u_m}{\partial x})^2)^{\frac{1}{2}}} \to \frac{(\frac{\partial u}{\partial x})^2}{(\epsilon+(\frac{\partial u}{\partial x})^2)^{\frac{1}{2}}}$ in $L^2(0,T;L^2(0,L))$ (here, we have used the fact that $L^2(0,T;L^2(0,L))$ is isometric to $L^2((0,L)\times(0,T))$). Similarly,

$$\left| \frac{\frac{\partial u_m}{\partial x}}{\left(\epsilon + \left(\frac{\partial u_m}{\partial x}\right)^2\right)^{\frac{1}{2}}} f(u_m) \right| \le |f(u_m)|,$$

which yields that $\frac{\frac{\partial u_m}{\partial x}}{(\epsilon + (\frac{\partial u_m}{\partial x})^2)^{\frac{1}{2}}} f(u_m) \to \frac{\frac{\partial u}{\partial x}}{(\epsilon + (\frac{\partial u}{\partial x})^2)^{\frac{1}{2}}} f(u)$ in $L^2(0,T;L^2(0,L))$, and

$$\left| \frac{\left(\frac{\partial u_m}{\partial x}\right)^2}{\left(\epsilon + \left(\frac{\partial u_m}{\partial x}\right)^2\right)^{\frac{3}{2}}} \right| \le \epsilon^{-\frac{1}{2}},$$

so that $\frac{(\frac{\partial u_m}{\partial x})^2}{(\epsilon+(\frac{\partial u_m}{\partial x})^2)^{\frac{3}{2}}} \to \frac{(\frac{\partial u}{\partial x})^2}{(\epsilon+(\frac{\partial u}{\partial x})^2)^{\frac{3}{2}}}$ in $L^2(0,T;L^2(0,L))$. Furthermore,

$$\left| \frac{F(u_m)}{(\epsilon + (\frac{\partial u_m}{2})^2)^{\frac{3}{2}}} \right| \le \epsilon^{-\frac{3}{2}} |F(u_m)| \le c\epsilon^{-\frac{3}{2}} (|u_m|^4 + 1),$$

so that

$$\left|\frac{F(u_m)}{(\epsilon + (\frac{\partial u_m}{\partial x})^2)^{\frac{3}{2}}}\right| \le c\epsilon^{-\frac{3}{2}}(|f(u_m)|^{\frac{4}{3}} + 1),$$

hence $\frac{F(u_m)}{(\epsilon+(\frac{\partial u_m}{\partial x})^2)^{\frac{3}{2}}} \to \frac{F(u)}{(\epsilon+(\frac{\partial u}{\partial x})^2)^{\frac{3}{2}}}$ in $L^{\frac{3}{2}}(0,T;L^{\frac{3}{2}}(0,L))$. Finally, noting that $\omega_m \to \omega$ in $L^2(0,T;L^2(\Omega))$ weak, we have, for $\varphi \in \mathcal{C}([0,L]\times[0,T])$,

$$\left| \int_{0}^{T} \int_{0}^{L} (\omega_{m} f'(u_{m}) - \omega f'(u)) \varphi \, dx \, dt \right| \\
\leq \left| \int_{0}^{T} \int_{0}^{L} (\omega_{m} - \omega) f'(u) \varphi \, dx \, dt \right| + \left| \int_{0}^{T} \int_{0}^{L} \omega_{m} (f'(u_{m}) - f'(u)) \varphi \, dx \, dt \right| \\
\leq \left| \int_{0}^{T} \int_{0}^{L} (\omega_{m} - \omega) f'(u) \varphi \, dx \, dt \right| + c \|u_{m} - u\|_{L^{2}(0,T;L^{2}(\Omega))},$$

which finishes the proof of the passage to the limit, hence the existence of a solution.

b) Uniqueness:

