PERIODIC SOLUTION FOR HIGH-ORDER DIFFERENTIAL SYSTEM*

Zhibo Cheng ${ }^{1, \dagger}$ and Jingli Ren ${ }^{2}$

Abstract

Sufficient conditions are presented for the existence and stability of periodic solutions for a high-order differential system. Besides, an example is given to illustrate the result.

Keywords High-order, differential system, periodic solution, existence, stability.

MSC(2000) 34C25, 34D20.

1. Introduction

In recent years, there are some works on periodic solutions for differential systems, see [3]- [10] and references therein. For example, by using the continuation theorem, Zhang \& Tang [10] give the existence of positive periodic solutions of a first-order differential system

$$
\left\{\begin{array}{l}
x^{\prime}(t)=x(t) F_{1}(t, x(t), y(t))-h_{1}(t) \tag{1.1}\\
y^{\prime}(t)=y(t) F_{2}(t, x(t), y(t))-h_{2}(t)
\end{array}\right.
$$

and apply the result to a competition Lotka-Volterra population model. Wang \& $\mathrm{Lu}[7]$ study a neutral functional differential system with delay

$$
\begin{equation*}
(x(t)+c x(t-\sigma))^{\prime}=A(t, x(t)) x(t)+f(t, x(t), x(t-\tau)), \tag{1.2}
\end{equation*}
$$

where $x(t)=\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right)^{\top}$, and obtain the existence, uniqueness and global attractivity of periodic solution for the system. Lu \& Ge [6] observe a secondorder neutral differential systems with deviating arguments

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}}(x(t)+C x(t-r))+\frac{d}{d t} \operatorname{grad} F(x(t))+\operatorname{grad} G(x(t-\tau(t)))=p(t) \tag{1.3}
\end{equation*}
$$

by means of the generalized continuation theorem, they get a new result on the existence of periodic solutions. Afterwards, by employing the Deimling fixed point index theory, Wu \& Wang [8] consider the following second-order nonlinear differential system with two paraments,

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t)+a_{1}(t) u(t)=\lambda b_{1}(t) f_{1}(u(t), v(t)), \tag{1.4}\\
v^{\prime \prime}(t)+a_{2}(t) v(t)=\mu b_{2}(t) f_{2}(u(t), v(t)),
\end{array} \quad t \in \mathbb{R},\right.
$$

[^0]and present the existence of periodic solutions for it. Recently, Liu etc. [4] get the solvability of anti-periodic solutions for the third order differential systems
\[

$$
\begin{equation*}
x^{\prime \prime \prime}+A x^{\prime \prime}+\frac{d}{d t} \nabla F(x)+G(t, x)=E(t), \tag{1.5}
\end{equation*}
$$

\]

here x is a vector.
In general, most of the existing results are concentrated on lower order differential system, and studies on high-order differential systems are rather infrequent, especially for the research on stability for high-order differential system. Motivated by the problem, we consider the following high-order functional differential system

$$
\begin{equation*}
\left(x_{i}(t)\right)^{(n)}=F_{i}\left(t, x(t), x^{\prime}(t), \cdots, x^{(n-1)}(t)\right)+e_{i}(t), \quad i=1, \ldots, m \tag{1.6}
\end{equation*}
$$

where $x(t)=\left(x_{1}(t), x_{2}(t), \cdots, x_{m}(t)\right), F_{i}$ is a continuous function defined on $\mathbb{R} \times$ $\mathbb{R}^{m \times n}$ and is periodic to t, i.e., $F_{i}(t, \cdot, \cdots, \cdot)=F_{i}(t+T, \cdot, \cdots, \cdot), e_{i}(t)$ is a continuous function defined on \mathbb{R} and is periodic to t with $e_{i}(t+T)=e_{i}(t)$ and $\int_{0}^{T} e_{i}(t) d t=0$, $F_{i}(t, c, \theta, \cdots, \theta)+e_{i}(t) \not \equiv 0$, here c is any given constant m-order vector and θ is zero m-order vector.

The rest of this paper is organized as follows. In section 2, we give some Lemmas. In section 3, by using Mawhin's coincidence degree theorem, some sufficient conditions are obtained for the existence of periodic solutions of system (1.6). Moreover, by the construction of a Lyapunov function, we verify Lyapunov stability of periodic solution for system (1.6). Finally, an example is given to illustrate the result.

2. Preparation

Let X and Y be real Banach spaces and $L: D(L) \subset X \rightarrow Y$ be a Fredholm operator with index zero, here $D(L)$ denotes the domain of L. This means that $\operatorname{Im} L$ is closed in Y and $\operatorname{dim} \operatorname{Ker} L=\operatorname{dim}(Y / \operatorname{Im} L)<+\infty$. Consider supplementary subspaces X_{1}, Y_{1}, of X, Y respectively, such that $X=\operatorname{Ker} L \oplus X_{1}, Y=\operatorname{Im} L \oplus Y_{1}$, and let $P: X \rightarrow \operatorname{Ker} L$ and $Q: Y \rightarrow Y_{1}$ denote the natural projections. Clearly, Ker $L \cap\left(D(L) \cap X_{1}\right)=\{0\}$, thus the restriction $L_{P}:=\left.L\right|_{D(L) \cap X_{1}}$ is invertible. Let K denote the inverse of L_{P}.

Let Ω be an open bounded subset of X with $D(L) \cap \Omega \neq \emptyset$. A map $N: \bar{\Omega} \rightarrow Y$ is said to be L-compact in $\bar{\Omega}$ if $Q N(\bar{\Omega})$ is bounded and the operator $K(I-Q) N$: $\bar{\Omega} \rightarrow X$ is compact.

Lemma 2.1. (Gaines and Mawhin [1]) Suppose that X and Y are two Banach spaces, and $L: D(L) \subset X \rightarrow Y$ is a Fredholm operator with index zero. Furthermore, $\Omega \subset X$ is an open bounded set and $N: \bar{\Omega} \rightarrow Y$ is L-compact on $\bar{\Omega}$. Assume that the following conditions hold:
(1) $L x \neq \lambda N x, \forall x \in \partial \Omega \cap D(L), \lambda \in(0,1)$;
(2) $N x \notin \operatorname{Im} L, \forall x \in \partial \Omega \cap \operatorname{Ker} L$;
(3) $\operatorname{deg}\{J Q N, \Omega \cap$ Ker $L, 0\} \neq 0$, where $J: \operatorname{Im} Q \rightarrow$ Ker L is an isomorphism.

Then the equation $L x=N x$ has a solution in $\bar{\Omega} \cap D(L)$.

