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PERIODIC SOLUTION FOR HIGH-ORDER
DIFFERENTIAL SYSTEM*

Zhibo Cheng"' and Jingli Ren?

Abstract Sufficient conditions are presented for the existence and stability
of periodic solutions for a high-order differential system. Besides, an example
is given to illustrate the result.
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1. Introduction

In recent years, there are some works on periodic solutions for differential systems,
see [3]- [10] and references therein. For example, by using the continuation theorem,
Zhang & Tang [10] give the existence of positive periodic solutions of a first-order
differential system

{x’(t) = 2(t) 1 (t,2(1), y(1)) — I (2). w1

y'(8) = y(O)Fa(t, 2(2), y () — ha(t),

and apply the result to a competition Lotka-Volterra population model. Wang &
Lu [7] study a neutral functional differential system with delay

(x(t) +cx(t — o)) = A(t,x(t)x(t) + f(t,z(t),x(t — 7)), (1.2)

where z(t) = (x1(t),z2(t),...,2,(t)) ", and obtain the existence, uniqueness and
global attractivity of periodic solution for the system. Lu & Ge [6] observe a second-
order neutral differential systems with deviating arguments

d2
dat?
by means of the generalized continuation theorem, they get a new result on the
existence of periodic solutions. Afterwards, by employing the Deimling fixed point

index theory, Wu & Wang [8] consider the following second-order nonlinear differ-
ential system with two paraments,

{u“(t) +ar(B)u(t) = M1 (0) i (w(t), (), )

(x(t) + Cx(t — 7)) + %gmdF(x(t)) + gradG(z(t — 7(t))) = p(t),  (1.3)

v (t) + ax(t)o(t) = pba(t) f2(u(t), v(t), teR,
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and present the existence of periodic solutions for it. Recently, Liu etc. [4] get the
solvability of anti-periodic solutions for the third order differential systems

2"+ Az + %VF(J:) +G(t,x) = E(t), (1.5)

here z is a vector.

In general, most of the existing results are concentrated on lower order differ-
ential system, and studies on high-order differential systems are rather infrequent,
especially for the research on stability for high-order differential system. Motivated
by the problem, we consider the following high-order functional differential system

(z:(t)™ = Fi(t,z(t),2'(t), -, 2" V@) +es(t), i=1,...,m. (1.6)

where x(t) = (z1(¢t), z2(t), -+ ,xm(t)), F; is a continuous function defined on R x
R™*™ and is periodic to ¢, i.e., F;(t,-,--- ,-) = F;(t+T,-,--- ,-), e;(t) is a continuous
function defined on R and is periodic to ¢t with e;(t +T') = e;(¢) and fOT e;(t)dt =0,
Fi(t,c,0,---,0) + e;(t) £ 0, here ¢ is any given constant m—order vector and 6 is
zero m—order vector.

The rest of this paper is organized as follows. In section 2, we give some Lem-
mas. In section 3, by using Mawhin’s coincidence degree theorem, some sufficient
conditions are obtained for the existence of periodic solutions of system (1.6). More-
over, by the construction of a Lyapunov function, we verify Lyapunov stability of
periodic solution for system (1.6). Finally, an example is given to illustrate the
result.

2. Preparation

Let X and Y be real Banach spaces and L : D(L) C X — Y be a Fredholm operator
with index zero, here D(L) denotes the domain of L. This means that I'm L is closed
in Y and dim Ker L = dim(Y/Im L) < +oo. Consider supplementary subspaces
X1, Y7, of X, Y respectively, such that X = Ker L® X1, Y = Im L ® Yy, and
let P: X — Ker L and @Q :' Y — Y; denote the natural projections. Clearly,
Ker LN (D(L)NXy) = {0}, thus the restriction Lp := L|p()nx, is invertible. Let
K denote the inverse of Lp.

Let Q be an open bounded subset of X with D(L)NQ # 0. Amap N:Q — Y
is said to be L-compact in 2 if QN (Q) is bounded and the operator K (I — Q)N :
Q — X is compact.

