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1. Introduction

In recent years, there are some works on periodic solutions for differential systems,
see [3]– [10] and references therein. For example, by using the continuation theorem,
Zhang & Tang [10] give the existence of positive periodic solutions of a first-order
differential system {

x′(t) = x(t)F1(t, x(t), y(t))− h1(t),

y′(t) = y(t)F2(t, x(t), y(t))− h2(t),
(1.1)

and apply the result to a competition Lotka-Volterra population model. Wang &
Lu [7] study a neutral functional differential system with delay

(x(t) + cx(t− σ))′ = A(t, x(t))x(t) + f(t, x(t), x(t− τ)), (1.2)

where x(t) = (x1(t), x2(t), . . . , xn(t))
⊤, and obtain the existence, uniqueness and

global attractivity of periodic solution for the system. Lu & Ge [6] observe a second-
order neutral differential systems with deviating arguments

d2

dt2
(x(t) + Cx(t− r)) +

d

dt
gradF (x(t)) + gradG(x(t− τ(t))) = p(t), (1.3)

by means of the generalized continuation theorem, they get a new result on the
existence of periodic solutions. Afterwards, by employing the Deimling fixed point
index theory, Wu & Wang [8] consider the following second-order nonlinear differ-
ential system with two paraments,{

u′′(t) + a1(t)u(t) = λb1(t)f1(u(t), v(t)),

v′′(t) + a2(t)v(t) = µb2(t)f2(u(t), v(t)), t ∈ R,
(1.4)
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and present the existence of periodic solutions for it. Recently, Liu etc. [4] get the
solvability of anti-periodic solutions for the third order differential systems

x′′′ +Ax′′ +
d

dt
∇F (x) +G(t, x) = E(t), (1.5)

here x is a vector.
In general, most of the existing results are concentrated on lower order differ-

ential system, and studies on high-order differential systems are rather infrequent,
especially for the research on stability for high-order differential system. Motivated
by the problem, we consider the following high-order functional differential system

(xi(t))
(n) = Fi(t, x(t), x

′(t), · · · , x(n−1)(t)) + ei(t), i = 1, . . . ,m. (1.6)

where x(t) = (x1(t), x2(t), · · · , xm(t)), Fi is a continuous function defined on R ×
Rm×n and is periodic to t, i.e., Fi(t, ·, · · · , ·) = Fi(t+T, ·, · · · , ·), ei(t) is a continuous
function defined on R and is periodic to t with ei(t+T ) = ei(t) and

∫ T

0
ei(t)dt = 0,

Fi(t, c, θ, · · · , θ) + ei(t) ̸≡ 0, here c is any given constant m−order vector and θ is
zero m−order vector.

The rest of this paper is organized as follows. In section 2, we give some Lem-
mas. In section 3, by using Mawhin’s coincidence degree theorem, some sufficient
conditions are obtained for the existence of periodic solutions of system (1.6). More-
over, by the construction of a Lyapunov function, we verify Lyapunov stability of
periodic solution for system (1.6). Finally, an example is given to illustrate the
result.

2. Preparation

Let X and Y be real Banach spaces and L : D(L) ⊂ X → Y be a Fredholm operator
with index zero, hereD(L) denotes the domain of L. This means that Im L is closed
in Y and dimKer L = dim(Y/Im L) < +∞. Consider supplementary subspaces
X1, Y1, of X, Y respectively, such that X = Ker L ⊕ X1, Y = Im L ⊕ Y1, and
let P : X → Ker L and Q : Y → Y1 denote the natural projections. Clearly,
Ker L∩ (D(L)∩X1) = {0}, thus the restriction LP := L|D(L)∩X1

is invertible. Let
K denote the inverse of LP .

Let Ω be an open bounded subset of X with D(L) ∩ Ω ̸= ∅. A map N : Ω → Y
is said to be L-compact in Ω if QN(Ω) is bounded and the operator K(I −Q)N :
Ω → X is compact.