Lemma 2.2. ([11]) If $\omega \in C^{1}(\mathbb{R}, \mathbb{R})$ and $\omega(0)=\omega(T)=0$, then

$$
\int_{0}^{T}|\omega(t)|^{p} d t \leq\left(\frac{T}{\pi_{p}}\right)^{p} \int_{0}^{T}\left|\omega^{\prime}(t)\right|^{p} d t
$$

where p is a fixed real number with $p>1$, and $\pi_{p}=2 \int_{0}^{(p-1) / p} \frac{d s}{\left(1-\frac{s p}{p-1}\right)^{1 / p}}=$ $\frac{2 \pi(p-1)^{1 / p}}{p \sin (\pi / p)}$.
Lemma 2.3. If $y \in C^{n}(\mathbb{R}, \mathbb{R})$ and $y(t+T) \equiv y(t)$, then

$$
\begin{equation*}
\int_{0}^{T}\left|y^{(r)}(t)\right|^{p} d t \leq\left(\frac{T}{\pi_{p}}\right)^{p(n-r)} \int_{0}^{T}\left|y^{(n)}(t)\right|^{p} d t \tag{2.1}
\end{equation*}
$$

where $r=1,2, \ldots, n-1$.
Proof. If $y \in C^{n}(\mathbb{R}, \mathbb{R})$ and $y(t+T) \equiv y(t)$, then $y, y^{\prime}, \cdots, y^{n-1}$ satisfy the assumptions of Lemma 2.2. Applying Lemma 2.2 repeatedly, we can get (2.1).

Remark 2.1. If $p=2$, then $\pi_{2}=2 \int_{0}^{(2-1) / 2} \frac{d s}{\left(1-\frac{s^{2}}{2-1}\right)^{1 / 2}}=\frac{2 \pi(2-1)^{1 / 2}}{2 \sin (\pi / 2)}=\pi$. Therefore Eq.(2.1) is transformed into $\int_{0}^{T}\left|x^{(r)}(t)\right|^{2} d t \leq\left(\frac{T}{\pi}\right)^{2(n-r)} \int_{0}^{T}\left|x^{(n)}(t)\right|^{2} d t$.

Now set

$$
\begin{aligned}
& X=\left\{x \mid x \in C^{n-1}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right), \quad x(t+T) \equiv x(t)\right\} \\
& Y=\left\{x \mid x \in C^{0}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right), \quad x(t+T) \equiv x(t)\right\}
\end{aligned}
$$

with

$$
\begin{aligned}
& \operatorname{norm}|x|_{0}=\max \left\{|x|=\left(\sum_{i=1}^{m} x_{i}^{2}(t)\right)^{\frac{1}{2}}\right\} \\
& \operatorname{norm}\|x\|=\max \left\{|x|_{0},\left|x^{\prime}\right|_{0}, \cdots,\left|x^{(n-1)}\right|_{0}\right\}
\end{aligned}
$$

Obviously, X and Y are Banach spaces. Define $L: D(L)=\left\{x \in C^{n}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)\right.$: $x(t+T)=x(t)\} \subset X \rightarrow Y$ by $L x=x^{(n)}$, and $N: X \rightarrow Y$ by

$$
\begin{equation*}
N x^{\top}=F\left(t, x(t), x^{\prime}(t) \cdots, x^{(n-1)}(t)\right)+e(t), \quad i=1, \ldots, m \tag{2.2}
\end{equation*}
$$

where $F=\left(F_{1}, F_{2}, \ldots, F_{m}\right)^{\top}, e(t)=\left(e_{1}(t), e_{2}(t), \cdots, e_{m}(t)\right)^{\top}$. Then system (1.6) can be converted to the abstract equation $L x=N x$. From the definition of L, one can easily see that $\operatorname{Ker} L=\mathbb{R}^{m}$, $\operatorname{Im} L=\left\{x: x \in X, \int_{0}^{T} x(s) d s=0\right\}$. Let $P: X \rightarrow \operatorname{Ker} L$ and $Q: Y \rightarrow \operatorname{Im} Q$ be defined by

$$
P x=\frac{1}{T} \int_{0}^{T} x(s) d s ; \quad Q y=\frac{1}{T} \int_{0}^{T} y(s) d s
$$

It is easy to see that $\operatorname{Ker} L=\operatorname{Im} Q=\mathbb{R}^{m}$. Moreover, for all $y \in Y$, we have $\int_{0}^{T} y^{*}(s) d s=0$ if $y^{*}=y-Q(y)$, which means $y^{*} \in \operatorname{Im} L$. That is to say $Y=$ $\operatorname{Im} Q \oplus \operatorname{Im} L$ and then $\operatorname{dim}(Y / \operatorname{Im} L)=\operatorname{dim} \operatorname{Im} Q=\operatorname{dim} K e r L$. So, L is a Fredhold operator with index zero. Let K denote the inverse of $\left.L\right|_{\operatorname{Ker} p \cap D(L)}$, we have

$$
\begin{equation*}
\left[K y_{i}\right](t)=\sum_{j=1}^{n-1} \frac{1}{j!} x_{i}^{(j)}(0) t^{j}+\frac{1}{(n-1)!} \int_{0}^{t}(t-s)^{n-1} y_{i}(s) d s \tag{2.3}
\end{equation*}
$$

where $x_{i}^{(j)}(0) \quad(j=1,2, \cdots, n-1)$ are defined by the equation $B x_{i}=C$,

$$
\begin{aligned}
& B=\left(\begin{array}{cccccc}
1 & 0 & 0 & \cdots & 0 & 0 \\
b_{1} & 1 & 0 & \cdots & 0 & 0 \\
b_{2} & b_{1} & 1 & \cdots & 0 & 0 \\
\cdots & & & & & \\
b_{n-3} & b_{n-4} & b_{n-5} & \cdots & 1 & 0 \\
b_{n-2} & b_{n-3} & b_{n-4} & \cdots & b_{1} & 0
\end{array}\right)_{(n-1) \times(n-1)} \\
& X^{\top}=\left(x^{(n-1)}(0), \cdots, x^{\prime \prime}(0), x^{\prime}(0)\right), \\
& C^{\top}=\left(C_{1}, C_{2}, \cdots, C_{n-1}\right), \\
& C_{j}
\end{aligned}=-\frac{1}{j!T} \int_{0}^{T}(T-s)^{j} y_{i}(s) d s, \quad \begin{aligned}
& T^{k} \\
& b_{k}
\end{aligned}=\frac{T^{k}}{(k+1)!}, \quad k=1,2, \cdots, n-2 . \quad .
$$

From (2.2) and (2.3), it is clearly that $Q N$ and $K(I-Q) N$ are continuous, $Q N(\bar{\Omega})$ is bounded and then $K(I-Q) N(\bar{\Omega})$ is compact for any open bounded $\Omega \subset X$ which means N is L-compact on $\bar{\Omega}$.

