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1. Introduction

Duality theory has played an important role in the development of optimization the-
ory. For nonlinear programming problems a number of duals have been suggested,
among which the Wolfe dual proposed by Dorn [11] is well known. Symmetric dual-
ity in nonlinear programming was introduced in [11] by defining a symmetric dual
problem for quadratic programs. Subsequently Dantzing et al [8] established sym-
metric duality results for convex/concave functions. Devi [8], Weir and Mond [22],
Mond and Schechter [18] studied non differentiable symmetric duality for a class of
optimization problem in which the objective function consist of support function.

Higher order duality concept was first introduced by Mangasarian [15]. Zhang
[24] established various duality results between (P) and dual (MHD) and (MWHD)
under higher order invexity assumptions. Later on Yang et al [23] discussed higher
order duality results under generalized convexity assumption for multiobjective pro-
gramming problems involving support functions. Mishra and Rueda [16] established
duality results under higher order generalized invexity whereas they generalized the
results of Zhang [24] to higher order type 1 function in their paper [17]. The case
of higher order symmetric duality for nondifferentiable multiobjective programming
problem was considered by Chen [8]. Ahmad et al [3] formulated a general Mond-
Weir type higher order dual and established duality results under (F, α, ρ, d)-type
1 function. Higher order symmetric multiobjective duality involving generalized
(F, ρ, γ, b)-convexity was given by Batatoresue et al [6]. Gulati et al [13] and Ah-
mad [1] established second order symmetric duality for nondifferentiable minimax
mixed integer problem. A unified higher order dual for a nondifferentiable minimax
programming problem is formulated by Ahmad et al [4].
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In recent years, several extension and generalization have been considered for
classical convexity. A significant generalization of convex function is that of in-vex
function introduced by Hanson [14]. Bector et al [7] have introduced the concept of
pre-univex function, univex functions and pseudo-univex function as a generaliza-
tion of in-vex function. Further development on the application of univex function
and generalized univex function can be found in Mishra et al [16,17]. Ojha [19] es-
tablished symmetric duality results for (ϕ, ρ)-univex function and Thakur et al [21]
established second order symmetric duality results for second order (ϕ, ρ)-univex
function .Very recently Ojha [20] established higher order duality for multiobjective
programming involving (ϕ, ρ)-univex function.

In this paper, I have introduced a new generalized class of higher order (ϕ, α, ρ)-
univex functions with an example. I have formulated a pair of higher order Mond-
Weir type minimax mixed integer program. Based on these concepts, weak and
strong duality theorems are established .

In section-2, some definitions are recalled and higher order (ϕ, α, ρ)-univex func-
tions are introduced. In section-3, Mond-Weir type higher order minimax mixed
nondifferentiable symmetric dual program are formulated and duality results are
established under higher order (ϕ, α, ρ)-univexity assumption. In section-4, self du-
ality theorem is established. In section-5, I concluded with conclusion.

2. Notations and Definitions

We denote by Rn the n-dimensional Euclidean space and by Rn
+ its nonnegative

orthant. Let X ⊆ Rn, Y ⊆ Rm. The following conventions for vectors x, u ∈ Rn

will be followed throughout this paper: x < u⇔ xi < ui, i = 1, 2, .., n and x ≤ u⇔
xi < ui, i = 1, 2, .., n. Further for any vector, we denote xTu =

∑n
i=1 xiui.

Let r ∈ R, ρ ∈ R. ϕ1 and ϕ2 are real valued functions defined on Rn×Rn×Rn+1

and Rm × Rm × Rm+1 respectively such that ϕ1(x, u, ·) and ϕ2(v, y, ·) are convex
on Rn+1 and Rm+1 respectively and ϕ1(x, u, (0, r)) ≥ 0, ϕ2(v, y, (0, r)) ≥ 0. b1
and b2 are non negative real valued function defined on Rn × Rn and Rm × Rm.
ψ1, ψ2 : R → R, satisfying ψi(a) ≤ 0 ⇒ a ≤ 0, i = 1, 2 and ψi(−a) = −ψi(a).
Suppose α1 : Rn ×Rn → R and α2 : Rm ×Rm → R.

Let fi : X × Y → R, gi : X × Y ×X → R and hi : X × Y × Y → R are twice
differentiable functions.

Definition 2.1. The function fi(·, y) is said to be higher order (ϕ, α, ρ)-univex at
u ∈ X with respect to gi, if for b1, ϕ1, α1 and ρ, we have

b1(x, u)ψ1[fi(x, y)− fi(u, y)− gi(u, y, qi) + qTi ∇qigi(u, y, qi)]

≥ ϕ1(x, u;α1(x, u)(∇ufi(u, y) +∇qigi(u, y, qi), ρ)).

Definition 2.2. The function fi(x, ·) is said to be higher order (ϕ, α, ρ)-univex at
y ∈ Y with respect to hi, if for b2, ϕ2, α2 and ρ, we have

b2(v, y)ψ2[fi(x, v)− fi(x, y)− hi(x, y, pi) + pTi ∇pihi(x, y, pi)]

≥ ϕ2(v, y;α2(v, y)(∇yfi(x, y) +∇pihi(x, y, pi), ρ)).
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Definition 2.3. The function fi(·, y) is said to be higher order (ϕ, α, ρ)-pseudo
univex at u ∈ X with respect to gi, if for b1, ϕ1, α1 and ρ, we have

ϕ1(x, u;α1(x, u)(∇ufi(u, y) +∇qigi(u, y, qi), ρ)) ≥ 0

⇒ b1(x, u)ψ1[fi(x, y)− fi(u, y)− gi(u, y, qi) + qTi ∇qigi(u, y, qi)] ≥ 0.