Lemma 2.1. (Gaines and Mawhin [1]) Suppose that X and Y are two Banach
spaces, and L : D(L) ⊂ X → Y is a Fredholm operator with index zero. Further-
more, Ω ⊂ X is an open bounded set and N : Ω → Y is L-compact on Ω. Assume
that the following conditions hold:

(1) Lx ̸= λNx, ∀ x ∈ ∂Ω ∩D(L), λ ∈ (0, 1);

(2) Nx /∈ Im L, ∀ x ∈ ∂Ω ∩Ker L;

(3) deg{JQN,Ω ∩Ker L, 0} ̸= 0, where J : Im Q → Ker L is an isomorphism.

Then the equation Lx = Nx has a solution in Ω ∩D(L).
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Lemma 2.2. ( [11]) If ω ∈ C1(R,R) and ω(0) = ω(T ) = 0, then∫ T

0

|ω(t)|pdt ≤
(

T

πp

)p ∫ T

0

|ω′(t)|pdt,

where p is a fixed real number with p > 1, and πp = 2
∫ (p−1)/p

0
ds

(1− sp

p−1 )
1/p =

2π(p−1)1/p

p sin(π/p) .

Lemma 2.3. If y ∈ Cn(R,R) and y(t+ T ) ≡ y(t), then∫ T

0

|y(r)(t)|pdt ≤
(

T

πp

)p(n−r) ∫ T

0

|y(n)(t)|pdt, (2.1)

where r = 1, 2, . . . , n− 1.

Proof. If y ∈ Cn(R,R) and y(t + T ) ≡ y(t), then y, y′, · · · , yn−1 satisfy the
assumptions of Lemma 2.2. Applying Lemma 2.2 repeatedly, we can get (2.1).

Remark 2.1. If p = 2, then π2 = 2
∫ (2−1)/2

0
ds

(1− s2

2−1 )
1/2

= 2π(2−1)1/2

2 sin(π/2) = π. Therefore

Eq.(2.1) is transformed into
∫ T

0
|x(r)(t)|2dt ≤ (Tπ )

2(n−r)
∫ T

0
|x(n)(t)|2dt.

Now set
X = {x| x ∈ Cn−1(Rm,Rm), x(t+ T ) ≡ x(t)},

Y = {x| x ∈ C0(Rm,Rm), x(t+ T ) ≡ x(t)}

with

norm|x|0 = max{|x| =
(∑m

i=1 x
2
i (t)

) 1
2 },

norm∥x∥ = max{|x|0, |x′|0, · · · , |x(n−1)|0}.

Obviously, X and Y are Banach spaces. Define L : D(L) = {x ∈ Cn(Rm,Rm) :
x(t+ T ) = x(t)} ⊂ X → Y by Lx = x(n), and N : X → Y by

Nx⊤ = F (t, x(t), x′(t) · · · , x(n−1)(t)) + e(t), i = 1, . . . ,m, (2.2)

where F = (F1, F2, . . . , Fm)⊤, e(t) = (e1(t), e2(t), · · · , em(t))⊤. Then system (1.6)
can be converted to the abstract equation Lx = Nx. From the definition of L,

one can easily see that Ker L = Rm, Im L = {x : x ∈ X,
∫ T

0
x(s)ds = 0}. Let

P : X → Ker L and Q : Y → Im Q be defined by

Px =
1

T

∫ T

0

x(s)ds; Qy =
1

T

∫ T

0

y(s)ds.

It is easy to see that Ker L = Im Q = Rm. Moreover, for all y ∈ Y , we have∫ T

0
y∗(s)ds = 0 if y∗ = y − Q(y), which means y∗ ∈ Im L. That is to say Y =

Im Q⊕Im L and then dim(Y/Im L) = dim Im Q = dimKer L. So, L is a Fredhold
operator with index zero. Let K denote the inverse of L|Ker p ∩D(L), we have

[Kyi](t) =
n−1∑
j=1

1

j!
x
(j)
i (0)tj +

1

(n− 1)!

∫ t

0

(t− s)n−1yi(s)ds, (2.3)
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where x
(j)
i (0) (j = 1, 2, · · · , n− 1) are defined by the equation Bxi = C,

B =


1 0 0 · · · 0 0
b1 1 0 · · · 0 0
b2 b1 1 · · · 0 0
· · ·
bn−3 bn−4 bn−5 · · · 1 0
bn−2 bn−3 bn−4 · · · b1 0


(n−1)×(n−1)

.