3. Main Results

For the sake of convenience, we let $Z_{k}=\left\{z_{k 1}, z_{k 2}, \ldots, z_{k m}\right\}, U_{k}=\left\{u_{k 1}, u_{k 2}, \ldots, u_{k m}\right\}$, $V_{k}=\left\{v_{k 1}, v_{k 2}, \ldots, v_{k m}\right\}$, and $z_{k i}$ be the $i-t h$ component of m-order vector Z_{k}, $i=1, \cdots, m, \quad k=1, \ldots, n$. We give some assumptions:
$\left(H_{1}\right)$ There exists a positive constant D such that

$$
z_{1 i} F_{i}\left(t, Z_{1}, Z_{2}, \cdots, Z_{n}\right)>0 \quad\left(\text { or } z_{1 i} F_{i}\left(t, Z_{1}, Z_{2}, \cdots, Z_{n}\right)<0\right)
$$

for all $\left(t, Z_{1}, Z_{2}, \cdots, Z_{n}\right) \in[0, T] \times \mathbb{R}^{m \times n}$ with $\left|z_{1 i}\right|>D$;
$\left(H_{2}\right)$ There exists a positive constant M such that

$$
\left|F_{i}\left(t, Z_{1}, Z_{2}, \cdots, Z_{n}\right)\right| \leq M
$$

for all $\left(t, Z_{1}, Z_{2}, \cdots, Z_{n}\right) \in[0, T] \times \mathbb{R}^{m \times n}$; $\left(H_{3}\right)$ There exist non-negative constant vectors $\Lambda_{1}=\left(\alpha_{11}, \alpha_{12}, \cdots, \alpha_{1 m}\right), \Lambda_{2}=$ $\left(\alpha_{21}, \alpha_{22}, \cdots, \alpha_{2 m}\right), \cdots, \Lambda_{n}=\left(\alpha_{n 1}, \alpha_{n 2}, \cdots, \alpha_{n m}\right), P=\left(p_{1}, p_{2}, \ldots, p_{m}\right)$ such that

$$
\left|F_{i}\left(t, Z_{1}, Z_{2}, \cdots, Z_{n}\right)\right| \leq \alpha_{1 i}\left|z_{1 i}\right|+\alpha_{2 i}\left|z_{2 i}\right|+\cdots+\alpha_{n i}\left|z_{n i}\right|+p_{i}
$$

for all $\left(t, Z_{1}, Z_{2}, \cdots, Z_{n}\right) \in[0, T] \times \mathbb{R}^{m \times n}$;
$\left(H_{4}\right)$ There exist non-negative constant vectors $\Upsilon_{1}=\left(\gamma_{11}, \gamma_{12}, \cdots, \gamma_{1 m}\right), \Upsilon_{2}=$ $\left(\gamma_{21}, \gamma_{22}, \cdots, \gamma_{2 m}\right), \cdots, \Upsilon_{n}=\left(\gamma_{n 1}, \gamma_{n 2}, \cdots, \gamma_{n m}\right)$, such that

$$
\begin{aligned}
& \left|F_{i}\left(t, U_{1}, U_{2}, \cdots, U_{n}\right)-F_{i}\left(t, V_{1}, V_{2}, \cdots, V_{n}\right)\right| \\
\leq & \gamma_{1 i}\left|u_{1 i}-v_{1 i}\right|+\gamma_{2 i}\left|u_{2 i}-v_{2 i}\right|+\cdots+\gamma_{n i}\left|u_{n i}-v_{n i}\right|
\end{aligned}
$$

for all $\left(t, U_{1}, U_{2}, \cdots, U_{n}\right),\left(t, V_{1}, V_{2}, \cdots, V_{n}\right) \in[0, T] \times \mathbb{R}^{m \times n}$.

Theorem 3.1. If $\left(H_{1}\right)$ and $\left(H_{2}\right)$ hold, then system (1.6) has at least one nonconstant T-periodic solution.

Proof. Consider the equation

$$
L x=\lambda N x, \quad \lambda \in(0,1)
$$

i.e.,

$$
\begin{equation*}
\left(x_{i}(t)\right)^{(n)}=\lambda F_{i}\left(t, x(t), x^{\prime}(t), \cdots, x^{(n-1)}(t)\right)+\lambda e_{i}(t), \quad i=1, \ldots, m \tag{3.1}
\end{equation*}
$$

Let $\Omega_{1}=\{x: L x=\lambda N x, \lambda \in(0,1)\}$, and $x(t) \in \Omega_{1}$. We first claim that there exists a constant $\xi \in \mathbb{R}$ such that

$$
\begin{equation*}
\left|x_{i}(\xi)\right| \leq D \tag{3.2}
\end{equation*}
$$

Integrating system (3.1) over $[0, T]$, we have

$$
\int_{0}^{T} F_{i}\left(t, x(t), x^{\prime}(t), \cdots, x^{(n-1)}(t)\right) d t=0, \quad i=1,2, \cdots, m
$$

Then from the continuity of F_{i}, we know there exists a $\xi \in[0, T]$ such that

$$
F_{i}\left(\xi, x(\xi), \cdots, x^{(n-1)}(\xi)\right)=0, \quad i=1,2, \cdots, m
$$

From assumption $\left(H_{1}\right)$ we get (3.2). As a consequence, we have

$$
\begin{equation*}
\left|x_{i}(t)\right|=\left|x_{i}(\xi)+\int_{\xi}^{t} x_{i}^{\prime}(s) d s\right| \leq D+\int_{0}^{T}\left|x_{i}^{\prime}(s)\right| d s \tag{3.3}
\end{equation*}
$$

On the other hand, multiplying both sides of the (3.1) by $x_{i}^{(n)}(t)$ and integrating over $[0, T]$, and in view to $\left(H_{2}\right)$, we have

$$
\begin{aligned}
& \int_{0}^{T}\left|x_{i}^{(n)}(t)\right|^{2} d t \\
= & \lambda \int_{0}^{T} F_{i}\left(t, x(t), x^{\prime}(t), \cdots, x^{(n-1)}(t)\right) x_{i}^{(n)}(t) d t+\lambda \int_{0}^{T} e_{i}(t) x_{i}^{(n)}(t) d t \\
\leq & \int_{0}^{T}\left|F_{i}\left(t, x(t), x^{\prime}(t), \cdots, x^{(n-1)}(t)\right)\right|\left|x_{i}^{(n)}(t)\right| d t+\int_{0}^{T}\left|e_{i}(t)\right|\left|x_{i}^{(n)}(t)\right| d t \\
\leq & M \int_{0}^{T}\left|x_{i}^{(n)}(t)\right| d t+\max _{t \in[0, T]}\left|e_{i}(t)\right| \int_{0}^{T}\left|x_{i}^{(n)}(t)\right| d t \\
\leq & \left(M+|e|_{0}\right) T^{1 / 2}\left(\int_{0}^{T}\left|x_{i}^{(n)}(t)\right|^{2} d t\right)^{1 / 2}
\end{aligned}
$$

where $|e|_{0}=\max _{t \in[0, T]}\left\{\left|e_{1}(t)\right|, \ldots,\left|e_{m}(t)\right|\right\}$.
It is easy to see that there exists a constant $\left(M+|e|_{0}\right)^{2} T$ (independent of λ) such that

$$
\int_{0}^{T}\left|x_{i}^{(n)}(t)\right|^{2} d t \leq\left(M+|e|_{0}\right)^{2} T
$$