Definition 2.4. The function fi(x, ·) is said to be higher order (ϕ, α, ρ)-pseudo
univex at y ∈ Y with respect to hi, if for b2, ϕ2, α2 and ρ, we have

ϕ2(v, y;α2(v, y)(∇yfi(x, y) +∇pihi(x, y, pi), ρ)) ≥ 0

⇒ b2(v, y)ψ2[fi(x, v)− fi(x, y)− hi(x, y, pi) + pTi ∇pi
hi(x, y, pi)].

Definition 2.5. The function fi is said to be higher order (ϕ, α, ρ)-unicave and
higher (ϕ, α, ρ)- pseudo unicave functions with respect to hi, if −fi is higher order
(ϕ, α, ρ)-univex and higher order (ϕ, α, ρ)-pseudo univex function with respect to
−hi.

Example 2.1. We present here a function which is higher order (ϕ, α, ρ)-univex
function. We can proceed similarly for other classes of function which are intro-
duced.

Let us consider X = (0,∞) and f : X → R defined by f(x) = x log x and
h : X ×R→ defined by h(u, y) = −y log u.

Obviously f is not convex.
We have ∇uf(u) = 1 + log u, ∇uuf(u) = 1

u and ∇uh(u, y) = − log u. Let
ϕ : X ×X ×R→ R defined by ϕ(x, y; (a, b)) = b(a+ a2). So ϕ is not sub linear.

Let b : X ×X →, ψ : R→ R and α : X ××X → R defined by

b(x, y) = xu(1+xu)
x log x−u log u if (x log x− u log u) > 0 and 0 if (x log x− u log u) ≤ 0,

ψ(x) = 3x and α(x, u) = xu.

Since ∇uf(u) +∇yh(u, y) = 1 and h(u, y)− y∇yh(u, y) = 0, we have

ϕ(x, u; (α(x, u)(∇uf(u) +∇yh(u, y), ρ)) = ρ(xu+ x2u2)

and the definition of higher order (ϕ, α, ρ)-univex becomes,

( xu(1+xu)
x log x−u log u )× 3(x log x− u log u) ≥ ρ(xu+ x2u2), if x log x− u log u > 0

or 0 ≥ ρ(xu+ x2u2, if x log x− u log u ≤ 0

⇒ 1 ≥ ρ, if x log x− u log u > 0 or 0 ≥ ρ, if x log x− u log u ≤ 0.

It now follows that the function f(x) = x log x is higher order (ϕ, α, ρ)-univex at
u ∈ X with respect to h(x, y) = −y log u for 0 ≥ ρ.

We consider the following multiobjective programming problem:

MP(Primal): Minimize f(x, y) = (f1(x, y), f2(x, y), ..., fr(x, y))
Subject to g(x, y) ≤ 0, x ∈ X ⊆ Rn, y ∈ Y ⊆ Rm,

where f : X × Y → Rr, g : X × Y → Rk.
Let P0 be the set of all feasible solution of problem (MP)

i.e. P0 = (x ∈ X, y ∈ Y |g(x, y) ≤ 0).
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Definition 2.6. A vector a ∈ P0 is said to be an efficient solution of problem (MP),
if there exist no (x, y) ∈ P0 such that f(x, y) ≤ f(a).

Definition 2.7. A vector a ∈ P0 is said to be a weakly efficient solution of problem
(MP), if there exist no (x, y) ∈ P0 such that f(x, y) < f(a).

Definition 2.8. (Schwartz Inequality) Let x, y ∈ Rn and A ∈ Rn × Rn be a

positive semi definite matrix, then xTAy ≤ (xTAx)
1
2 (yTAy)

1
2 . Equality holds, if

for some λ ≥ 0, Ax = λAy.

Definition 2.9. Let s1, s2, ..., sp be elements of an arbitrary vector space. A vector
function F (s1, s2, ..., sp) will be called additively separable with respect to s1, if
there exist vector function F 1(s1) independent of s2, s3..., sp and F 2(s2, s3..., sp)
independent of s1 such that F (s1, s2, ..., sp) = F 1(s1) + F 2(s2, s3, ..., sp).

3. Mond-Weir type higher order mini-max mixed
integer programming

As in Balas [4] and Gulati et al. [11], we constrain some of the components of
the vector variables x ∈ Rn and y ∈ Rm to belong to arbitrary set of integers
U ⊂ Rn1 and V ⊂ Rm1 respectively, where 0 ≤ n1 ≤ n and 0 ≤ m1 ≤ m.
Therefore we write (x, y) = (x1, x2, y1, y2), where x1 = (x1, x2, ..., xn1) ∈ U and
y1 = (y1, y2, ..., ym1) ∈ V . x2 and y2 being the remaining components of x and y
respectively.

We consider the following pair of non differentiable higher order minimax mixed
integer symmetric dual.

• Primal(HMNSP):

Maxx1Minx2,y,w,pH(x, y, w, p) = (Hi(x, y, wi, pi), i = 1, 2, ..., r),

where
Hi(x, y, wi, pi) = fi(x, y) + ((x2)TBix

2)
1
2 − (y2)TCiwi

+hi(x, y, pi)− pTi ∇pihi(x, y, pi)

Subject to

r∑
i=1

λi[∇y2fi(x, y)− Ciwi +∇pihi(x, y, pi)] ≤ 0, (3.1)

(y2)T
r∑

i=1

λi[∇y2fi(x, y)− Ciwi +∇pihi(x, y, pi)] ≥ 0, (3.2)

wT
i Ciwi ≤ 1, i = 1, 2, .., r; (3.3)

x1 ∈ U, y1 ∈ V, x2 ≥ 0, (3.4)

λ > 0,
r∑

i=1

λi = 1. (3.5)

• Dual(HMNSD):