Lemma 2.1. (Gaines and Mawhin [1])  Suppose that X and Y are two Banach
spaces, and L : D(L) C X — Y is a Fredholm operator with index zero. Further-
more,  C X is an open bounded set and N : Q@ =Y is L-compact on ). Assume
that the following conditions hold:

(1) Ly # ANz, ¥ © € 90N D(L), A € (0,1);

(2) Ne¢ Im L, VxecdQnNKer L;

(3) deg{JQN,QnN Ker L,0} #0, where J: Im Q — Ker L is an isomorphism.

Then the equation Lx = Nx has a solution in QN D(L).
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Lemma 2.2. ( [11]) If w € CY(R,R) and w(0) = w(T) = 0, then

/0 ot < (f) / ",

where p is a fized real number with p > 1, and m, = 2 [,

(p—1)/p ds
(a

0 7%)1/71 -
271 (p—1)1/P
psin(r/p) -
Lemma 2.3. Ify € C"(R,R) and y(t + T) = y(t), then
T T\PM=T) T
[ wepas () [uora (2.)
P

wherer =1, 2, ..., n— 1.

Proof. If y € C*(R,R) and y(t + T) = y(t), then y,y/,--- ,y" ! satisfy the
assumptions of Lemma 2.2. Applying Lemma 2.2 repeatedly, we can get (2.1). O

Remark 2.1. If p = 2, then m = 2f0(271)/2 a ds 7 = 2;(12;(;)/12/)2 = 7. Therefore
e

Eq.(2.1) is transformed into fOT |2 ()[2dt < (£)2n=m) fOT |2(™) (¢)|?dt.

Now set
X ={z|z e C" Y R™R™), z(t+T)=2z()},
Y ={z| 2z € COR™,R™), z(t+T)=ux(t)}
with )
norm|xz|y = max{lz| = (372, 7 ()},
norm|z| = max{|z|q, |2|0, - , |:c(”*1)\0}.

Obviously, X and Y are Banach spaces. Define L : D(L) = {z € C"(R™,R™) :
zt+T)=2(t)} CX Y by Le =2 and N: X - Y by

Na' = F(t,z(t),2'(t) -, =D (1)) + e(t), i=1,...,m, (2.2)

where F = (Fy, Fa,...,F,) 7, e(t) = (e1(t),ea(t), -+ ,em(t)) . Then system (1.6)
can be converted to the abstract equation Lx = Nz. From the definition of L,
one can easily see that Ker L =R™, Im L ={z:z € X, fOT x(s)ds = 0}. Let
P:X — Ker Land Q:Y — Im @ be defined by

It is easy to see that Ker L = Im @ = R™. Moreover, for all y € Y, we have
fOT y*(s)ds = 0 if y* = y — Q(y), which means y* € Im L. That is to say ¥ =
Im Q@ Im L and then dim(Y/Im L) = dim I'm @Q = dim Ker L. So, L is a Fredhold
operator with index zero. Let K denote the inverse of L|xe, p np(r), We have

n—1

K50 = 3 5000 + = [= o mods 23)

j=1
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where xgj)(O) (j =1,2,--- ,n—1) are defined by the equation Bz; = C,

1 0 0 0 0
b1 1 0 0 0
B by b1 1 0 O
bn—3 bn—4 bn—5 1 0
bn—2 bn—3 bn—4 bl

1 T ,
= _jTT ; (T — s)yi(s)ds,
Tk
by, = k=1,2,- -2
k (k‘i’l)“ ) Ay N

(n—1)x(n—1)

From (2.2) and (2.3), it is clearly that QN and K (I — Q)N are continuous, QN ()

is bounded and then K (I —Q)N(£2) is compact for any open bounded @ C X which

means N is L-compact on €.