X⊤ = (x(n−1)(0), · · · , x′′(0), x′(0)),

C⊤ = (C1, C2, · · · , Cn−1),

Cj = − 1

j!T

∫ T

0

(T − s)jyi(s)ds,

bk =
T k

(k + 1)!
, k = 1, 2, · · · , n− 2.

From (2.2) and (2.3), it is clearly that QN and K(I −Q)N are continuous, QN(Ω)
is bounded and then K(I−Q)N(Ω) is compact for any open bounded Ω ⊂ X which
means N is L-compact on Ω̄.

3. Main Results

For the sake of convenience, we let Zk = {zk1, zk2, . . . , zkm},Uk = {uk1, uk2, . . . , ukm},
Vk = {vk1, vk2, . . . , vkm}, and zki be the i − th component of m-order vector Zk,
i = 1, · · · ,m, k = 1, . . . , n. We give some assumptions:
(H1) There exists a positive constant D such that

z1iFi(t, Z1, Z2, · · · , Zn) > 0 (or z1iFi(t, Z1, Z2, · · · , Zn) < 0),

for all (t, Z1, Z2, · · · , Zn) ∈ [0, T ]× Rm×n with |z1i| > D;
(H2) There exists a positive constant M such that

|Fi(t, Z1, Z2, · · · , Zn)| ≤ M,

for all (t, Z1, Z2, · · · , Zn) ∈ [0, T ]× Rm×n;
(H3) There exist non-negative constant vectors Λ1 = (α11, α12, · · · , α1m), Λ2 =
(α21, α22, · · · , α2m), · · · , Λn = (αn1, αn2, · · · , αnm), P = (p1, p2, . . . , pm) such that

|Fi(t, Z1, Z2, · · · , Zn)| ≤ α1i|z1i|+ α2i|z2i|+ · · ·+ αni|zni|+ pi,

for all (t, Z1, Z2, · · · , Zn) ∈ [0, T ]× Rm×n;
(H4) There exist non-negative constant vectors Υ1 = (γ11, γ12, · · · , γ1m), Υ2 =
(γ21, γ22, · · · , γ2m), · · · , Υn = (γn1, γn2, · · · , γnm), such that

|Fi(t, U1, U2, · · · , Un)− Fi(t, V1, V2, · · · , Vn)|

≤ γ1i|u1i − v1i|+ γ2i|u2i − v2i|+ · · ·+ γni|uni − vni|,

for all (t, U1, U2, · · · , Un), (t, V1, V2, · · · , Vn) ∈ [0, T ]× Rm×n.
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Theorem 3.1. If (H1) and (H2) hold, then system (1.6) has at least one non-
constant T -periodic solution.

Proof. Consider the equation

Lx = λNx, λ ∈ (0, 1),

i.e.,

(xi(t))
(n) = λFi(t, x(t), x

′(t), · · · , x(n−1)(t)) + λei(t), i = 1, . . . ,m. (3.1)

Let Ω1 = {x : Lx = λNx, λ ∈ (0, 1)}, and x(t) ∈ Ω1. We first claim that there
exists a constant ξ ∈ R such that

|xi(ξ)| ≤ D. (3.2)

Integrating system (3.1) over [0, T ], we have∫ T

0

Fi(t, x(t), x
′(t), · · · , x(n−1)(t))dt = 0, i = 1, 2, · · · ,m.

Then from the continuity of Fi, we know there exists a ξ ∈ [0, T ] such that

Fi(ξ, x(ξ), · · · , x(n−1)(ξ)) = 0, i = 1, 2, · · · ,m.

From assumption (H1) we get (3.2). As a consequence, we have

|xi(t)| =
∣∣∣xi(ξ) +

∫ t

ξ

x′
i(s)ds

∣∣∣ ≤ D +

∫ T

0

|x′
i(s)|ds. (3.3)