Minv1Maxu,v2,z,qG(u, v, z, q) = (Gi(u, v, zi, qi), i = 1, 2, ..., r),
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where
Gi(u, v, zi, qi) = fi(u, v)− ((v2)TCiv

2)
1
2 + (u2)TBizi

+gi(u, v, qi)− qTi ∇qigi(u, v, qi)

Subject to

r∑
i=1

λi[∇u2fi(u, v) +Bizi +∇qigi(u, v, qi)] ≥ 0, (3.6)

(u2)T
r∑

i=1

λi[∇u2fi(u, v) +Bizi +∇qiqi(u, v, qi)] ≤ 0, (3.7)

zTi Bizi ≤ 1, i = 1, 2, .., r; (3.8)

u1 ∈ U, v1 ∈ V, v2 ≥ 0, (3.9)

λ > 0,
r∑

i=1

λi = 1, (3.10)

where pi ∈ Rm−m1 , qi ∈ Rn−n1 , wi ∈ Rm−m1 , zi ∈ Rn−n1 , i = 1, 2, .., r. Bi

and Ci are positive semi definite matrixes of order n and m respectively. Also
w = (w1, w2, ..., wr), z = (z1, z2, ..., zr), p = (p1, p2, ..., pr), q = (q1, q2, ..., qr).

For the following theorems assume that r ∈ R, ρ ∈ R. ϕ1 and ϕ2 are a real valued
function defined on Rn−n1 ×Rn−n1 ×Rn−n1+1 and Rm−m1 ×Rm−m1 ×Rm−m1+1

respectively with ϕ1(x
2, u2, (0, r)) ≥ 0, ϕ2(v

2, y2, (0, r)) ≥ 0. b1 and b2 are non
negative real valued function defined on Rn × Rn and Rm × Rm. ψ1, ψ2 : R × R,
satisfying ψi(u) ≤ 0 ⇒ u ≤ 0, i = 1, 2 and ψi(−u) = −ψi(u). α1 : Rn × Rn → R
and α2 : Rn ×Rn → R.

Theorem 3.1. (Weak Duality) Let (x, y, w, λ, p) be feasible solution for (HMN-
SP) and (u, v, z, λ, q) be feasible solution for (HMNSD). Assume that the following
conditions are satisfied:

(1) fi(x, y), hi(x, y, pi) and gi(x, y, qi) be additively separable with respect to x1

or y1 (say x1) i.e.

fi(x, y) = fi1(x
1) + fi2(x

2, y),

hi(x, y, pi) = hi1(x
1) + hi2(x

2, y, pi),

gi(x, y, qi) = gi1(x
1) + gi2(x

2, y, qi).

(2) fi(x, y), hi(x, y, pi) and gi(x, y, qi) be twice differentiable in x2 and y2.

(3)
∑r

i=1 λi[fi(x, y) + (x2)TBizi] be higher order (ϕ, α, ρ)-univex at x2 for every
(x1, y, z) and

∑r
i=1 λi[fi(x, y) − (y2)TCiwi] be higher order (ϕ, α, ρ)-unicave

at y2 for every (x, y1, w).

(4) ϕ1(x
2, u2; (ξ, ρ)) + (u2)T ξ ≥ 0, where

ξ =

r∑
i=1

λi[∇u2fi2(u
2, v) +Bizi +∇qigi2(u

2, v, qi)].

(5) ϕ2(v
2, y2, (ζ, ρ)) + (y2)T ζ ≤ 0, where

ζ =

r∑
i=1

λi[∇y2fi2(x
2, y)− Ciwi +∇pihi2(x

2, y, pi)].
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Then Inf [H(x, y, z, p)] ≥ Sup[G(u, v, w, q)].

Proof. Let

s = maxx1minx2,y,w,p{fi(x, y) + ((x2)TBix
2)

1
2 − (y2)TCiwi

+ hi(x, y, pi − pTi ∇pihi(x, y, pi), i = 1, 2, ..r; (x, y, w, p) ∈ S},

t = minv1maxu,v2,z,q{fi(u, v)− ((v2)TCiv
2)

1
2 + (u2)TBizi

+ gi(u, v, qi − qTi ∇qigi(u, v, qi), i = 1, 2, ..r; (u, v, z, q) ∈ T},

where S and T are feasible region of Primal and Dual respectively.

Since, hi(x, y, pi) and gi(x, y, qi) are additively separable with respect to x1 or
y1 (say with respect to x1 ) from definition 2.9, it follows that

fi(x, y) = fi1(x
1) + fi2(x

2, y),

hi(x, y, pi) = hi1(x
1) + hi2(x

2, y, pi),

gi(x, y, qi) = gi1(x
1) + gi2(x

2, y, qi).

Therefore

∇y2fi(x, y) = ∇y2fi2(x
2, y),

∇pihi(x, y, pi) = ∇pihi2(x
2, y, pi),

∇qigi(x, y, qi) = ∇qigi2(x
2, y, qi).

So s can be written as

s = maxx1minx2,y,w,p{fi1(x1) + hi1(x
1) + fi2(x

2, y) + ((x2)TBix
2)

1
2

−(y2)TCiwi + hi2(x
2, y, pi − pTi ∇pihi2(x

2, y, pi), i = 1, 2, ..r; (x, y, w, p) ∈ S}

Subject to ∑r
i=1 λi[∇y2fi(x, y)− Ciwi +∇pihi(x, y, pi)] ≤ 0,

(y2)T
∑r

i=1 λi[∇y2fi(x, y)− Ciwi +∇pihi(x, y, pi)] ≥ 0,

wT
i Ciwi ≤ 1, i = 1, 2, .., r;

x1 ∈ U, y1 ∈ V, x2 ≥ 0, λ > 0,
∑r

i=1 λi = 1.