3. Main Results

For the sake of convenience, we let Z, = {21, 2k2, - - - » Zkm },Uk = {01, Uk2y -« -, Uk }
Vie = {vr1, k2, -, Vkm}, and zx; be the i — th component of m-order vector Zj,
i=1,---,m, k=1,...,n. We give some assumptions:

(H7) There exists a positive constant D such that

21 F5(t, Z1, Za,y -+ Zp) >0 (or 21, Fi(t, Z1, Za,- -+, Zn) < 0),

for all (¢, 21,Za,-++,2Z,) €10, T] x R™*™ with |z14] >
(Hz) There exists a positive constant M such that

|Fi(ta217Z27"’ 7Zn)| < M7

for all (t,Zl, Lo, ,Zn) c [O’T] X Ran;

(H3) There exist non-negative constant vectors A; = (a1, 12, -+
(a21a a9, " 7a2m)7 Tt An = (a7L17 QAp2, - aan’m)a P= (p17p25 e

D;

,01m), Ao =
,Pm) such that

|Fi(t, Zv, Za, -+, Zn)| < cuilzui| + aoi|20i| + - - - + @il 2ni| + 03,

for all (t, 21, Zs,- - ,Zy,) € [0,T] x R™*";

(H4) There exist non-negative constant vectors Y1 = (11,712, ,Y1m), L2 =
(Y21,7225 s 2m)s s Y = (Yn1,Yn2,*** , Yum), such that

|F7i(t7U17U27"’ 7Un) _Fi(tvvlv‘/Za”'

Vi)l

< yiilur — v+ vailuer — vail + - 4 Vil tni — Vnal,

for all (¢t,Uy,Us,--- ,Uy), (t,V1,Va, -+, V) €[0,T] x R™*™,
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Theorem 3.1. If (Hy) and (Hz) hold, then system (1.6) has at least one non-
constant T-periodic solution.

Proof. Consider the equation
Lz = ANz, Xe€(0,1),
ie.,
(2i(1)™ = AFy(t,2(t), (1), -, 2"V (@) + Aeg(t),  i=1,...,m.  (3.1)

Let Q; = {x: Lz = ANz, XA € (0,1)}, and z(t) € Q. We first claim that there
exists a constant £ € R such that

|lzi(§)| < D. (3.2)

Integrating system (3.1) over [0, T], we have
T
/ Fl(t3x(t)7$/(t)7 7x(n71)(t))dt:07 Z:1727 y M.
0

Then from the continuity of F;, we know there exists a £ € [0, 7] such that
Fl(£,$(§)7 71‘(n71)(€))203 7':1’27 , M

From assumption (H;) we get (3.2). As a consequence, we have

T
|z (8)| = < DJr/O |z (s)|ds. (3.3)

z(6) + /6 (s)ds

On the other hand, multiplying both sides of the (3.1) by xgn) (t) and integrating
over [0,T], and in view to (Hs), we have

T T
— (t.x x! - x(nfl) x(n) e; Jj(n)
~ ) /0 Rt 2(t),2 (1), -+ 2™ D ()2 (£)dt + A /0 (02 (0)de

T T
< [ IR0 OO Wl + [ el Ol
0
< M/ ()| dt + mas fei(t |/ 2™ (1)) dt
te[0,T
1/2
< i) ( [ o),
0
where |e|o = max;cpo,ri{lei(t)],- .., lem(t)]}.

It is easy to see that there exists a constant (M + |e|o)> T (independent of A ) such
that

T
| P @< 0+ ielo? T
0

From 2{" 72 (0) = 2{""?(T), there exists a point ¢; € [0,T] such that =" () =
0, and by applying Holder’s inequality, we have

T T 1/2
2D (1)) < / 2™ (8)|dt < T/ (/ |x§“><t)2dt> < (M +Jelo) T
0 0
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From ;v(" 3)(0) = xgn_3) (T), there exists a point ¢5 € [0, 7] such that ;v(" 2)( to) =
0, we have

T
"2 ()] < / "D (@)t < T (M + |elo) T = (M + [e]o) T2

Similarly,
2D ()] < T (M + |elo) T? = (M + |eo) T*

Continuing this way for x(" 4) oo, Xk, we get

|w5(0)] < T (M + [elo) T"7% = (M + lelo) T

Meanwhile, from Eq.(3.2), we can get

T
li(t) < D +/ @)(O)|dt < D+ T (M + |elo) T = D + (M +elo) T
0

Take

vVmD + /m(M + |e|o)T, if T<1.