On the other hand, multiplying both sides of the (3.1) by x
(n)
i (t) and integrating

over [0, T ], and in view to (H2), we have∫ T

0

|x(n)
i (t)|2dt

= λ

∫ T

0

Fi(t, x(t), x
′(t), · · · , x(n−1)(t))x

(n)
i (t)dt+ λ

∫ T

0

ei(t)x
(n)
i (t)dt

≤
∫ T

0

|Fi(t, x(t), x
′(t), · · · , x(n−1)(t))||x(n)

i (t)|dt+
∫ T

0

|ei(t)||x(n)
i (t)|dt

≤ M

∫ T

0

|x(n)
i (t)|dt+ max

t∈[0,T ]
|ei(t)|

∫ T

0

|x(n)
i (t)|dt

≤ (M + |e|0)T 1/2
(∫ T

0

|x(n)
i (t)|2dt

)1/2
,

where |e|0 = maxt∈[0,T ]{|e1(t)|, . . . , |em(t)|}.
It is easy to see that there exists a constant (M + |e|0)2 T (independent of λ ) such
that ∫ T

0

|x(n)
i (t)|2dt ≤ (M + |e|0)2 T.

From x
(n−2)
i (0) = x

(n−2)
i (T ), there exists a point t1 ∈ [0, T ] such that x

(n−1)
i (t1) =

0, and by applying Hölder’s inequality, we have

|x(n−1)
i (t)| ≤

∫ T

0

|x(n)
i (t)|dt ≤ T 1/2

(∫ T

0

|x(n)
i (t)|2dt

)1/2

≤ (M + |e|0)T.
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From x
(n−3)
i (0) = x

(n−3)
i (T ), there exists a point t2 ∈ [0, T ] such that x

(n−2)
i (t2) =

0, we have

|x(n−2)
i (t)| ≤

∫ T

0

|x(n−1)
i (t)|dt ≤ T (M + |e|0)T = (M + |e|0)T 2.

Similarly,

|x(n−3)
i (t)| ≤ T (M + |e|0)T 2 = (M + |e|0)T 3.

Continuing this way for x
(n−4)
i , . . . , x′

i, we get

|x′
i(t)| ≤ T (M + |e|0)Tn−2 = (M + |e|0)Tn−1.

Meanwhile, from Eq.(3.2), we can get

|xi(t)| ≤ D +

∫ T

0

|x′
i(t)|dt ≤ D + T (M + |e|0)Tn−1 = D + (M + |e|0)Tn.

Take

M0 =

{√
mD +

√
m(M + |e|0)Tn, if T > 1;

√
mD +

√
m(M + |e|0)T, if T ≤ 1.

Obviously, |x|0 ≤ M0, |x′|0 ≤ M0, · · · , |x(n−1)|0 ≤ M0.
Let Ω2 = {x ∈ Ker L : Nx ∈ Im L}. If x ∈ Ω2, then x ∈ Ker L which means

x = constant vector, x′ = x′′ = · · · = x(n−1) = θ, and QNx = 0. Integrating (3.1)
over [0, T ], we have Fi(t, x, θ, · · · , θ) = 0 which yields that |xi| ≤ D.

Now take Ω = {x ∈ X : |x|0 < M0+1, |x′|0 < M0+1, . . . , |x(n−1)|0 < M0+1}.
By the analysis of the above, it is easy to see that Ω1 ⊂ Ω, Ω2 ⊂ Ω and conditions
(1) and (2) of Lemma 2.1 are satisfied.

Next we show that condition (3) of Lemma 2.1 is also satisfied. Define the
isomorphism

J : ImQ → Ker LbyJ(x) = (J(x1), · · · , J(xm))⊤ and

J(xi) =

{
xi, if z1iFi(t, Z1, Z2, · · · , Zn) > 0, for |z1i| > D;

−xi, if z1iFi(t, Z1, Z2, · · · , Zn) < 0, for |z1i| > D,

for i = 1, 2, · · · ,m.

Let H(µ, x) = (H(µ, x1), · · · ,H(µ, xm))⊤ and H(µ, (xi)) = µxi + (1 − µ)JQNxi,
(µ, xi) ∈ [0, 1]× Ω, then ∀ (µ, xi) ∈ (0, 1)× (∂Ω ∩Ker L),

H(µ, xi) =


µxi +

1−µ
T

∫ T

0
[Fi(t, x, θ, · · · , θ) + ei(t)] dt,

if z1iFi(t, Z1, Z2, · · · , Zn) > 0, for |z1i| > D;