Let u_1 and u_2 be two solutions to (2.1)-(2.3) (ω_1 and ω_2 being defined as in (2.2)) with initial data $u_{0,1}$ and $u_{0,2}$, respectively. Then, setting $u = u_1 - u_2$, $\omega = \omega_1 - \omega_2$ and $u_0 = u_{0,1} - u_{0,2}$, we have

$$\frac{\partial u}{\partial t} - \frac{\partial}{\partial x} (\varphi_1(\frac{\partial u_1}{\partial x}) - \varphi_1(\frac{\partial u_2}{\partial x})) + \varphi_2(\frac{\partial u_1}{\partial x}) f(u_1) - \varphi_2(\frac{\partial u_1}{\partial x}) f(u_2)
- \frac{\epsilon}{2} \frac{\partial}{\partial x} (\varphi_3(\frac{\partial u_1}{\partial x}) - \varphi_3(\frac{\partial u_2}{\partial x})) - \epsilon \frac{\partial}{\partial x} (\varphi_4(\frac{\partial u_1}{\partial x}) F(u_1) - \varphi_4(\frac{\partial u_2}{\partial x}) F(u_2))
+ \omega_1 f'(u_1) - \omega_2 f'(u_2) - \frac{\partial^2 \omega}{\partial x^2} = 0,$$
(3.7)

$$\omega = -\frac{\partial^2 u}{\partial x^2} + f(u_1) - f(u_2), \tag{3.8}$$

$$u(0) = u(L) = \omega(0) = \omega(L) = 0,$$
 (3.9)

$$u|_{t=0} = u_0, (3.10)$$

where

$$\varphi_1(s) = \frac{s^2}{(\epsilon + s^2)^{\frac{1}{2}}}, \ \varphi_2(s) = \frac{s}{(\epsilon + s^2)^{\frac{1}{2}}},$$
$$\varphi_3(s) = \frac{s^2}{(\epsilon + s^2)^{\frac{3}{2}}}, \ \varphi_4(s) = \frac{1}{(\epsilon + s^2)^{\frac{3}{2}}}.$$

We multiply (3.7) by u and obtain, owing to (3.8),

$$\frac{1}{2} \frac{d}{dt} \|u\|^{2} + ((\varphi_{1}(\frac{\partial u_{1}}{\partial x}) - \varphi_{1}(\frac{\partial u_{2}}{\partial x}), \frac{\partial u}{\partial x})) + ((\varphi_{2}(\frac{\partial u_{1}}{\partial x})f(u_{1}) - \varphi_{2}(\frac{\partial u_{2}}{\partial x})f(u_{2}), u))
+ \frac{\epsilon}{2} ((\varphi_{3}(\frac{\partial u_{1}}{\partial x}) - \varphi_{3}(\frac{\partial u_{2}}{\partial x}), \frac{\partial u}{\partial x})) + \epsilon ((\varphi_{4}(\frac{\partial u_{1}}{\partial x})F(u_{1}) - \varphi_{4}(\frac{\partial u_{2}}{\partial x})F(u_{2}), \frac{\partial u}{\partial x}))
+ ((\omega_{1}f'(u_{1}) - \omega_{2}f'(u_{2}), u)) + \|\frac{\partial^{2}u}{\partial x^{2}}\|^{2} = 0.$$
(3.11)

We have

$$|((\varphi_1(\frac{\partial u_1}{\partial x}) - \varphi_1(\frac{\partial u_2}{\partial x}), \frac{\partial u}{\partial x}))|$$

$$\leq \int_0^L \int_0^1 |\varphi_1'(\tau \frac{\partial u_1}{\partial x} + (1 - \tau) \frac{\partial u_2}{\partial x} |d\tau| \frac{\partial u}{\partial x}|^2 dx,$$

where

$$\varphi_1'(s) = \frac{2\epsilon s + s^3}{(\epsilon + s^2)^{\frac{3}{2}}}$$

satisfies

$$|\varphi_1'(s)| \le 3, \ s \in \mathbb{R},$$

so that

$$|((\varphi_1(\frac{\partial u_1}{\partial x}) - \varphi_1(\frac{\partial u_2}{\partial x}), \frac{\partial u}{\partial x}))| \le 3\|\frac{\partial u}{\partial x}\|^2. \tag{3.12}$$

Furthermore,

$$|((\varphi_{2}(\frac{\partial u_{1}}{\partial x})f(u_{1}) - \varphi_{2}(\frac{\partial u_{2}}{\partial x})f(u_{2}), u))|$$

$$\leq |(((\varphi_{2}(\frac{\partial u_{1}}{\partial x}) - \varphi_{2}(\frac{\partial u_{2}}{\partial x}))f(u_{1}), u))| + |((\varphi_{2}(\frac{\partial u_{2}}{\partial x})(f(u_{1}) - f(u_{2})), u))|$$

$$\leq \int_{0}^{L} \int_{0}^{1} |\varphi'_{2}(\tau \frac{\partial u_{1}}{\partial x} + (1 - \tau) \frac{\partial u_{2}}{\partial x} |d\tau| f(u_{1})||\frac{\partial u}{\partial x}||u| dx$$

$$+ |((\varphi_{2}(\frac{\partial u_{2}}{\partial x})(f(u_{1}) - f(u_{2})), u))|.$$