From $x_{i}^{(n-2)}(0)=x_{i}^{(n-2)}(T)$, there exists a point $t_{1} \in[0, T]$ such that $x_{i}^{(n-1)}\left(t_{1}\right)=$ 0 , and by applying Hölder's inequality, we have

$$
\left|x_{i}^{(n-1)}(t)\right| \leq \int_{0}^{T}\left|x_{i}^{(n)}(t)\right| d t \leq T^{1 / 2}\left(\int_{0}^{T}\left|x_{i}^{(n)}(t)\right|^{2} d t\right)^{1 / 2} \leq\left(M+|e|_{0}\right) T
$$

From $x_{i}^{(n-3)}(0)=x_{i}^{(n-3)}(T)$, there exists a point $t_{2} \in[0, T]$ such that $x_{i}^{(n-2)}\left(t_{2}\right)=$ 0 , we have

$$
\left|x_{i}^{(n-2)}(t)\right| \leq \int_{0}^{T}\left|x_{i}^{(n-1)}(t)\right| d t \leq T\left(M+|e|_{0}\right) T=\left(M+|e|_{0}\right) T^{2}
$$

Similarly,

$$
\left|x_{i}^{(n-3)}(t)\right| \leq T\left(M+|e|_{0}\right) T^{2}=\left(M+|e|_{0}\right) T^{3}
$$

Continuing this way for $x_{i}^{(n-4)}, \ldots, x_{i}^{\prime}$, we get

$$
\left|x_{i}^{\prime}(t)\right| \leq T\left(M+|e|_{0}\right) T^{n-2}=\left(M+|e|_{0}\right) T^{n-1}
$$

Meanwhile, from Eq.(3.2), we can get

$$
\left|x_{i}(t)\right| \leq D+\int_{0}^{T}\left|x_{i}^{\prime}(t)\right| d t \leq D+T\left(M+|e|_{0}\right) T^{n-1}=D+\left(M+|e|_{0}\right) T^{n}
$$

Take

$$
M_{0}= \begin{cases}\sqrt{m} D+\sqrt{m}\left(M+|e|_{0}\right) T^{n}, & \text { if } T>1 \\ \sqrt{m} D+\sqrt{m}\left(M+|e|_{0}\right) T, & \text { if } T \leq 1\end{cases}
$$

Obviously, $|x|_{0} \leq M_{0}, \quad\left|x^{\prime}\right|_{0} \leq M_{0}, \cdots, \quad\left|x^{(n-1)}\right|_{0} \leq M_{0}$.
Let $\Omega_{2}=\{x \in \operatorname{Ker} L: N x \in \operatorname{Im} L\}$. If $x \in \Omega_{2}$, then $x \in K e r L$ which means $x=$ constant vector, $x^{\prime}=x^{\prime \prime}=\cdots=x^{(n-1)}=\theta$, and $Q N x=0$. Integrating (3.1) over $[0, T]$, we have $F_{i}(t, x, \theta, \cdots, \theta)=0$ which yields that $\left|x_{i}\right| \leq D$.

Now take $\Omega=\left\{x \in X:|x|_{0}<M_{0}+1,\left|x^{\prime}\right|_{0}<M_{0}+1, \ldots,\left|x^{(n-1)}\right|_{0}<M_{0}+1\right\}$. By the analysis of the above, it is easy to see that $\bar{\Omega}_{1} \subset \Omega, \bar{\Omega}_{2} \subset \Omega$ and conditions (1) and (2) of Lemma 2.1 are satisfied.

Next we show that condition (3) of Lemma 2.1 is also satisfied. Define the isomorphism

$$
\begin{aligned}
& J: \operatorname{Im} Q \rightarrow K e r \operatorname{Lby} J(x)=\left(J\left(x_{1}\right), \cdots, J\left(x_{m}\right)\right)^{\top} \text { and } \\
& J\left(x_{i}\right)= \begin{cases}x_{i}, & \text { if } z_{1 i} F_{i}\left(t, Z_{1}, Z_{2}, \cdots, Z_{n}\right)>0, \text { for }\left|z_{1 i}\right|>D \\
-x_{i}, & \text { if } z_{1 i} F_{i}\left(t, Z_{1}, Z_{2}, \cdots, Z_{n}\right)<0, \text { for }\left|z_{1 i}\right|>D,\end{cases} \\
& \text { for } i=1,2, \cdots, m
\end{aligned}
$$

Let $H(\mu, x)=\left(H\left(\mu, x_{1}\right), \cdots, H\left(\mu, x_{m}\right)\right)^{\top}$ and $H\left(\mu,\left(x_{i}\right)\right)=\mu x_{i}+(1-\mu) J Q N x_{i}$, $\left(\mu, x_{i}\right) \in[0,1] \times \Omega$, then $\forall\left(\mu, x_{i}\right) \in(0,1) \times(\partial \Omega \cap$ Ker $L)$,

$$
H\left(\mu, x_{i}\right)=\left\{\begin{array}{l}
\mu x_{i}+\frac{1-\mu}{T} \int_{0}^{T}\left[F_{i}(t, x, \theta, \cdots, \theta)+e_{i}(t)\right] d t \tag{3.4}\\
\quad \text { if } z_{1 i} F_{i}\left(t, Z_{1}, Z_{2}, \cdots, Z_{n}\right)>0, \text { for }\left|z_{1 i}\right|>D \\
\mu x_{i}-\frac{1-\mu}{T} \int_{0}^{T}\left[F_{i}(t, x, \theta, \cdots, \theta)+e_{i}(t)\right] d t \\
\quad \text { if } z_{1 i} F_{i}\left(t, Z_{1}, Z_{2}, \cdots, Z_{n}\right)<0, \text { for }\left|z_{1 i}\right|>D
\end{array}\right.
$$

for $i=1,2, \cdots, m$. Since $\int_{0}^{T} e_{i}(t) d t=0,(3.4)$ is transformed into

$$
H\left(\mu, x_{i}\right)=\left\{\begin{array}{r}
\mu x_{i}+\frac{1-\mu}{T} \int_{0}^{T} F_{i}(t, x, \theta, \cdots, \theta) d t \\
\quad \text { if } z_{1 i} F_{i}\left(t, Z_{1}, Z_{2}, \cdots, Z_{n}\right)>0, \text { for }\left|z_{1 i}\right|>D \\
\mu x_{i}-\frac{1-\mu}{T} \int_{0}^{T} F_{i}(t, x, \theta, \cdots, \theta) d t \\
\text { if } z_{1 i} F_{i}\left(t, Z_{1}, Z_{2}, \cdots, Z_{n}\right)<0, \text { for }\left|z_{1 i}\right|>D
\end{array}\right.
$$