µxi − 1−µ
T

∫ T

0
[Fi(t, x, θ, · · · , θ) + ei(t)]dt,

if z1iFi(t, Z1, Z2, · · · , Zn) < 0, for |z1i| > D,

(3.4)

for i = 1, 2, · · · ,m. Since
∫ T

0
ei(t)dt = 0, (3.4) is transformed into

H(µ, xi) =


µxi +

1−µ
T

∫ T

0
Fi(t, x, θ, · · · , θ)dt,

if z1iFi(t, Z1, Z2, · · · , Zn) > 0, for |z1i| > D;

µxi − 1−µ
T

∫ T

0
Fi(t, x, θ, · · · , θ)dt,

if z1iFi(t, Z1, Z2, · · · , Zn) < 0, for |z1i| > D.
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From (H1), it is obvious that xiH(µ, xi) > 0, ∀ (µ, xi) ∈ (0, 1) × (∂Ω ∩ Ker L).
Therefore,

deg{JQN,Ω ∩Ker L, 0} = deg{H(0, x),Ω ∩Ker L, 0}
= deg{H(1, x),Ω ∩Ker L, 0}
= deg{I,Ω ∩Ker L, 0} ̸= 0,

which means condition (3) of Lemma 2.1 is also satisfied. By applying Lemma 2.1,
we conclude that equation Lx = Nx has a solution x∗ on Ω̄, i.e., system (1.6) has
a T -periodic solution x∗(t) with ∥x∗∥ < M0 + 1.

Finally, observe that x∗(t) is not constant. Otherwise, suppose x∗(t) ≡ c (con-
stant vector), then from system (1.6) we have Fi(t, c, θ, · · · , θ) + ei(t) ≡ 0, which
contradicts to assumption Fi(t, c, θ, · · · , θ) + ei(t) ̸≡ 0, so the proof is complete.

Theorem 3.2. If (H1) and (H3) hold, then system (1.6) has at least a non-constant

T-periodic solution if (α10T +α20)
(
T
π

)n−1
+α30

(
T
π

)n−2
+ · · ·+αn0

(
T
π

)
< 1, where

αk0 = max{αk1, αk2, . . . , αkm}, k = 1, 2, . . . , n.

Proof. Let Ω1 be defined as in Theorem 3.1. If x(t) ∈ Ω1, then from the proof of
Theorem 3.1 we see that

|xi|0 ≤ D +

∫ T

0

|x′
i(s)|ds, i = 1, . . . ,m. (3.5)

We claim that |x(n−1)
i |0 is bounded.

Multiplying both sides of (3.1) by x
(n)
i (t) and integrating over [0,T], by using as-

sumption (H3), we have∫ T

0

|x(n)
i (t)|2dt

= λ

∫ T

0

Fi(t, x(t), x
′(t), · · · , x(n−1)(t))x

(n)
i (t)dt+ λ

∫ T

0

ei(t)x
(n)
i (t)dt

≤
∫ T

0

|Fi(t, x(t), x
′(t), · · · , x(n−1)(t))||x(n)

i (t)|dt+
∫ T

0

|ei(t)||x(n)
i (t)|dt

≤ α1i

∫ T

0

|xi(t)||x(n)
i (t)|dt+ α2i

∫ T

0

|x′
i(t)||x

(n)
i (t)|dt

+ · · ·+ αni

∫ T

0

|x(n−1)
i (t)||x(n)

i (t)|dt+ pi

∫ T

0

|x(n)
i (t)|dt+

∫ T

0

|ei(t)||x(n)
i (t)|dt

≤ α1i|xi|0
∫ T

0

|x(n)
i (t)|dt+ α2i

∫ T

0

|x′
i(t)||x

(n)
i (t)|dt

+ · · ·+ αni

∫ T

0

|x(n−1)
i (t)||x(n)

i (t)|dt+ pi

∫ T

0

|x(n)
i (t)|dt+

∫ T

0

|ei(t)||x(n)
i (t)|dt

≤ α1i

(
D +

∫ T

0

|x′
i(t)|dt

)∫ T

0

|x(n)
i (t)|dt+ α2i

∫ T

0

|x′
i(t)||x

(n)
i (t)|dt

+ · · ·+ αni

∫ T

0

|x(n−1)
i (t)||x(n)

i (t)|dt+ (p0 + |e|0)
∫ T

0

|x(n)
i (t)|dt,
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where p0 = max{p1, p2, . . . , pm}. By applying Hölder’s inequality, we have∫ T