Obviously, |z|o < My, |2'|o < My, ---, |z D]y < M,.

Let Qo ={x € Ker L: Nx € Im L}. If x € Qo, then € Ker L which means
x = constant vector, 2’/ = 2" = --- = z(»=1) = 9, and QNz = 0. Integrating (3.1)
over [0,T], we have F;(t,z,0,---,0) = 0 which yields that |x;| < D.

Now take Q = {z € X : |z|o < Mo+1, |2'|o < Mo+1,..., |2 V|g < My +1}.
By the analysis of the above, it is easy to see that Q; C ©, Qs C © and conditions
(1) and (2) of Lemma 2.1 are satisfied.

Next we show that condition (3) of Lemma 2.1 is also satisfied. Define the
isomorphism

u {mmﬁ(z\u lelo)T™, if T > 1;
0 =

J : ImQ — Ker LbyJ(z) = (J(z1), -+ ,J(zm))" and
J(Ii){xi, if 21 F3(t, Z1, Zo, -+, Zy) > 0, for |z1;| > D;

—x, i 20, Fi(t, Z1, Za, -+, Zy) <0, for |z1;] > D,
for 1 =1,2,--- ,m.

Let H(p,z) = (H(p, 1), , H(, 2)) T and H(p, (x;)) = px; + (1 — p)JQNwx;,
(1, ;) €10,1] x Q, then V (u,x;) € (0,1) x (0Q N Ker L),

pa; + fo iz, 0, 0) + e (t)] dt,
1fzh ity 21, 2oy 2y, )>0, for |z1;] > D;
fo s, 0, 0) + e (1)]dt,
1f 23 F(t, 2y, gy - - n) <0, for |21;] > D,

H(p, wi) = (3.4)

fori=1,2,---,m. Since fo ei(t)dt = 0, (3.4) is transformed into

px; + fo i(t,x,0,---,0)dt,
if zh i(t, 21, Zay -+, Zy) >0, for |z1;] > D;
n (TRt 6, ,0)dt,
1f 215 1(t,Z1,ZQ, e ,Zn) <0, for |z > D.

H(Na xl) -
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From (H,), it is obvious that x;H(u,z;) > 0, V (u,x;) € (0,1) x (0Q N Ker L).
Therefore,

deg{JQN,QN Ker L,0} =deg{H(0,2),Q2N Ker L,0}
=deg{H(1,z),Q2N Ker L,0}
=deg{I,Q2N Ker L,0} #0,

which means condition (3) of Lemma 2.1 is also satisfied. By applying Lemma 2.1,
we conclude that equation Lz = Nz has a solution * on (, i.e., system (1.6) has
a T-periodic solution z*(¢t) with ||z*|] < My + 1.

Finally, observe that z*(¢) is not constant. Otherwise, suppose z*(t) = ¢ (con-
stant vector), then from system (1.6) we have F;(t,c,0,---,0) + e;(t) = 0, which
contradicts to assumption F;(t,c,6,---,0) + e;(t) #Z 0, so the proof is complete.

O

Theorem 3.2. If(H1) and (Hs) hold, then system (1.6) has at least a non-constant
T-periodic solution if (a1, T + cva,) (Z)nfl + s, (Z)"’Q +tam, (L) < 1, where

U v
g, = max{ag1, g2, Apm bk =1,2,...,n.