From $\left(H_{1}\right)$, it is obvious that $x_{i} H\left(\mu, x_{i}\right)>0, \forall\left(\mu, x_{i}\right) \in(0,1) \times(\partial \Omega \cap \operatorname{Ker} L)$. Therefore,

$$
\begin{aligned}
\operatorname{deg}\{J Q N, \Omega \cap \text { Ker } L, 0\} & =\operatorname{deg}\{H(0, x), \Omega \cap \text { Ker } L, 0\} \\
& =\operatorname{deg}\{H(1, x), \Omega \cap \text { Ker } L, 0\} \\
& =\operatorname{deg}\{I, \Omega \cap \text { Ker } L, 0\} \neq 0
\end{aligned}
$$

which means condition (3) of Lemma 2.1 is also satisfied. By applying Lemma 2.1, we conclude that equation $L x=N x$ has a solution x^{*} on $\bar{\Omega}$, i.e., system (1.6) has a T-periodic solution $x^{*}(t)$ with $\left\|x^{*}\right\|<M_{0}+1$.

Finally, observe that $x^{*}(t)$ is not constant. Otherwise, suppose $x^{*}(t) \equiv c$ (constant vector), then from system (1.6) we have $F_{i}(t, c, \theta, \cdots, \theta)+e_{i}(t) \equiv 0$, which contradicts to assumption $F_{i}(t, c, \theta, \cdots, \theta)+e_{i}(t) \not \equiv 0$, so the proof is complete.

Theorem 3.2. If $\left(H_{1}\right)$ and $\left(H_{3}\right)$ hold, then system (1.6) has at least a non-constant T-periodic solution if $\left(\alpha_{1_{0}} T+\alpha_{2_{0}}\right)\left(\frac{T}{\pi}\right)^{n-1}+\alpha_{3_{0}}\left(\frac{T}{\pi}\right)^{n-2}+\cdots+\alpha_{n_{0}}\left(\frac{T}{\pi}\right)<1$, where $\alpha_{k_{0}}=\max \left\{\alpha_{k 1}, \alpha_{k 2}, \ldots, \alpha_{k m}\right\}, k=1,2, \ldots, n$.
Proof. Let Ω_{1} be defined as in Theorem 3.1. If $x(t) \in \Omega_{1}$, then from the proof of Theorem 3.1 we see that

$$
\begin{equation*}
\left|x_{i}\right|_{0} \leq D+\int_{0}^{T}\left|x_{i}^{\prime}(s)\right| d s, \quad i=1, \ldots, m \tag{3.5}
\end{equation*}
$$

We claim that $\left|x_{i}^{(n-1)}\right|_{0}$ is bounded.
Multiplying both sides of (3.1) by $x_{i}^{(n)}(t)$ and integrating over [$0, T$], by using assumption $\left(H_{3}\right)$, we have

$$
\begin{aligned}
& \int_{0}^{T}\left|x_{i}^{(n)}(t)\right|^{2} d t \\
= & \lambda \int_{0}^{T} F_{i}\left(t, x(t), x^{\prime}(t), \cdots, x^{(n-1)}(t)\right) x_{i}^{(n)}(t) d t+\lambda \int_{0}^{T} e_{i}(t) x_{i}^{(n)}(t) d t \\
\leq & \int_{0}^{T}\left|F_{i}\left(t, x(t), x^{\prime}(t), \cdots, x^{(n-1)}(t)\right)\right|\left|x_{i}^{(n)}(t)\right| d t+\int_{0}^{T}\left|e_{i}(t)\right|\left|x_{i}^{(n)}(t)\right| d t \\
\leq & \alpha_{1 i} \int_{0}^{T}\left|x_{i}(t)\left\|x_{i}^{(n)}(t)\left|d t+\alpha_{2 i} \int_{0}^{T}\right| x_{i}^{\prime}(t)\right\| x_{i}^{(n)}(t)\right| d t \\
& +\cdots+\alpha_{n i} \int_{0}^{T}\left|x_{i}^{(n-1)}(t)\right|\left|x_{i}^{(n)}(t)\right| d t+p_{i} \int_{0}^{T}\left|x_{i}^{(n)}(t)\right| d t+\int_{0}^{T}\left|e_{i}(t)\right|\left|x_{i}^{(n)}(t)\right| d t \\
\leq & \alpha_{1 i}\left|x_{i}\right|_{0} \int_{0}^{T}\left|x_{i}^{(n)}(t)\right| d t+\alpha_{2 i} \int_{0}^{T}\left|x_{i}^{\prime}(t) \| x_{i}^{(n)}(t)\right| d t \\
& +\cdots+\alpha_{n i} \int_{0}^{T}\left|x_{i}^{(n-1)}(t)\left\|x_{i}^{(n)}(t)\left|d t+p_{i} \int_{0}^{T}\right| x_{i}^{(n)}(t)\left|d t+\int_{0}^{T}\right| e_{i}(t)\right\| x_{i}^{(n)}(t)\right| d t \\
\leq & \alpha_{1 i}\left(D+\int_{0}^{T}\left|x_{i}^{\prime}(t)\right| d t\right) \int_{0}^{T}\left|x_{i}^{(n)}(t)\right| d t+\alpha_{2 i} \int_{0}^{T}\left|x_{i}^{\prime}(t) \| x_{i}^{(n)}(t)\right| d t \\
& +\cdots+\alpha_{n i} \int_{0}^{T}\left|x_{i}^{(n-1)}(t) \| x_{i}^{(n)}(t)\right| d t+\left(p_{0}+\mid e_{0}\right) \int_{0}^{T}\left|x_{i}^{(n)}(t)\right| d t,
\end{aligned}
$$

where $p_{0}=\max \left\{p_{1}, p_{2}, \ldots, p_{m}\right\}$. By applying Hölder's inequality, we have