0
|x(n)

i (t)|2dt

≤ α1i

(
D + T 1/2

(∫ T

0
|x′

i(t)|2dt
)1/2)

T 1/2
(∫ T

0
|x(n)

i (t)|2dt
)1/2

+α2i

(∫ T

0
|x′

i(t)|2dt
)1/2 (∫ T

0
|x(n)

i (t)|2dt
)1/2

+ α3i

(∫ T

0
|x′′

i (t)|2dt
)1/2

·
(∫ T

0
|x(n)

i (t)|2dt
)1/2

+ · · ·+ αni

(∫ T

0
|x(n−1)

i (t)|2dt
)1/2 (∫ T

0
|x(n)

i (t)|2dt
)1/2

+(p0 + |e|0)T 1/2
(∫ T

0
|x(n)

i (t)|2dt
)1/2

≤ (α1iT + α2i)
(∫ T

0
|x′

i(t)|2dt
)1/2 (∫ T

0
|x(n)

i (t)|2dt
)1/2

+α3i

(∫ T

0
|x′′

i (t)|2dt
)1/2 (∫ T

0
|x(n)

i (t)|2dt
)1/2

+ · · ·+ αni

(∫ T

0
|x(n−1)

i (t)|2dt
)1/2

·
(∫ T

0
|x(n)

i (t)|2dt
)1/2

+ (p0 + |e|0 + α1iD)T 1/2
(∫ T

0
|x(n)

i (t)|2dt
)1/2

.

(3.6)
By using Lemma 2.3 and (3.6), we can get∫ T

0
|x(n)

i (t)|2dt

≤ (α1iT + α2i)
(
T
π

)n−1 ∫ T

0
|x(n)

i (t)|2dt+ α3i

(
T
π

)n−2 ∫ T

0
|x(n)

i (t)|2dt

+ · · ·+ αni

(
T
π

) ∫ T

0
|x(n)

i (t)|2dt+ (α1iD + p0 + |e|0)T 1/2
(∫ T

0
|x(n)

i (t)|2dt
)1/2

≤
[
(α10T + α20)

(
T
π

)n−1
+ α30

(
T
π

)n−2
+ · · ·+ αn0

(
T
π

)] ∫ T

0
|x(n)

i (t)|2dt

+(α10D + p0 + |e|0)T 1/2
(∫ T

0
|x(n)

i (t)|2dt
)1/2

,

where αk0 = max{αk1, αk2, . . . , αkm}, k = 1, 2, . . . , n. Since (α10T +α20)
(
T
π

)n−1
+

α30

(
T
π

)n−2
+ · · ·+αn0

(
T
π

)
< 1, it is easy to see that there exists a constant M ′ > 0

(independent of λ ) such that ∫ T

0

|x(n)
i (t)|2dt ≤ M ′.

From x
(n−2)
i (0) = x

(n−2)
i (T ), there exists a point t1 ∈ [0, T ] such that x

(n−1)
i (t1) =

0, By applying Hölder’s inequality, we have

|x(n−1)
i (t)| ≤

∫ T

0

|x(n)
i (t)|dt ≤ T 1/2

(∫ T

0

|x(n)
i (t)|2dt

)1/2

≤ T 1/2M ′1/2 := M.

This proves the claim and the rest of the proof of the theorem is identical to
that of Theorem 3.1.

Next, we will construct some suitable function to study the Lyapunov stability
of the periodic solution of system (1.6).
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Theorem 3.3. Assume (H4) hold. If system (1.6) has T -periodic solution, then
the T -periodic solution is Lyapunov stable.