Proof. Let ©; be defined as in Theorem 3.1. If 2(t) € 1, then from the proof of
Theorem 3.1 we see that

T
|70 §D+/ |zi(s)|ds, i=1,...,m. (3.5)
0

We claim that |x§n_1)|0 is bounded.
Multiplying both sides of (3.1) by :1:1(") (t) and integrating over [0,T], by using as-
sumption (Hs), we have

T
| e wpa
0

T T
= (2 (t), 2 (1), -, 2D ()™ ei(t)z™
= A [ R0 O 0d A [ el e

T T
< [ IR @ @)l Ol [ el
0 0
T ) T
< an [ @Ol Oldt+ azi [ [ol(e)]ol o)
0 0
T 1 T T
otan [ OOl [0l [ el 6
0 0 0
T T (
< aufailo [ el Ot + 0o [0l 0lar
0 0
T 1 T T
otan [ OO [0l [ el o
0 0 0
<

T T T
o (D+ / |x;<t>|dt> / 127 (8) dt + s / ()] 2 (0t
0 0 0

T T
Tt o / 12 (0)]25 () dt + (po + |elo) / 127 (1) dt,
0 0
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where pg = max{p1,p2,...,Pm}. By applying Holder’s inequality, we have

fo | (n) th

< au (D72 ([ 1atora) ) 72 (5 O 0 par)
+azi (fy |x;(t)\2dt)1/2 (Jo 12" (0)2at) Y (s \x;/(t)Pdt)” i
(1 @pa) s (1 D0 pa) (10 par)
oo+ [elo)T2 (7 2 () Par)

< (o + az) (fo |3t Zdt) (fo o™ (¢ th) v

. 1/2 . 1/2
+as; (fo |x// |2dt) (fo | ( 2dt> bt gy (f0T|$E 1)(t)|2dt>
n 1/2 n 1/2
(R 0rRde) "+ o+ lelo +aasD) T (i 12 ) 2dt)
(3.6)
By using Lemma 2.3 and (3.6), we can get
fo |zt (n) £))2dt
< (anT +a2) (3)" k|“’2ﬁ+%45 RO
1/2
o e (2) Jo L (0Pt + (aniD + po + lelo)TV2 (7 120 (1) Pt
n—2 n
= [ ai, T+ az) (%) +0‘30 (%) Tt g (%)} fo |x( )|2dt
12 (T ),.(n) 12 1/2
(a1, D+ po + lelo) T2 (J 1 @)2dE)
where ay, = max{og1, k2, ..., em}, k=1,2,...,n. Since (a1,T+ag,) (%)n71+

-2 e .
as, (%)n T+t ag, (%) < 1, it is easy to see that there exists a constant M’ > 0

(independent of A ) such that
T
/ 2™ (1)) 2dt < M
0

From a:(" 2)( 0) = Jcl(-nﬂ)( T), there exists a point ¢; € [0, 7] such that a:(" 1)( t1) =
0, By applylng Holder’s inequality, we have

T T 1/2
M”Wﬂs/“M“@W§TW</|ﬁ%m%Q < TY2MMY? = .
0 0

This proves the claim and the rest of the proof of the theorem is identical to
that of Theorem 3.1. O

Next, we will construct some suitable function to study the Lyapunov stability
of the periodic solution of system (1.6).
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Theorem 3.3. Assume (Hy) hold. If system (1.6) has T-periodic solution, then
the T-periodic solution is Lyapunov stable.

Proof. Let
zi(t) = 2u(t), @(t) = z225(t), -, @) = zi(t),  i=1,2,---,m,

then system (1.6) be transformed into

Zéi(t) = (1),
ZZl(t) B Z?’i(t)’ i = 17 2a e, M, (37)
Z;”(t) = Fi(tv Zl(t)7Z2(t)7"' 7Zn(t))+ei(t)v

where Zp, = {2k1,. .-, 2km}, k=1,...,n.

Assume system (3.7) has T-periodic solution 2} (t) = (2},(t), z3;(t), -+ , 25 (@) ", i =
1,...,m. Suppose 2z;(t) = (214(t), 22:(t), -+, zni(t)) T, ,...,m, is any arbi-