$$
\begin{align*}
& \int_{0}^{T}\left|x_{i}^{(n)}(t)\right|^{2} d t \\
\leq & \alpha_{1 i}\left(D+T^{1 / 2}\left(\int_{0}^{T}\left|x_{i}^{\prime}(t)\right|^{2} d t\right)^{1 / 2}\right) T^{1 / 2}\left(\int_{0}^{T}\left|x_{i}^{(n)}(t)\right|^{2} d t\right)^{1 / 2} \\
& +\alpha_{2 i}\left(\int_{0}^{T}\left|x_{i}^{\prime}(t)\right|^{2} d t\right)^{1 / 2}\left(\int_{0}^{T}\left|x_{i}^{(n)}(t)\right|^{2} d t\right)^{1 / 2}+\alpha_{3 i}\left(\int_{0}^{T}\left|x_{i}^{\prime \prime}(t)\right|^{2} d t\right)^{1 / 2} \\
& \cdot\left(\int_{0}^{T}\left|x_{i}^{(n)}(t)\right|^{2} d t\right)^{1 / 2}+\cdots+\alpha_{n i}\left(\int_{0}^{T}\left|x_{i}^{(n-1)}(t)\right|^{2} d t\right)^{1 / 2}\left(\int_{0}^{T}\left|x_{i}^{(n)}(t)\right|^{2} d t\right)^{1 / 2} \\
\leq & \left(\alpha_{1 i} T+\alpha_{2 i}\right)\left(\int_{0}^{T}\left|x_{i}^{\prime}(t)\right|^{2} d t\right)^{1 / 2}\left(\int_{0}^{T}\left|x_{i}^{(n)}(t)\right|^{2} d t\right)^{1 / 2} \\
& \left.+|e|_{0}\right) T^{1 / 2}\left(\int_{0}^{T}\left|x_{i}^{(n)}(t)\right|^{2} d t\right)^{1 / 2} \\
& +\alpha_{3 i}\left(\int_{0}^{T}\left|x_{i}^{\prime \prime}(t)\right|^{2} d t\right)^{1 / 2}\left(\int_{0}^{T}\left|x_{i}^{(n)}(t)\right|^{2} d t\right)^{1 / 2}+\cdots+\alpha_{n i}\left(\int_{0}^{T}\left|x_{i}^{(n-1)}(t)\right|^{2} d t\right)^{1 / 2} \\
& \cdot\left(\int_{0}^{T}\left|x_{i}^{(n)}(t)\right|^{2} d t\right)^{1 / 2}+\left(p_{0}+|e|_{0}+\alpha_{1 i} D\right) T^{1 / 2}\left(\int_{0}^{T}\left|x_{i}^{(n)}(t)\right|^{2} d t\right)^{1 / 2} \tag{3.6}
\end{align*}
$$

By using Lemma 2.3 and (3.6), we can get

$$
\begin{aligned}
& \int_{0}^{T}\left|x_{i}^{(n)}(t)\right|^{2} d t \\
\leq & \left(\alpha_{1 i} T+\alpha_{2 i}\right)\left(\frac{T}{\pi}\right)^{n-1} \int_{0}^{T}\left|x_{i}^{(n)}(t)\right|^{2} d t+\alpha_{3 i}\left(\frac{T}{\pi}\right)^{n-2} \int_{0}^{T}\left|x_{i}^{(n)}(t)\right|^{2} d t \\
& +\cdots+\alpha_{n i}\left(\frac{T}{\pi}\right) \int_{0}^{T}\left|x_{i}^{(n)}(t)\right|^{2} d t+\left(\alpha_{1 i} D+p_{0}+|e|_{0}\right) T^{1 / 2}\left(\int_{0}^{T}\left|x_{i}^{(n)}(t)\right|^{2} d t\right)^{1 / 2} \\
\leq \quad & {\left[\left(\alpha_{1_{0}} T+\alpha_{2_{0}}\right)\left(\frac{T}{\pi}\right)^{n-1}+\alpha_{3_{0}}\left(\frac{T}{\pi}\right)^{n-2}+\cdots+\alpha_{n_{0}}\left(\frac{T}{\pi}\right)\right] \int_{0}^{T}\left|x_{i}^{(n)}(t)\right|^{2} d t } \\
& +\left(\alpha_{1_{0}} D+p_{0}+|e|_{0}\right) T^{1 / 2}\left(\int_{0}^{T}\left|x_{i}^{(n)}(t)\right|^{2} d t\right)^{1 / 2}
\end{aligned}
$$

where $\alpha_{k_{0}}=\max \left\{\alpha_{k 1}, \alpha_{k 2}, \ldots, \alpha_{k m}\right\}, \quad k=1,2, \ldots, n$. Since $\left(\alpha_{1_{0}} T+\alpha_{2_{0}}\right)\left(\frac{T}{\pi}\right)^{n-1}+$ $\alpha_{3_{0}}\left(\frac{T}{\pi}\right)^{n-2}+\cdots+\alpha_{n_{0}}\left(\frac{T}{\pi}\right)<1$, it is easy to see that there exists a constant $M^{\prime}>0$ (independent of λ) such that

$$
\int_{0}^{T}\left|x_{i}^{(n)}(t)\right|^{2} d t \leq M^{\prime}
$$

From $x_{i}^{(n-2)}(0)=x_{i}^{(n-2)}(T)$, there exists a point $t_{1} \in[0, T]$ such that $x_{i}^{(n-1)}\left(t_{1}\right)=$ 0 , By applying Hölder's inequality, we have

$$
\left|x_{i}^{(n-1)}(t)\right| \leq \int_{0}^{T}\left|x_{i}^{(n)}(t)\right| d t \leq T^{1 / 2}\left(\int_{0}^{T}\left|x_{i}^{(n)}(t)\right|^{2} d t\right)^{1 / 2} \leq T^{1 / 2} M^{\prime / 2}:=M
$$

This proves the claim and the rest of the proof of the theorem is identical to that of Theorem 3.1.

Next, we will construct some suitable function to study the Lyapunov stability of the periodic solution of system (1.6).

Theorem 3.3. Assume $\left(H_{4}\right)$ hold. If system (1.6) has T-periodic solution, then the T-periodic solution is Lyapunov stable.