or

s = maxx1miny1(fi1(x
1) + hi1(x

1) + φi(y
1), i = 1, 2, ..., r;x1 ∈ U, y1 ∈ V ),

where (HMNSP0):

φi(y
1) = minx2,y2,w,pHi(x

2, y, w, p)

= {fi2(x2, y) + ((x2)TBix
2)

1
2 − (y2)TCiwi + hi2(x

2, y, pi)

− pTi ∇pihi2(x
2, y, pi)}
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Subject to

r∑
i=1

λi[∇y2fi2(x
2, y)− Ciwi +∇pihi2(x

2, y, pi)] ≤ 0, (3.11)

(y2)T
r∑

i=1

λi[∇y2fi2(x
2, y)− Ciwi +∇pihi2(x

2, y, pi)] ≥ 0, (3.12)

wT
i Ciwi ≤ 1, i = 1, 2, .., r; (3.13)

x1 ∈ U, y1 ∈ V, x2 ≥ 0, (3.14)

λ > 0,

r∑
i=1

λi = 1. (3.15)

Similarly,

t = minv1maxu1{fi1(u1) + gi1(u
1) + θi(v

1);u1 ∈ U, v1 ∈ V },

where (HMNSD0):

θi(v
1) = maxu2,v2,z,qiGi(u

2, v, z, qi)

= {fi2(u2, v) + ((u2)TBizi)− ((v2)TCiv
2)

1
2 + gi2(u

2, v, qi)

− qTi ∇qigi2(u
2, v, qi)}

Subject to

r∑
i=1

λi[∇u2fi2(u
2, v) +Bizi +∇qigi2(u

2, v, qi2)] ≥ 0, (3.16)

(u2)T
r∑

i=1

λi[∇u2fi2(u
2, v) +Bizi +∇qiqi2(u

2, v, qi)] ≤ 0, (3.17)

zTi Bizi ≤ 1, i = 1, 2, .., r; (3.18)

u1 ∈ U, v1 ∈ V, v2 ≥ 0, (3.19)

λ > 0,

r∑
i=1

λi = 1. (3.20)

In order to prove the theorem, it is sufficient to show that φi(y
1) ≥ θi(v

1).
From the hypothesis (4), we get

ϕ1(x
2, u2;α1(x

2, u2)(
∑r

i=1 λi[∇u2fi2(u
2, v) +Bizi +∇qigi2(u

2, v, qi)], ρ))

+(u2)T
∑r

i=1 λi[∇u2fi2(u
2, v) +Bizi +∇qigi2(u

2, v, qi)] ≥ 0.

which in view of (3.17) gives,

ϕ1(x
2, u2;α1(x

2, u2)(
r∑

i=1

λi[∇u2fi2(u
2, v)+Bizi+∇qigi2(u

2, v, qi)], ρ)) ≥ 0. (3.21)

Since
∑r

i=1 λi[fi2(u
2, v) + (u2)TBizi] is higher order (ϕ, α, ρ)-univex at u2 with

respect to gi2(u
2, v, qi), i = 1, 2, ..r; then for

b1 : Rn−n1 ×Rn−n1 → R+ and ψ1 : R→ R
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satisfying the property ψ1(u) ≤ 0 ⇒ u ≤ 0, ψ1(−u) = −ψ1(u) and using (3.21), we
get

b1(x
2, u2)ψ1{

∑r
i=1 λi[fi2(x

2, v) + (x2)TBizi − fi2(u
2, v)− (u2)TBizi

−gi2(u2, v, qi)] + qTi ∇qigi2(u
2, v, qi)}

≥ ϕ1(x
2, u2;α1(x

2, y)(
∑r

i=1 λi[∇u2fi2(u
2, v) +Bizi +∇qigi(u

2, v, qi)], ρ))

≥ 0

⇒
∑r

i=1 λi[fi2(x
2, v) + (x2)TBizi − fi2(u

2, v)− (u2)TBizi

−gi2(u2, v, qi) + qTi ∇qigi2(u
2, v, qi)] ≥ 0.

(3.22)
Again from the hypothesis (5), we have

ϕ2(v
2, y2;α2(v

2, y2)(
∑r

i=1 λi[∇y2fi2(x
2, y)− Ciwi +∇pihi2(x

2, y, pi)], ρ))

+(y2)T
∑r

i=1 λi[∇y2fi2(x
2, y)− Ciwi +∇pihi2(x

2, y, pi)] ≤ 0,

which in view of (3.12)

ϕ2(v
2, y2;α2(v

2, y2)(
r∑

i=1

λi[∇y2fi2(x
2, y)−Ciwi+∇pi

hi2(x
2, y, pi)], ρ)) ≤ 0. (3.23)

Since
∑r

i=1 λi[fi(x
2, y)− (y2)TCiwi] is higher order (ϕ, α, ρ)-unicave at y

2 for every
(x, y1, w) with respect to hi(x, y

2, pi), i = 1, 2, ..., r; then for

b2 : Y × Y → R+, ψ2 : R→ R,

we have

b2(v
2, y2)ψ2{

∑r
i=1 λi[fi2(x

2, v)− (v2)TCiwi − fi2(x
2, y) + (y2)TCiwi

−hi2(x2, y, pi)] + pTi ∇pihi2(x
2, y, pi)}

≤ ϕ2(v
2, y2;α2(v

2, y2)(
∑r

i=1 λi[∇y2fi2(x
2, y)− Ciwi +∇pihi(x

2, y, pi)], ρ)) ≤ 0,

which in view of (3.23) with the property of b2 and ψ2, gives∑r
i=1 λi[fi2(x

2, v)− (v2)TCiwi − fi2(x
2, y) + (y2)TCiwi

−hi2(x2, y, pi) + pTi ∇pihi2(x
2, y, pi)] ≤ 0.