Noting that

$$|\varphi_2(s)| \le 1, \ s \in \mathbb{R},$$

and that

$$\varphi_2'(s) = \frac{\epsilon}{(\epsilon + s^2)^{\frac{3}{2}}},$$

so that

$$|\varphi_2'(s)| \le \epsilon^{-\frac{1}{2}}, \ s \in \mathbb{R},$$

it follows that

$$|((\varphi_{2}(\frac{\partial u_{1}}{\partial x})f(u_{1}) - \varphi_{2}(\frac{\partial u_{2}}{\partial x})f(u_{2}), u))|$$

$$\leq \epsilon^{-\frac{1}{2}}Q(T, ||u_{0,1}||_{H^{2}(0,L)}, ||u_{0,2}||_{H^{2}(0,L)})||\frac{\partial u}{\partial x}||^{2}.$$
(3.13)

Here, we have used the fact, owing to the continuous embedding $H^1(0,L) \subset \mathcal{C}([0,L])$, $\|f^{(i)}(w)\|_{L^{\infty}(0,L)} \leq Q(\|w\|_{H^1(0,L)}) \leq Q(\|w\|_{H^2(0,L)})$, $i = 0, 1, \forall w \in H^2(0,L)$. Similarly,

$$\frac{\epsilon}{2} \left| \left(\left(\varphi_3(\frac{\partial u_1}{\partial x}) - \varphi_3(\frac{\partial u_2}{\partial x}), \frac{\partial u}{\partial x} \right) \right) \right| \\
\leq \frac{\epsilon}{2} \int_0^L \int_0^1 \left| \varphi_3'(\tau \frac{\partial u_1}{\partial x} + (1 - \tau) \frac{\partial u_2}{\partial x} \right| d\tau \left| \frac{\partial u}{\partial x} \right|^2 dx,$$

where

$$\varphi_3'(s) = \frac{2s}{(\epsilon + s^2)^{\frac{3}{2}}} - \frac{3s^3}{(\epsilon + s^2)^{\frac{5}{2}}}$$

satisfies

$$|\varphi_3'(s)| \le 5\epsilon^{-1}, \ s \in \mathbb{R},$$

so that

$$\frac{\epsilon}{2}|((\varphi_3(\frac{\partial u_1}{\partial x}) - \varphi_3(\frac{\partial u_2}{\partial x}), \frac{\partial u}{\partial x}))| \le \frac{5}{2} \|\frac{\partial u}{\partial x}\|^2. \tag{3.14}$$

Then,

$$\epsilon |((\varphi_4(\frac{\partial u_1}{\partial x})F(u_1) - \varphi_4(\frac{\partial u_2}{\partial x})F(u_2), \frac{\partial u}{\partial x}))|
\leq \epsilon \int_0^L \int_0^1 |\varphi_4'(\tau \frac{\partial u_1}{\partial x} + (1 - \tau) \frac{\partial u_2}{\partial x} |d\tau| F(u_1) ||\frac{\partial u}{\partial x}|^2 dx
+ \epsilon |((\varphi_4(\frac{\partial u_2}{\partial x})(F(u_1) - F(u_2)), \frac{\partial u}{\partial x}))|.$$

Noting that

$$|\varphi_4(s)| \le \epsilon^{-\frac{3}{2}}, \ s \in \mathbb{R},$$

and that

$$\varphi_4'(s) = -\frac{3s}{(\epsilon + s^2)^3},$$

so that

$$|\varphi_4'(s)| \le 3\epsilon^{-\frac{5}{2}}, \ s \in \mathbb{R},$$

we find, proceeding as in (3.13),

$$\epsilon \left| \left(\left(\varphi_4 \left(\frac{\partial u_1}{\partial x} \right) F(u_1) - \varphi_4 \left(\frac{\partial u_2}{\partial x} \right) F(u_2), \frac{\partial u}{\partial x} \right) \right) \right| \\
\leq \epsilon^{-\frac{3}{2}} Q(T, \|u_{0,1}\|_{H^2(0,L)}, \|u_{0,2}\|_{H^2(0,L)}) \|\frac{\partial u}{\partial x}\|^2. \tag{3.15}$$