Proof. Let

$$
x_{i}(t)=z_{1 i}(t), \quad x_{i}^{\prime}(t)=z_{2 i}(t), \quad \cdots, \quad x_{i}^{(n-1)}(t)=z_{n i}(t), \quad i=1,2, \cdots, m
$$

then system (1.6) be transformed into

$$
\left\{\begin{array}{rl}
z_{1 i}^{\prime}(t) & =z_{2 i}(t), \tag{3.7}\\
z_{2 i}^{\prime}(t) & =z_{3 i}(t), \\
\cdots \\
z_{n i}^{\prime}(t) & =F_{i}\left(t, Z_{1}(t), Z_{2}(t), \cdots, Z_{n}(t)\right)+e_{i}(t),
\end{array} \quad i=1,2, \cdots, m,\right.
$$

where $Z_{k}=\left\{z_{k 1}, \ldots, z_{k m}\right\}, \quad k=1, \ldots, n$.
Assume system (3.7) has T-periodic solution $z_{i}^{*}(t)=\left(z_{1 i}^{*}(t), z_{2 i}^{*}(t), \cdots, z_{n i}^{*}(t)\right)^{\top}, \quad i=$ $1, \ldots, m$. Suppose $z_{i}(t)=\left(z_{1 i}(t), z_{2 i}(t), \cdots, z_{n i}(t)\right)^{\top}, \quad i=1, \ldots, m$, is any arbitrary solution of (1.6). Let $w_{k i}(t)=z_{k i}(t)-z_{k i}^{*}(t), \quad k=1, \ldots, n$, then it follows from (3.7) that

$$
\left\{\begin{align*}
w_{1 i}^{\prime}(t) & =w_{2 i}(t) \tag{3.8}\\
w_{2 i}^{\prime}(t) & =w_{3 i}(t) \\
\cdots & \\
w_{n i}^{\prime}(t) & =F_{i}\left(t, Z_{1}(t), Z_{2}(t), \cdots, Z_{n}(t)\right)-F_{i}\left(t, Z_{1}^{*}(t), Z_{2}^{*}(t), \cdots, Z_{n}^{*}(t)\right)
\end{align*}\right.
$$

And we can get

Let $y_{k i}^{(l)}(t)=\left|w_{k i}^{(l)}(t)\right|, \quad l=0,1, \quad k=1,2, \ldots, n$, then

$$
\left\{\begin{align*}
y_{1 i}^{\prime}(t) & =y_{2 i}(t) \tag{3.10}\\
y_{2 i}^{\prime}(t) & =y_{3 i}(t) \\
\cdots & \\
y_{n i}^{\prime}(t) & =\left|F_{i}\left(t, Z_{1}(t), Z_{2}(t), \cdots, Z_{n}(t)\right)-F_{i}\left(t, Z_{1}^{*}(t), Z_{2}^{*}(t), \cdots, Z_{n}^{*}(t)\right)\right|
\end{align*}\right.
$$

Take $\beta=\max \left\{\gamma_{1_{0}}, \gamma_{2_{0}}+1, \ldots, \gamma_{n_{0}}+1\right\}+1$, here $\gamma_{k_{0}}=\left\{\gamma_{k 1}, \gamma_{k 2}, \cdots, \gamma_{k m}\right\}, \quad k=$ $1,2, \cdots, n$. And define a function $V(\cdot)$

$$
\begin{equation*}
V\left(t, y_{1}, \cdots, y_{n}\right)=e^{-\beta t} \sum_{k=1}^{n} \sum_{i=1}^{m} y_{k i}(t) \tag{3.11}
\end{equation*}
$$

There exists a sufficiently small positive constant ε such that $e^{-\beta t} \geq \varepsilon$. Take $U\left(y_{1}, \cdots, y_{n}\right)=\sum_{k=1}^{n} \sum_{i=1}^{m} \varepsilon y_{k i}(t)$, it is obvious that $V\left(t, y_{1}, \cdots, y_{n}\right)>0$ and $V\left(t, y_{1}, \cdots, y_{n}\right) \geq U\left(y_{1}, \cdots, y_{n}\right)>0$. Calculating the derivatives of V, from $\left(H_{4}\right)$,
we get

$$
\begin{aligned}
& \dot{V}\left(t, y_{1}, \cdots, y_{n}\right) \\
= & -\beta e^{-\beta t}\left(\sum_{k=1}^{n} \sum_{i=1}^{m} y_{k i}(t)\right)+e^{-\beta t} \sum_{i=1}^{m}\left(y_{2 i}(t)+\cdots+y_{n i}(t)\right) \\
& +e^{-\beta t} \sum_{i=1}^{m}\left|F_{i}\left(t, Z_{1}(t), Z_{2}(t), \cdots, Z_{n}(t)\right)-F_{i}\left(t, Z_{1}^{*}(t), Z_{2}^{*}(t), \cdots, Z_{n}^{*}(t)\right)\right| \\
\leq & -\beta e^{-\beta t}\left(\sum_{k=1}^{n} \sum_{i=1}^{m} y_{k i}(t)\right)+e^{-\beta t} \sum_{i=1}^{m}\left(y_{2 i}(t)+\cdots+y_{n i}(t)\right) \\
& +e^{-\beta t} \sum_{i=1}^{m}\left(\gamma_{1 i}\left|z_{1 i}(t)-z_{1 i}^{*}(t)\right|+\cdots+\gamma_{n i}\left|z_{n i}(t)-z_{n i}^{*}(t)\right|\right) \\
= & -\beta e^{-\beta t}\left(\sum_{k=1}^{n} \sum_{i=1}^{m} y_{k i}(t)\right)+e^{-\beta t} \sum_{i=1}^{m}\left(y_{2 i}(t)+\cdots+y_{n i}(t)\right) \\
& +e^{-\beta t} \sum_{i=1}^{m}\left(\gamma_{1 i}\left|w_{1 i}(t)\right|+\cdots+\gamma_{n i}\left|w_{n i}(t)\right|\right) \\
\leq & -\beta e^{-\beta t}\left(\sum_{k=1}^{n} \sum_{i=1}^{m} y_{k i}(t)\right)+e^{-\beta t} \sum_{i=1}^{m}\left(y_{2 i}(t)+\cdots+y_{n i}(t)\right) \\
& +e^{-\beta t} \sum_{i=1}^{m}\left(\gamma_{10} y_{1 i}(t)+\cdots+\gamma_{n 0} y_{n i}(t)\right) \\
= & \left(-\beta+\gamma_{1_{0}}\right) \sum_{i=1}^{m} y_{1 i}(t) e^{-\beta t}+\sum_{k=2}^{n}\left(-\beta+1+\gamma_{k_{0}}\right) \sum_{i=1}^{m} y_{k i}(t) e^{-\beta t} \\
< & 0 .
\end{aligned}
$$

From the above, we know V is a Lyapunov function for nonautonomous system (1.6)(P50, [2]), and then the T-periodic solution of system (1.6) is Lyapunov stable.