(3.24)

Subtracting (3.24) from (3.22), we obtain∑r
i=1 λi[(x

2)TBizi + (v2)TCiwi]

≥
∑r

i=1 λi[fi2(u
2, v) + (u2)TBizi + gi2(u

2, v, qi)− qTi ∇qigi2(u
2, v, qi)]

−
∑r

i=1 λi[fi2(x
2, y)− (y2)TCiwi + hi2(x

2, y, pi)− pTi ∇pihi2(x
2, y, pi)].

(3.25)
Applying Schwartz inequality, (3.13) and (3.18)in (3.25)∑r

i=1 λi[fi2(x
2, y) + ((x2)TBix

2)
1
2 − (y2)TCiwi

+hi2(x
2, y, pi)− pTi ∇pihi2(x

2, y, pi)]

≥
∑r

i=1 λi[fi2(u
2, v)− ((v2)TCiv

2)
1
2 + (u2)TBizi

+gi2(u
2, v, qi)− qTi ∇qigi2(u

2, v, qi)].

(3.26)

So Hi(x
2, y, w, p) ≥ Gi(u, v

2, z, q) ⇒ φ(y1) ≥ θ(v1). Hence the results holds.
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Theorem 3.2. (Strong Duality) Let (x̄, ȳ, λ̄, w̄, p̄) be weak efficient solution of
(HMNSP). fi : Rn × Rm → R is twice differentiable at (x̄, ȳ), hi : Rn × Rm ×
Rm−m1 → R and gi : R

n × Rm × Rn−n1 → R are twice differentiable function at
(x̄, ȳ, p̄),and (x̄, ȳ, q̄),respectively. Assume that all the hypotheses of theorem 3.1 are
satisfied with addition to the following conditions:

a) for all i ∈ {1, 2, ..., r},

hi2(x̄
2, ȳ, 0) = 0, ∇pihi2(x̄

2, ȳ, 0) = 0, ∇y2hi2(x̄
2, ȳ, 0) = 0,

gi2(x̄
2, ȳ, 0) = 0, ∇x2hi2(x̄

2, ȳ, 0) = ∇qigi2(x̄
2, ȳ, 0),

b) for all i ∈ {1, 2, ..., r}, the Hessian matrix ∇pipihi2(x̄
2, ȳ, p̄i) is positive definite

or negative definite,

c) the set of vectors {∇y2fi2(x̄
2, ȳ) − Ciw̄i + ∇pihi2(x̄

2, ȳ, p̄i), i = 1, 2, ..., r} is
linearly independent,

d) for some β ∈ Rr
+ and pi ∈ Rm−m1 , pi ̸= 0, i = 1, 2, ..., r implies that

r∑
i=1

βip̄i[∇y2fi2(x̄
2, ȳ)− Ciw̄i +∇pi

hi2(x̄
2, ȳ, p̄i)] ̸= 0.

Then

(i) p̄i = 0, i = 1, 2, ..., r,

(ii) there exist z̄ ∈ Rn−n1 such that (x̄, ȳ, λ̄, z̄, q̄ = 0) is efficient solution for
(HMNSD) and two objective values are equal.

Proof. Since (x̄, ȳ, λ̄, w̄, p̄) is efficient solution for (HMNSP0), from the proof of
theorem 3.1, it is clear that (x̄2, ȳ, λ̄, w̄, p̄) is efficient solution for (HMNSP0). So
by Fritz-John optimality conditions stated by Mangasarian [15], there exist β ∈
Rr, θ ∈ Rm−m1 , γ ∈ R, δ ∈ Rr, ν ∈ Rr, ξ ∈ Rn−n1 such that

r∑
i=1

βi[∇x2fi2(x̄
2, ȳ) +Biz̄i +∇x2hi2(x̄

2, ȳ, p̄i)]

+
r∑

i=1

λi[(∇y2x2fi2(x̄
2, ȳ))T (θ − γȳ)]

+
r∑

i=1

(∇pix2hi2(x̄
2, ȳ, p̄i))

T (λiθ − βipi − λiγȳ)− ξ = 0, (3.27)

r∑
i=1

βi[∇y2fi2(x̄
2, ȳ)− Ciw̄i +∇y2hi2(x̄

2, ȳ, p̄i)]

+

r∑
i=1

λi[(∇y2y2fi2(x̄
2, ȳ))T (θ − γȳ)]

+(∇piy2hi2(x̄
2, ȳ, p̄i))

T (λiθ − βip̄i − λ̄iγȳ)

−γ
r∑

i=1

λi[∇∇y2fi2(x̄
2, ȳ)− Ciw̄i +∇pihi2(x̄

2, ȳ, p̄i)] = 0, (3.28)

(λiθ − βip̄i − λ̄iγȳ)
T (∇pipihi2(x̄

2, ȳ, p̄i)) = 0, (3.29)

(θ − γȳ)T (∇y2fi2(x̄
2, ȳ)− Ciw̄i +∇pi

hi2(x̄
2, ȳ, p̄i))− δi = 0,

i = 1, 2, .., r; (3.30)
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θT (
r∑

i=1

λi[∇y2fi2(x̄
2, ȳ)− Ciw̄i +∇pihi2(x̄

2, ȳ, p̄i)]) = 0, (3.31)

γȳT (
r∑

i=1

λi[∇y2fi2(x̄
2, ȳ)− Ciw̄i +∇pihi2(x̄

2, ȳ, p̄i)]) = 0, (3.32)

βiCiȳ + (θ − γȳ)TλiCi = 2νiCiw̄i, (3.33)

(x̄2)TBiw̄i = ((x̄2)TBix̄
2)

1
2 , (3.34)

z̄i
TCiz̄i ≤ 1, (3.35)

νi(w̄i
TCiw̄i − 1) = 0, (3.36)

δTλ = 0, (3.37)

x̄2ξ = 0, (3.38)

(β, θ, γ, ν, δ, ξ) ≥ 0, (3.39)

(β, θ, γ, ν, δ, ξ) ̸= 0. (3.40)

From the hypothesis (b), (3.29) yields

λ̄iθ − βip̄i − λiγȳ = 0 ⇒ λi(θ − γȳ) = βip̄i. (3.41)

We claim that β = (β1, β2, ...., βr) ̸= 0.
Otherwise, if β = 0, then (3.41) gives θ = γȳ and (3.28) yields

γ
r∑

i=1

λi[∇y2fi2(x̄
2, ȳ)− Ciw̄i +∇pi

hi2(x̄
2, ȳ, p̄i)] = 0.