Now,

$$|((\omega_{1}f'(u_{1}) - \omega_{2}f'(u_{2}), u))|$$

$$\leq |((\omega f'(u_{1}), u))| + |((\omega_{2}(f'(u_{1}) - f'(u_{2})), u))|$$

$$\leq Q(T, ||u_{0,1}||_{H^{2}(0,L)}, ||u_{0,2}||_{H^{2}(0,L)})(||\omega|||u|| + ||\omega_{2}|||u||_{L^{4}(0,L)}^{2})$$

$$\leq Q(T, ||u_{0,1}||_{H^{2}(0,L)}, ||u_{0,2}||_{H^{2}(0,L)})(||\frac{\partial^{2}u}{\partial x^{2}}|||u|| + ||\frac{\partial u}{\partial x}||^{2})$$

$$\leq \frac{1}{4} ||\frac{\partial^{2}u}{\partial x^{2}}||^{2} + Q(T, ||u_{0,1}||_{H^{2}(0,L)}, ||u_{0,2}||_{H^{2}(0,L)})||\frac{\partial u}{\partial x}||^{2}.$$
(3.16)

Finally,

$$|((f(u_{1}) - f(u_{2}), \frac{\partial^{2} u}{\partial x^{2}}))|$$

$$\leq \frac{1}{4} \|\frac{\partial^{2} u}{\partial x^{2}}\|^{2} + Q(T, \|u_{0,1}\|_{H^{2}(0,L)}, \|u_{0,2}\|_{H^{2}(0,L)}) \|\frac{\partial u}{\partial x}\|^{2}.$$

$$(3.17)$$

We thus deduce from (3.11)-(3.17) that

$$\frac{d}{dt}\|u\|^2 + \|\frac{\partial^2 u}{\partial x^2}\|^2 \le Q(\epsilon^{-1}, T, \|u_{0,1}\|_{H^2(0,L)}, \|u_{0,2}\|_{H^2(0,L)})\|\frac{\partial u}{\partial x}\|^2,$$

which yields, employing the interpolation inequality (2.17),

$$\frac{d}{dt}\|u\|^2 \le Q(\epsilon^{-1}, T, \|u_{0,1}\|_{H^2(0,L)}, \|u_{0,2}\|_{H^2(0,L)})\|u\|^2, \tag{3.18}$$

hence the uniqueness, as well as the continuous dependence with respect to the L^2 -norm. \Box

Remark 3.1. We can more generally consider the free energy (1.7), i.e., the Allen-Cahn system

$$\frac{\partial u}{\partial t} - \frac{\partial}{\partial x} \left(\delta \left(\frac{\frac{\partial u}{\partial x}}{(\epsilon + (\frac{\partial u}{\partial x})^2)^{\frac{1}{2}}} \right) \frac{\partial u}{\partial x} \right) + \delta \left(\frac{\frac{\partial u}{\partial x}}{(\epsilon + (\frac{\partial u}{\partial x})^2)^{\frac{1}{2}}} \right) f(u)$$

$$- \frac{\epsilon}{2} \frac{\partial}{\partial x} \left(\delta' \left(\frac{\frac{\partial u}{\partial x}}{(\epsilon + (\frac{\partial u}{\partial x})^2)^{\frac{1}{2}}} \right) \frac{(\frac{\partial u}{\partial x})^2}{(\epsilon + (\frac{\partial u}{\partial x})^2)^{\frac{3}{2}}} \right) - \epsilon \frac{\partial}{\partial x} \left(\delta' \left(\frac{\frac{\partial u}{\partial x}}{(\epsilon + (\frac{\partial u}{\partial x})^2)^{\frac{1}{2}}} \right) \frac{F(u)}{(\epsilon + (\frac{\partial u}{\partial x})^2)^{\frac{3}{2}}} \right)$$

$$+ \omega f'(u) - \frac{\partial^2 \omega}{\partial x^2} = 0, \tag{3.19}$$

$$\omega = -\frac{\partial^2 u}{\partial x^2} + f(u). \tag{3.20}$$

Assuming that δ is of class \mathcal{C}^1 and noting that $\left|\frac{\frac{\partial u}{\partial x}}{(\epsilon + (\frac{\partial u}{\partial x})^2)^{\frac{1}{2}}}\right| \leq 1$, we can proceed exactly as above to prove the existence of a solution. Furthermore, assuming that δ is of class \mathcal{C}^2 , we can easily adapt the proof of uniqueness and deduce the existence and uniqueness of solutions.