Finally, we present an example to illustrate our result.
Example 3.1. Consider the three-order differential system

$$
\left\{\begin{array}{l}
x_{1}^{\prime \prime \prime}(t)=\frac{1}{12 \pi} x_{1}(t)+\frac{1}{8} \sin x_{1}^{\prime}(t)+\frac{1}{8} \cos x_{2}^{\prime}(t) \sin t+\frac{1}{8} \sin x_{3}^{\prime \prime}(t)+\frac{1}{8} \sin t \tag{3.12}\\
x_{2}^{\prime \prime \prime}(t)=\frac{1}{12 \pi} x_{2}(t)+\frac{1}{8} \sin x_{2}^{\prime}(t)+\frac{1}{8} \cos x_{3}^{\prime \prime}(t) \cos t+\frac{1}{8} \sin x_{1}^{\prime \prime}(t)+\frac{1}{4} \cos t \\
x_{3}^{\prime \prime \prime}(t)=\frac{1}{12 \pi} x_{3}(t)+\frac{1}{8} \sin x_{3}^{\prime}(t)+\frac{1}{8} \cos x_{1}^{\prime \prime}(t) \sin t+\frac{1}{8} \sin x_{2}^{\prime \prime}(t)+\frac{1}{8} \cos t
\end{array}\right.
$$

It is clear that $n=3, \quad T=2 \pi$,

$$
\begin{aligned}
& F\left(t, x(t), x^{\prime}(t), x^{\prime \prime}(t)\right)=\left(\begin{array}{l}
\frac{1}{12 \pi} x_{1}(t)+\frac{1}{8} \sin x_{1}^{\prime}(t)+\frac{1}{8} \cos x_{2}^{\prime}(t) \sin t+\frac{1}{8} \sin x_{3}^{\prime \prime}(t) \\
\frac{1}{12 \pi} x_{2}(t)+\frac{1}{8} \sin x_{2}^{\prime}(t)+\frac{1}{8} \cos x_{3}^{\prime \prime}(t) \cos t+\frac{1}{8} \sin x_{1}^{\prime \prime}(t) \\
\frac{1}{12 \pi} x_{3}(t)+\frac{1}{8} \sin x_{3}^{\prime}(t)+\frac{1}{8} \cos x_{1}^{\prime \prime}(t) \sin t+\frac{1}{8} \sin x_{2}^{\prime \prime}(t)
\end{array}\right), \\
& e(t)=\left(\begin{array}{c}
\frac{1}{8} \sin t \\
\frac{1}{4} \cos t \\
\frac{1}{8} \cos t
\end{array}\right), F(t, c, \theta, \theta)+e(t)=\left(\begin{array}{c}
\frac{1}{12 \pi} c_{1}+\frac{1}{8} \sin t+\frac{1}{8} \sin t \\
\frac{1}{12 \pi} c_{2}+\frac{1}{8} \cos t+\frac{1}{4} \cos t \\
\frac{1}{12 \pi} c_{3}+\frac{1}{8} \sin t+\frac{1}{8} \cos t
\end{array}\right) \not \equiv 0,
\end{aligned}
$$

$c=\left(c_{1}, c_{2}, c_{3}\right)$ and θ is zero $3-$ order vector. Choose $D=12 \pi$ such that $\left(H_{1}\right)$ holds. It is obvious that $\left(H_{2}\right)$ is not satisfied here. Now we consider the assumption $\left(H_{3}\right)$.

Since

$$
\left|F_{i}\left(t, x(t), x^{\prime}(t), x^{\prime \prime}(t)\right)\right| \leq \frac{1}{12 \pi}\left|x_{i}(t)\right|+3, \quad i=1,2,3
$$

$\left(H_{3}\right)$ holds with $\alpha_{1_{0}}=\frac{1}{12 \pi}, \quad \alpha_{2_{0}}=0, \quad \alpha_{3_{0}}=0, \quad p_{i}=3$.

$$
\begin{aligned}
& {\left[\left(\alpha_{1_{0}} T+\alpha_{2_{0}}\right)\left(\frac{T}{\pi}\right)^{n-1}+\alpha_{3_{0}}\left(\frac{T}{\pi}\right)^{n-2}+\cdots+\alpha_{n_{0}}\left(\frac{T}{\pi}\right)\right] } \\
= & \left(\frac{1}{12 \pi} \times 2 \pi+0\right) \times\left(\frac{2 \pi}{\pi}\right)^{3-1}+0+0 \\
= & \frac{1}{6} \times 4=\frac{2}{3}<1
\end{aligned}
$$

So by Theorem 3.2, we know system (3.12) has at least one nonconstant 2π-periodic solution.

Acknowledgements

The authors would like to thank the referee for invaluable comments and insightful suggestions.

References

[1] R. Gaines and J. Mawhin, Coincidence Degree and Nonlinear Differential Equation, Springer, Berlin, 1977.
[2] P. Glendinning, Stablity, Instability and Chaos: an introduction to the theory of nonlinear differential equations, Cambridge University Press, UK, 1994.
[3] Y. Li, Positive perriodic solutions of periodic neutral Lotka-Volterra system with state dependent delay, J. Math. Anal. Appl., 330 (2007), 1347-1362.
[4] W. Liu, J. Zhang and T. Chen, Anti-symmetric periodic solutions for the third order differential systems, Appl. Math. Lett., 22 (2009), 668-673.
[5] B. Lisena, Periodic solution of competition systems with delay by an average approach, Nonlinear Anal., 71 (2009), 340-345.
[6] S. Lu and W. Gao, Periodic solutions for a kind of second-order neutral differential systems with deviating arguments, Appl. Math. Comput., 156 (2004), 719-732.
[7] K. Wang and S. Lu, The existence, uniqueness and global attractivity of periodic solution for a type of neutral functional differential system with delays, J. Math. Anal. Appl., 335 (2007), 808-818.
[8] J. Wu and Z. Wang, Positive periodic solutions of second-order nonlinear differential systems with two parameters, Comput. Math. Appl., 56 (2008), 43-59.
[9] X. Yang and K. Lo, Existence and uniqueness of periodic solution for a class of differential systems, J. Math. Anal. Appl., 327 (2007), 36-46.
[10] Z. Yang and H. Tang, Four positive periodic solutions for the first order differential system, J. Math. Anal. Appl., 332 (2007), 123-136.
[11] M. Zhang, Nonuniform nonresonance at the first eigenvalue of the p-Laplacian, Nonlinear Anal., 29 (1997), 41-51.

[^0]: ${ }^{\dagger}$ the corresponding author. Email address: czbo@hpu.edu.cn (Z. Cheng)
 ${ }^{1}$ School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo 454000, China
 ${ }^{2}$ School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China
 *The authors were supported by NSFC projects(No. 11271339) and NCET program(No. 10-0141).