Since {∇y2fi2(x̄
2, ȳ)−Ciw̄i+∇pihi2(x̄

2, ȳ, p̄i), i = 1, 2, .., r} is linearly independent
and λ > 0, we have γ = 0 and so θ = 0. Hence (3.27) gives ξ = 0 and (3.30) gives
δ = 0. Also (3.33) implies νi = 0. Thus (β, θ, γ, ν, δ, ξ) = 0, this contradicts (3.40).
So, β ̸= 0.

Since λi > 0 ⇒ βi > 0, i = 1, 2, .., r. Subtracting (3.32) from (3.31), we get

(θ − γȳ)T (
r∑

i=1

λi[∇y2fi2(x̄
2, ȳ)− Ciw̄i +∇pihi2(x̄

2, ȳ, p̄i)]) = 0. (3.42)

Using (3.41) in (3.42), we get

r∑
i=1

βip̄i[∇y2fi2(x̄
2, ȳ)− Ciw̄i +∇pihi2(x̄

2, ȳ, p̄i] = 0.

By hypothesis (d), we get p̄i = 0, i = 1, 2, ...r; and from (3.41), we get

θ = γȳ. (3.43)

Now using (3.43), p̄i = 0 and the hypothesis (a) in (3.27) and (3.28), we get

r∑
i=1

βi[∇x2fi2(x̄
2, ȳ) +Biz̄i +∇x2hi2(x̄

2, ȳ, p̄i)] = 0 (3.44)

and
r∑

i=1

(βi − γλi)[∇y2fi2(x̄
2, ȳ)− Ciw̄i +∇pihi2(x̄

2, ȳ, p̄i)] = 0. (3.45)
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Similarly from condition (c), (3.45) gives β = γλ. Thus, from (3.44) and ν > 0, it
holds

r∑
i=1

λi[∇x2fi2(x̄
2, ȳ) +Biz̄i +∇x2hi2(x̄

2, ȳ, p̄i)] = 0,

and from condition (a), we have

r∑
i=1

λi[∇x2fi2(x̄
2, ȳ) +Biz̄i +∇qigi2(x̄

2, ȳ, q̄i)] = 0.

Taking Bi = Ci, we get (x̄, ȳ, z̄, p̄i = 0) satisfied all the constraint from (3.16) to
(3.20). So it is feasible for dual.

Now let 2νi

βi
= a, then a ≥ 0.

So from (3.33) and (3.43), we have βiCiȳ = 2νiCiw̄i ⇒ Ciȳ = aCiw̄i. This is a
condition for equality in Schwartz Inequality. Therefore

(ȳ2)TCiw̄i = ((ȳ2)TCiȳ
2)

1
2 (w̄i

TCiw̄i)
1
2 .

In case νi ≥ 0, (3.46) gives w̄i
TCiw̄i = 1. So (ȳ2)TCiw̄i = ((ȳ2)TCiȳ

2)
1
2 . Hence

ϕi(ȳ
1) = fi2(x̄

2, ȳ) + ((x̄2)TBix̄
2)

1
2 − (ȳ2)TCiw̄i + hi2(x̄

2, ȳ, p̄ = 0)

− pTi ∇pihi2(x̄
2, ȳ, p̄ = 0)

= fi2(x̄
2, ȳ) + (x̄2)TBiz̄i − ((ȳ2)TCiȳ

2)
1
2 + gi2(x̄

2, ȳ, q̄ = 0)

− qTi ∇qigi2(x̄
2, ȳ, q̄ = 0)

= ψi(ȳ
1) for each i.

So the optimal values of both (HMNSP0)and (HMNSD0) are same.
Now we claim that (x̄2, ȳ, z̄, q̄ = 0) is an efficient solution of (HMNSD0). If this

would not be the case, then there would exist a feasible solution (ū2, v̄, z̄, q̄ = 0) of
(HMNSD0) such that

Gi(x̄
2, ȳ, z̄, q̄ = 0) ≤ Gi(ū

2, v̄, z̄, q̄ = 0)

⇒ Hi(x̄
2, ȳ, z̄, q̄ = 0) ≤ Gi(ū

2, v̄, z̄, q̄ = 0)

⇒ ϕ(y1) ≤ ψ(v1).

This is a contradiction to theorem 3.1. Hence (x̄2, ȳ, z̄, q̄ = 0) is an efficient solution
of (HMNSD0).

4. Self Dual

Amathematical programming problem is said to be self dual if it is formally identical
with its dual i.e. the dual is recast in the form of the primal and new program
constructed is same as the primal problem.

We now prove the following self duality theorem for the primal and dual.

Theorem 4.1. (Self Duality):
Assume m = n,U = V,Bi = Ci, pi = qi, zi = wi. If fi, hi and gi are skew symmetric
with respect to x and y with hi(x̄, ȳ, p̄i) = gi(x̄, ȳ, q̄i = 0), then (HMNSP) is a self
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dual. Furthermore, if (HMNSP) and (HMNSD) are dual programs and (x̄, ȳ, λ̄, w̄, p̄)
is an efficient solution for (HMNSP), then p̄ = 0 and (ȳ, x̄, λ̄, w̄, p̄) is an efficient
solution for (HMNSD). Also the values of two objective functions are equal to zero.