Proof. Let

xi(t) = z1i(t), x′
i(t) = z2i(t), · · · , x

(n−1)
i (t) = zni(t), i = 1, 2, · · · ,m,

then system (1.6) be transformed into
z′1i(t) = z2i(t),
z′2i(t) = z3i(t),

· · ·
z′ni(t) = Fi(t, Z1(t), Z2(t), · · · , Zn(t)) + ei(t),

i = 1, 2, · · · ,m, (3.7)

where Zk = {zk1, . . . , zkm}, k = 1, . . . , n.
Assume system (3.7) has T -periodic solution z∗i (t) = (z∗1i(t), z

∗
2i(t), · · · , z∗ni(t))⊤, i =

1, . . . ,m. Suppose zi(t) = (z1i(t), z2i(t), · · · , zni(t))⊤, i = 1, . . . ,m, is any arbi-
trary solution of (1.6). Let wki(t) = zki(t) − z∗ki(t), k = 1, . . . , n, then it follows
from (3.7) that

w′
1i(t) = w2i(t),

w′
2i(t) = w3i(t),
· · ·

w′
ni(t) = Fi(t, Z1(t), Z2(t), · · · , Zn(t))− Fi(t, Z

∗
1 (t), Z

∗
2 (t), · · · , Z∗

n(t)).
(3.8)

And we can get
|w′

1i(t)| = |w2i(t)|,
|w′

2i(t)| = |w3i(t)|,
· · ·

|w′
ni(t)| = |Fi(t, Z1(t), Z2(t), · · · , Zn(t))− Fi(t, Z

∗
1 (t), Z

∗
2 (t), · · · , Z∗

n(t))|.
(3.9)

Let y
(l)
ki (t) = |w(l)

ki (t)|, l = 0, 1, k = 1, 2, . . . , n, then
y′1i(t) = y2i(t),
y′2i(t) = y3i(t),

· · ·
y′ni(t) = |Fi(t, Z1(t), Z2(t), · · · , Zn(t))− Fi(t, Z

∗
1 (t), Z

∗
2 (t), · · · , Z∗

n(t))|.
(3.10)

Take β = max{γ10 , γ20 + 1, . . . , γn0 + 1} + 1, here γk0 = {γk1, γk2, · · · , γkm}, k =
1, 2, · · · , n. And define a function V (·)

V (t, y1, · · · , yn) = e−βt
n∑

k=1

m∑
i=1

yki(t). (3.11)

There exists a sufficiently small positive constant ε such that e−βt ≥ ε. Take
U(y1, · · · , yn) =

∑n
k=1

∑m
i=1 εyki(t), it is obvious that V (t, y1, · · · , yn) > 0 and

V (t, y1, · · · , yn) ≥ U(y1, · · · , yn) > 0. Calculating the derivatives of V , from (H4),



248 Z. Cheng and J. Ren

we get

V̇ (t, y1, · · · , yn)

= −βe−βt

(
n∑

k=1

m∑
i=1

yki(t)

)
+ e−βt

∑m
i=1(y2i(t) + · · ·+ yni(t))

+e−βt

m∑
i=1

∣∣Fi(t, Z1(t), Z2(t), · · · , Zn(t))− Fi(t, Z
∗
1 (t), Z

∗
2 (t), · · · , Z∗

n(t))
∣∣

≤ −βe−βt

(
n∑

k=1

m∑
i=1

yki(t)

)
+ e−βt

m∑
i=1

(y2i(t) + · · ·+ yni(t))

+e−βt

m∑
i=1

(γ1i|z1i(t)− z∗1i(t)|+ · · ·+ γni|zni(t)− z∗ni(t)|)

= −βe−βt

(
n∑

k=1

m∑
i=1

yki(t)

)
+ e−βt

m∑
i=1

(y2i(t) + · · ·+ yni(t))

+e−βt

m∑
i=1

(γ1i|w1i(t)|+ · · ·+ γni|wni(t)|)

≤ −βe−βt

(
n∑

k=1

m∑
i=1

yki(t)

)
+ e−βt

m∑
i=1

(y2i(t) + · · ·+ yni(t))

+e−βt

m∑
i=1

(γ10y1i(t) + · · ·+ γn0yni(t))

= (−β + γ10)
m∑
i=1

y1i(t)e
−βt +

n∑
k=2

(−β + 1 + γk0)
m∑
i=1

yki(t)e
−βt

< 0.

From the above, we know V is a Lyapunov function for nonautonomous system
(1.6)(P50, [2]), and then the T -periodic solution of system (1.6) is Lyapunov stable.

Finally, we present an example to illustrate our result.