1,...,n, then it follows

trary solution of (1.6). Let wg(t) = zri(t) — 25,(t), k
from (3.7) that
wi(t) = wxu(t),
wy(t) = wsi(t),
wyi(t) = Fi(t, Z1(t), Za(t), - -+, Zn(t)) — Fi(t, Z1 (1), Z5 (1), - -- 722@))-(3 9
And we can get .
lwi; ()] = |wa(t)],
lwo; ()] = |wsi(t)],
|w;”-(t)| - ‘Fi(tazl(t)azQ(t)v"’ ,Zn(t))7Fi(t’Zik(t)7Z;(t)v"' 7Z;;(t))(|3 9)
Let 50 (1) = [w®(®)], 1=0,1, k=1,2,....n, then .
ylz(t) = y27(t)7
yo(t) = yslt),
y;w'(t) = |Fi<t7Z1(t)7Z2(t)?"' ,Zn(t))—Fi(t,Zik(t),Z;(t)7~'~ ’Z’;kl(t))‘
(3.10)

Take B = ma‘x{’}/lo?'}?o + 17 <y Tng + 1} + 17 here Yko = {’71617’7/627 o a’ykm}’ k=
1,2,--+ ,n. And define a function V()

V(i ym) =e P 0yt (3.11)

k=11i=1

There exists a sufficiently small positive constant ¢ such that e %" > ¢. Take
Ulyr, 2 Yn) = Dopeq 2oreq €Yki(t), it is obvious that V(¢,41,- ,y,) > 0 and
V(t,y1, - yyn) = Uy, -+ ,yn) > 0. Calculating the derivatives of V, from (Hy),
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we get
V(t g1, yn)
e (Z i ykiu)) e (yit) 4 -+ (1)
+€“”il IFL 6 Z2(6), Za(t), - Zu(8)) — it 230, Z5(0), -+ Z3(0)]
S (kz Z " Z<t>> st gml(yzi(t) ot ga(t)
ret iwzhu) B+ lona(t) — 220
= —Be P <kzn:1§y l(t)> + 6‘“2(3/21*(75) o yn(t)
pet ilmwh(m o b))
< —Be bt <k§n:1§i:y ) e sz Yoi(t) + -+ yni(t))
Fe IS rnalt) + -+ Aoani(8)

i=1

= (=8+7,) Zyu(t)@_’% +D (B 1+%) Y yri(t)e™
k=2

i=1 i=1
< 0.

From the above, we know V is a Lyapunov function for nonautonomous system
(1.6)(P50, [2]), and then the T-periodic solution of system (1.6) is Lyapunov stable.

O
Finally, we present an example to illustrate our result.
Example 3.1. Consider the three-order differential system
2} (t) = 1a=x1(t) + & sina) (t) + & coswh(t)sint + 8 sinzf (t) + 51; sint
2y (t) = pa=w2(t) + § sinah(t) + § cosaf(t) cost + § sinaf(t) + § cost
2y (t) = m3=ws(t) + & sinah(t) + § cosaf (t)sint + § sina}(t) + § cost.
(3.12)

It is clear that n =3, T = 2m,

1%ﬂ x1(t) + % sin 2 (t) + {% cos x5 (t) sint + gi sin :c3 {(t)
F(t,z(t),«'(t),2"(t)) = 1%” 2(t) + gsinxg(t) + §cosxg(t) cost + §smx1 ‘)],
2=23(t) + 5 sin:r3(t) + g cos xl( )sint + g sin a5 (1)
Lgint 17r01+ Lgint + Lsint
e(t) = fcost , F(t,c,0,0)+e(t) = 1;02 + i“gcost + zcost Z0,
g cost 12ﬂ03+851nt+scost

¢ = (c1,c2,c3) and @ is zero 3—order vector. Choose D = 127 such that (H;) holds.
It is obvious that (H3) is not satisfied here. Now we consider the assumption (Hs).
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Since

1
|Fit,2(t), 2" (1), 2" (1)) < o laa()] +3,  i=1,2,3,

(Hj3) holds with ay, = ag, =0, az, =0, p; =3.

1
1277

on om0 (T) s (5 o o (7))

= (ixQ +0) x Eal 371+0+0
- Yo 7T .
2

1
Sxd=Z <1,
6 %73

So by Theorem 3.2, we know system (3.12) has at least one nonconstant 27-periodic
solution.
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