Proof. Rewriting the dual as maxi-min problem, we have

Maxv1Minu,v2,z,qG
∗(u, v, z, q) = {−fi(u, v) + (vTCiv)

1
2 − uTBizi − gi(u, v, qi)

+qTi ∇qigi(u, v, qi), i = 1, .., r}

Subject to ∑r
i=1 λi[−∇u2fi(u, v)−Bizi −∇qigi(u, v, qi)] ≤ 0,

(u2)T
∑r

i=1 λi[−∇u2fi(u, v)−Bizi −∇qigi(u, v, qi)] ≥ 0,

zTi Bizi ≤ 1, i = 1, 2, ..., r;

u1 ∈ U, v1 ∈ V, v2 ≥ 0,

λ > 0,
∑r

i=1 λi = 1.

Since fi(u, v) and gi(u, v, qi) are skew symmetric with respect to u and v, we have

fi(u, v) = −fi(v, u), gi(u, v, qi) = −gi(v, u, qi),
∇ufi(u, v) = −∇ufi(v, u), ∇qigi(u, v, qi) = −∇qigi(v, u, qi).

Hence the above dual program becomes,

Maxv1Minu,v2,z,qG
∗(u, v, z, q) = {fi(v, u) + (vTCiv)

1
2 − uTBizi + gi(v, u, qi)

−qTi ∇qigi(v, u, qi), i = 1, .., r}

Subject to ∑r
i=1 λi[∇u2fi(v, u)−Bizi +∇qigi(v, u, qi)] ≤ 0,

(u2)T
∑r

i=1 λi[∇u2fi(v, u)−Bizi +∇qigi(v, u, qi)] ≥ 0,

zTi Bizi ≤ 1, i = 1, 2, ..., r;

u1 ∈ U, v1 ∈ V, v2 ≥ 0,

λ > 0,
∑r

i=1 λi = 1.

Again since Bi = Ci, rewriting Bi as Ci and Ci as Bi and replacing v by x, u by
y, z by w in the above problem it becomes the primal. Hence the (HMNSP) is self
dual. Thus (x̄, ȳ, λ̄, w̄, p̄i) is an efficient solution for (HMNSP) implies (ȳ, x̄, λ̄, w̄, p̄i)
is efficient solution for (HMNSD). By similar argument (x̄, ȳ, λ̄, z̄, q̄i) is efficient
for (HMNSP) implies (ȳ, x̄, λ̄, w̄, p̄i) is efficient for (HMNSD). If (HMNSP) and
(HMNSD) are dual programs and (x̄, ȳ, λ̄, w̄, p̄i) is jointly efficient solution, the by
theorem 3.2, there exist z ∈ Rn such that

Hi(x̄, ȳ, λ̄, w̄, p̄ = 0) = Gi(x̄, ȳ, λ̄, z̄, q̄ = 0). (4.1)

Now

Hi(x̄, ȳ, λ̄, w̄, p̄ = 0) = fi(x̄, ȳ) + ((x̄2)TBix̄
2)

1
2 − (ȳ2)TCiw̄i + hi(x̄, ȳ, 0). (4.2)
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Using Schwartz Inequality and (3.3) in (4.2), we get

Hi(x̄, ȳ, λ̄, w̄, p̄ = 0) ≥ fi(x̄, ȳ) + ((x̄2)TBix̄
2)

1
2 − ((ȳ2)TCiȳ

2)
1
2 + hi(x̄, ȳ, 0). (4.3)

Similarly

Gi(x̄, ȳ, λ̄, w̄, q̄ = 0) = fi(x̄, ȳ) + (x̄2)TBiz̄i − ((ȳ2)TCiȳ
2)

1
2 + gi(x̄, ȳ, 0)

or by hypothesis of this theorem,

Gi(x̄, ȳ, λ̄, w̄, q̄ = 0) = fi(x̄, ȳ) + (x̄2)TBiz̄i − ((ȳ2)TCiȳ
2)

1
2 + hi(x̄, ȳ, 0). (4.4)

Using Schwartz Inequality and (3.8) in (4.4), we get

Gi(x̄, ȳ, λ̄, w̄, q̄ = 0) ≤ fi(x̄, ȳ) + ((x̄2)TBix̄
2)

1
2 − ((ȳ2)TCiȳ

2)
1
2 + hi(x̄, ȳ, 0). (4.5)

From (4.1), (4.3) and (4.5), we have

Hi(x̄, ȳ, λ̄, w̄, p̄ = 0) = Gi(x̄, ȳ, λ̄, w̄, q̄ = 0)

= fi(x̄, ȳ) + ((x̄2)TBix̄
2)

1
2 − ((ȳ2)TCiȳ

2)
1
2 + hi(x̄, ȳ, 0).

(4.6)

Again (ȳ, x̄, w̄, p̄ = 0) is also a joint efficient solution of (HMNSP) and (HMNSD).
This implies

Hi(x̄, ȳ, λ̄, w̄, p̄ = 0) = Gi(x̄, ȳ, λ̄, w̄, q̄ = 0)

= fi(ȳ, x̄) + ((ȳ2)TBiȳ
2)

1
2 − ((x̄2)TCix̄

2)
1
2 + hi(ȳ, x̄, 0).

(4.7)

Adding (4.6) and (4.7), we get

2H(x̄, ȳ, w̄, p̄ = 0) = 2G(x̄, ȳ, z̄, q̄ = 0)

= fi(x̄, ȳ) + ((x̄2)TBix̄
2)

1
2 − ((ȳ2)TCiȳ

2)
1
2 + hi(x̄, ȳ, 0)

+fi(ȳ, x̄) + ((ȳ2)TBiȳ
2)

1
2 − ((x̄2)TCix̄

2)
1
2 + hi(ȳ, x̄, 0).