Example 3.1. Consider the three-order differential system
x′′′
1 (t) = 1

12πx1(t) +
1
8 sinx

′
1(t) +

1
8 cosx

′
2(t) sin t+

1
8 sinx

′′
3(t) +

1
8 sin t

x′′′
2 (t) = 1

12πx2(t) +
1
8 sinx

′
2(t) +

1
8 cosx

′′
3(t) cos t+

1
8 sinx

′′
1(t) +

1
4 cos t

x′′′
3 (t) = 1

12πx3(t) +
1
8 sinx

′
3(t) +

1
8 cosx

′′
1(t) sin t+

1
8 sinx

′′
2(t) +

1
8 cos t.

(3.12)
It is clear that n = 3, T = 2π,

F (t, x(t), x′(t), x′′(t)) =

 1
12πx1(t) +

1
8 sinx

′
1(t) +

1
8 cosx

′
2(t) sin t+

1
8 sinx

′′
3(t)

1
12πx2(t) +

1
8 sinx

′
2(t) +

1
8 cosx

′′
3(t) cos t+

1
8 sinx

′′
1(t)

1
12πx3(t) +

1
8 sinx

′
3(t) +

1
8 cosx

′′
1(t) sin t+

1
8 sinx

′′
2(t)

 ,

e(t) =

 1
8 sin t
1
4 cos t
1
8 cos t

 , F (t, c, θ, θ) + e(t) =

 1
12π c1 +

1
8 sin t+

1
8 sin t

1
12π c2 +

1
8 cos t+

1
4 cos t

1
12π c3 +

1
8 sin t+

1
8 cos t

 ̸≡ 0,

c = (c1, c2, c3) and θ is zero 3−order vector. Choose D = 12π such that (H1) holds.
It is obvious that (H2) is not satisfied here. Now we consider the assumption (H3).
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Since

|Fi(t, x(t), x
′(t), x′′(t))| ≤ 1

12π
|xi(t)|+ 3, i = 1, 2, 3,

(H3) holds with α10 = 1
12π , α20 = 0, α30 = 0, pi = 3.[

(α10T + α20)

(
T

π

)n−1

+ α30

(
T
π

)n−2
+ · · ·+ αn0

(
T

π

)]
= (

1

12π
× 2π + 0)×

(
2π

π

)3−1

+ 0 + 0

=
1

6
× 4 =

2

3
< 1.

So by Theorem 3.2, we know system (3.12) has at least one nonconstant 2π-periodic
solution.

Acknowledgements

The authors would like to thank the referee for invaluable comments and insightful
suggestions.

References

[1] R. Gaines and J. Mawhin, Coincidence Degree and Nonlinear Differential E-
quation, Springer, Berlin, 1977.

[2] P. Glendinning, Stablity, Instability and Chaos: an introduction to the theory
of nonlinear differential equations, Cambridge University Press, UK, 1994.

[3] Y. Li, Positive perriodic solutions of periodic neutral Lotka-Volterra system
with state dependent delay, J. Math. Anal. Appl., 330 (2007), 1347-1362.

[4] W. Liu, J. Zhang and T. Chen, Anti-symmetric periodic solutions for the third
order differential systems, Appl. Math. Lett., 22 (2009), 668-673.

[5] B. Lisena, Periodic solution of competition systems with delay by an average
approach, Nonlinear Anal., 71 (2009), 340-345.

[6] S. Lu and W. Gao, Periodic solutions for a kind of second-order neutral dif-
ferential systems with deviating arguments, Appl. Math. Comput., 156 (2004),
719-732.

[7] K. Wang and S. Lu, The existence, uniqueness and global attractivity of periodic
solution for a type of neutral functional differential system with delays, J. Math.
Anal. Appl., 335 (2007), 808-818.

[8] J. Wu and Z. Wang, Positive periodic solutions of second-order nonlinear dif-
ferential systems with two parameters, Comput. Math. Appl., 56 (2008), 43-59.

[9] X. Yang and K. Lo, Existence and uniqueness of periodic solution for a class
of differential systems, J. Math. Anal. Appl., 327 (2007), 36-46.

[10] Z. Yang and H. Tang, Four positive periodic solutions for the first order differ-
ential system, J. Math. Anal. Appl., 332 (2007), 123-136.

[11] M. Zhang, Nonuniform nonresonance at the first eigenvalue of the p-Laplacian,
Nonlinear Anal., 29 (1997), 41-51.