Remark 3.2. We can note that our estimates are not independent of ϵ , so that we cannot pass to the limit as ϵ goes to 0. This is not surprising, as the problem formally obtained by taking $\epsilon = 0$ cannot correspond to the (Allen-Cahn) problem associated with the free energy (1.6) (see also [2] and [10]). Actually, this is related with a proper functional setting for the limit problem and, more precisely, for the Allen-Cahn system associated with (1.6) and will be studied elsewhere. We can note that anisotropic versions of the Allen-Cahn equation have been studied in [3] and the references therein, based on viscosity solutions. Such an approach is not straightforward here, as there is no maximum/comparison principle for fourth-order in space parabolic equations.

Remark 3.3. It is also important to study the Cahn-Hilliard system associated with (1.7) (for $\delta(s) = s$), namely,

$$\frac{\partial u}{\partial t} - \frac{\partial^{2}}{\partial x^{2}} \left(-\frac{\partial}{\partial x} \frac{\left(\frac{\partial u}{\partial x}\right)^{2}}{\left(\epsilon + \left(\frac{\partial u}{\partial x}\right)^{2}\right)^{\frac{1}{2}}} + \frac{\frac{\partial u}{\partial x}}{\left(\epsilon + \left(\frac{\partial u}{\partial x}\right)^{2}\right)^{\frac{1}{2}}} f(u) \right)$$

$$-\frac{\epsilon}{2} \frac{\partial}{\partial x} \frac{\left(\frac{\partial u}{\partial x}\right)^{2}}{\left(\epsilon + \left(\frac{\partial u}{\partial x}\right)^{2}\right)^{\frac{3}{2}}} - \epsilon \frac{\partial}{\partial x} \frac{F(u)}{\left(\epsilon + \left(\frac{\partial u}{\partial x}\right)^{2}\right)^{\frac{3}{2}}} + \omega f'(u) - \frac{\partial^{2} \omega}{\partial x^{2}}\right) = 0, \quad (3.21)$$

$$\omega = -\frac{\partial^{2} u}{\partial x^{2}} + f(u). \quad (3.22)$$

Taking, for simplicity, Dirichlet boundary conditions,

$$u(0) = u(L) = \frac{\partial^2 u}{\partial r^2}(0) = \frac{\partial^2 u}{\partial r^2}(L) = \omega(0) = \omega(L) = \frac{\partial^2 \omega}{\partial r^2}(0) = \frac{\partial^2 \omega}{\partial r^2}(L) = 0,$$

we can rewrite (3.21) as

$$(-\frac{\partial^{2}}{\partial x^{2}})^{-1}\frac{\partial u}{\partial t} - -\frac{\partial}{\partial x}\frac{(\frac{\partial u}{\partial x})^{2}}{(\epsilon + (\frac{\partial u}{\partial x})^{2})^{\frac{1}{2}}} + \frac{\frac{\partial u}{\partial x}}{(\epsilon + (\frac{\partial u}{\partial x})^{2})^{\frac{1}{2}}}f(u)$$

$$-\frac{\epsilon}{2}\frac{\partial}{\partial x}\frac{(\frac{\partial u}{\partial x})^{2}}{(\epsilon + (\frac{\partial u}{\partial x})^{2})^{\frac{3}{2}}} - \epsilon\frac{\partial}{\partial x}\frac{F(u)}{(\epsilon + (\frac{\partial u}{\partial x})^{2})^{\frac{3}{2}}} + \omega f'(u) - \frac{\partial^{2}\omega}{\partial x^{2}} = 0.$$
(3.23)