Now for Bi = Ci and the skew symmetric of fi and hi, we obtain

H(x̄, ȳ, w̄, p̄ = 0) = G(x̄, ȳ, z̄, q̄ = 0).

5. Conclusion

In this paper, I presented a new generalized class of higher order (ϕ, α, ρ)-univex
function with example. We formulated Mond-Weir type nondifferentiable higher
order minimax mixed integer dual programs and symmetric duality theorems are
established under higher order (ϕ, α, ρ)-univex function. The results of this paper
studied under higher order (ϕ, α, ρ)-univex function is more general than the class
of sub linear function with respect to third argument. The present work can be
further generalized to fractional programming case.



210 A. K. Tripathy

References

[1] I. Ahmad, Second order symmetric duality for nondifferentiable minimax mixed
integer problem, Southeast Asian Bull. Math., 29 (2005), 843-849.

[2] I. Ahmad and Z. Husain, Nondifferentiable second order symmetric duality,
Asia-Pasific J. Oper. Res., 22 (2005), 19-31.

[3] I. Ahmad, Z. Husain and S. Sharma, Higher order duality in nondifferentiable
multiobjective programming, Numer. Funct. Anal. Optim., 28 (2007), 989-1002.

[4] I. Ahmad, Z. Husain and S. Sharma, Higher order duality in nondifferentiable
minimax programming with generalized type 1 function, J. Optim. Theory Ap-
pl., 141 (2009), 1-12.

[5] E. Balas, Minimax and duality for linear and nonlinear mixed integer pro-
gramming, Integer and Nonlinear Programming, North Holland, Amsterdam,
(1970), 385-417.

[6] A. Batatorescu, Preda and M. Beldiman, Higher order symmetric multiobjec-
tive duality involving generalized (F, ρ, γ, b)-convexity, Rev. Roumaine Math.
Pure Appl., 52 (2007), 619-630.

[7] C.R. Bector, S. Chandra, S. Gupta and S.K. Suneja, Univex sets, functions and
univex nonlinear programming, Lect. Notes in Eco. Math. System, Springer
Verlag, Berlin, 405 (1994), 1-8.

[8] X. Chen, Higher order symmetric duality in nondifferentiable multiobjective
programming problem, Math. Anal. Appl., 290 (2004), 423-435.

[9] G.B. Dantzing, E. Eisenberg and R.W. Cottle, Symmetric dual Nonlinear pro-
grams, , Pacific J. Math., 15 (1965), 809-812.

[10] G. Devi, Symmetric duality for nonlinear programming problem involving-
bonvex function, European J. Oper. Res., 104 (1998), 615-621.

[11] W.S. Dorn, A symmetric dual theorem for quadratic programs, J. Oper. Res.
Soc. Japan, 2 (1960), 93-97.

[12] T.R. Gulati and S.K. Gupta, Higher order nondifferentiable symmetric duality
with generalized F-convexity, J. Math. Anal. Appl., 329 (2007), 229-237.

[13] T.R. Gulati, I. Husain and I. Ahamad, Symmetric duality for nondifferentiable
minimax mixed integer programming problems, Optimization, 39 (1997), 69-84.

[14] M.A. Hanson, On sufficiency of the Kuhn -Tucker condition, J. Math. Anal.
Appl., 80 (1981), 845-850.

[15] O.L. Mangasarian, Second order and Higher order duality in nonlinear pro-
gramming, J. Math. Anal. Appl., 51 (1975), 607-620.

[16] S.K. Mishra and N.G. Rueda, Higher order generalized invexity and duality in
mathematical programming, J. Math. Anal. Appl., 247 (2000), 173-182.

[17] S.K. Mishra and N.G. Rueda, Higher order generalized invexity and duality in
nondifferentiable mathematical programming, J. Math. Anal. Appl., 272 (2002),
496-506.

[18] B. Mond and M. Schecther, Non-differentiable symmetric duality, Bull. Aust.
Math. Soc., 53 (1996), 177-188.



Mond-Weir type higher order minimax mixed integer.... 211

[19] B. Mond and J. Zhang, Higher order invexity and duality in mathematical
programming, Generalized convexity, Generalized Monotoncity, Recent Results,
Edited by J.P.Crouzeix et al, Kluwer Academic Pub., Dordrecht, 1998, 357-372.

[20] D.B. Ojha, Higher order duality for multiobjective programming involving
(ϕ, ρ)-univexity, World Applied Programming, 1 (2011), 155-162.

[21] G.K. Thakur and B.B. Priya, Second order duality for nondifferentiable multi-
objective programming involving (ϕ, ρ)-invexity, Kathmandu University J. Sc.,
Engg. and Tech., 7 (2011), 92-104.

[22] T. Weir and B. Mond, Symmetric and self duality in multiobjective program-
ming, Asia-Pacific J. Oper.Res., 5 (1991), 75-87.

[23] X.M. Yang, K.L. Teo and X.Q. Yand, Higher order generalized convexity and
duality in nondifferentiable multiobjective mathematical programming, Edited
by J.A.Eberhard, R.Hill, D.Ralph and B.M.Glover, Kluwer Academic Publ.
Dordrecht, Appl. Optimization, 30 (1999), 101-116.

[24] J.Zhang, Higher order convexity and duality in multiobjective programming
problem, In. Progress in Optimization, Contribution from Australasia ,(Ed-
s: A.Eberhard, R.Hill, D.Ralph, B.M.Glover), Kluwer Academic Publisher,
Dordrecht-Boston-London, Appl. Optimization, 30 (1999), 101-116.