We thus have an equation which bears some resemblance with (2.1), except that we have less regularity on $\frac{\partial u}{\partial t}$, which prevents us from proceeding as in the proof of Theorem 3.1. However, if we consider the viscous Cahn-Hilliard equation (introduced in [6] for the usual Cahn-Hilliard equation),

$$\frac{\partial u}{\partial t} - \alpha \frac{\partial^{2}}{\partial x^{2}} \frac{\partial u}{\partial t} - \frac{\partial^{2}}{\partial x^{2}} \left(-\frac{\partial}{\partial x} \frac{\left(\frac{\partial u}{\partial x}\right)^{2}}{\left(\epsilon + \left(\frac{\partial u}{\partial x}\right)^{2}\right)^{\frac{1}{2}}} + \frac{\frac{\partial u}{\partial x}}{\left(\epsilon + \left(\frac{\partial u}{\partial x}\right)^{2}\right)^{\frac{1}{2}}} f(u) \right) \\
- \frac{\epsilon}{2} \frac{\partial}{\partial x} \frac{\left(\frac{\partial u}{\partial x}\right)^{2}}{\left(\epsilon + \left(\frac{\partial u}{\partial x}\right)^{2}\right)^{\frac{3}{2}}} - \epsilon \frac{\partial}{\partial x} \frac{F(u)}{\left(\epsilon + \left(\frac{\partial u}{\partial x}\right)^{2}\right)^{\frac{3}{2}}} + \omega f'(u) - \frac{\partial^{2} \omega}{\partial x^{2}} \right) = 0, \ \alpha > 0, \tag{3.24}$$

or, equivalently,

$$(-\frac{\partial^{2}}{\partial x^{2}})^{-1}\frac{\partial u}{\partial t} + \alpha \frac{\partial u}{\partial t} - \frac{\partial}{\partial x} \frac{(\frac{\partial u}{\partial x})^{2}}{(\epsilon + (\frac{\partial u}{\partial x})^{2})^{\frac{1}{2}}} + \frac{\frac{\partial u}{\partial x}}{(\epsilon + (\frac{\partial u}{\partial x})^{2})^{\frac{1}{2}}} f(u)$$

$$-\frac{\epsilon}{2} \frac{\partial}{\partial x} \frac{(\frac{\partial u}{\partial x})^{2}}{(\epsilon + (\frac{\partial u}{\partial x})^{2})^{\frac{3}{2}}} - \epsilon \frac{\partial}{\partial x} \frac{F(u)}{(\epsilon + (\frac{\partial u}{\partial x})^{2})^{\frac{3}{2}}} + \omega f'(u) - \frac{\partial^{2} \omega}{\partial x^{2}} = 0,$$
(3.25)

then, proceeding as in the proof of Theorem 3.1, we have the existence and uniqueness of solutions.

References

- [1] S.M. Allen and J.W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27(1979),1085-1095.
- [2] F. Chen and J. Shen, Efficient energy stable schemes with spectral discretization in space for anisotropic Cahn-Hilliard systems, Commun. Comput. Phys., 13(2013), 1189-1208.
- [3] Y. Giga, T. Ohtsuka and R. Schätzle, On a uniform approximation of motion by anisotropic curvature by the Allen-Cahn equations, Interfaces Free Bound., 8(2006), 317-348.
- [4] A. Miranville, Asymptotic behavior of a sixth-order Cahn-Hilliard system, Central Europ. J. Math., to appear.
- [5] A. Miranville and R. Quintanilla, A generalization of the Allen-Cahn equation, submitted.
- [6] A. Novick-Cohen, On the viscous Cahn-Hilliard equation, in Material instabilities in continuum and related problems, J.M. Ball ed., Oxford University Press Oxford, 1988, 329-342.

Allen-Cahn equation 277

[7] K. Promislow and H. Zhang, *Critical points of functionalized Lagrangians*, Discrete Cont. Dyn. System, 33(2013), 1231-1246.

- [8] J.E. Taylor and J.W. Cahn, Diffuse interfaces with sharp corners and facets: phase-field models with strongly anisotropic surfaces, Phys. D, 112(1998), 381-411.
- [9] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Second edition, Applied Mathematical Sciences, Springer-Verlag New York, 68(1997).
- [10] S. Torabi, J. Lowengrub, A. Voigt and S. Wise, A new phase-field model for strongly anisotropic systems, Proc. R. Soc. A, 465(2009), 1337-1359.
- [11] S.M. Wise, C. Wang and J.S. Lowengrub, Solving the regularized, strongly anisotropic Cahn-Hilliard equation by an adaptative nonlinear multigrid method, J. Comput. Phys., 226(2007), 414-446.