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Abstract Consider the model equation in synaptically coupled neuronal
networks

%—TZ +m(u—n)
= (a—au) [{T&e) [ K@@ —y)H (u(y,t — t|lz —yl) —6) dy] de
+(B = bu) [§70(7) [Jg Wz — y)H(u(y,t — 7) - 0)dy] dr.

In this model equation, u = wu(z,t) stands for the membrane potential of
a neuron at position xz and time ¢. The kernel functions K > 0 and W > 0
represent synaptic couplings between neurons in synaptically coupled neuronal
networks. The Heaviside step function H = H(u — 6) represents the gain
function and it is defined by H(u —6) = 0 for all u < ¢, H(0) = 3 and
H(u—6) =1 for all u > 6. The functions £ and n represent probability density
functions. The function f(u) = m(u—n) represents the sodium current, where
m > 0 is a positive constant and n is a real constant. The constants a > 0,
b>0,a>0,8>0and 6 > 0 represent biological mechanisms. This model
equation is motivated by previous models in synaptically coupled neuronal
networks.

We will couple together intermediate value theorem, mean value theo-
rem and many techniques in dynamical systems to prove the existence and
uniqueness of a traveling wave front of this model equation. One of the most
interesting and difficult parts is the proof of the existence and uniqueness of
the wave speed. We will introduce several auxiliary functions and speed index
functions to prove the existence and uniqueness of the front and the wave
speed.
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1. Introduction

1.1. The Mathematical Model Equations

Consider the model equation in synaptically coupled neuronal networks

—u—i—m(u—n)

ot

— () [0 | [ K- (u(n-te-il) o) anfac
+(,8—bu)/000n(r) {/RW(x—y)H(u(y,t—T)—H)dy} dr.

This model equation involves both nonlocal spatial temporal delay and nonlocal
feedback delay in synaptically coupled neuronal networks. In this model equation,
u = u(z,t) stands for the membrane potential of a neuron at position  and time
t. The kernel functions K > 0 and W > 0 represent synaptic couplings between
neurons. The positive constant § > 0 represents the threshold for excitation. The
gain function H = H(u — 6) denotes the output firing rate of a neuron. It is
given by the Heaviside step function: H(u—6) = 0 for all u < 6, H(0) = 1 and
H(u—0) =1 for all u > 6. The functions £ and 7 represent probability density
functions. The parameter ¢ > 0 represents the finite propagation speed of an action
potential along the axon and %|:1c — y| denotes the spatial temporal delay. The
parameter 7 > 0 represents a constant delay. The sodium channels are voltage
gated channels, in other words, sodium conductance is a function of the membrane
potential. The sodium current is derived by using Ohm’s law and should be a
nonlinear smooth function of u, just like the nonlinear function f(u) = u(u—1)(u—a)
in the Hodgkin-Huxley equations or in the Fitzhugh-Nagumo equations. The linear
function f(u) = m(u — n) appeared in this paper stands for a good approximation
of the sodium current, where m > 0 is a positive constant and n is a real constant.
We may interpret the constant m as the sodium conductance and the constant n
as the sodium reversal potential. The constants ¢ > 0, b > 0, a > 0, 8 > 0 and
0 > 0 represent biological mechanisms in synaptically coupled neuronal networks.
The integrals represent nonlocal spatial temporal interactions between neurons.
This model equation is somehow similar to the equation

St = (a—aw) [ e [ )

. URK(x_y)H (u (y,t—T— i|m—y|) —9) dy] drde.

Here are some examples of synaptic couplings

K(x) = Lexp(—plal),  W(x) = 2 exp(olal),

2
and
1 M
K(z) = m2[5($—Pk)+5($+pk)]7
1 kNl
W(z) = EZ[a(I—al)w(Ham],

I
—
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where § represents the Dirac delta impulse function, M > 1 and N > 1 are positive
integers, 0 < p < 00, 0 < p1 < p2 < - < pyy <00, 0< 0 <00, 0 <o <
09 < +-- < oy < o0 are positive constants. Here are some examples of probability
density functions

where p > 1 and ¢ > 1 are positive integers, 0 < ¢; < ¢3 < --- < ¢, < 00 and
0<1 <7 <:- <7y <00 are positive constants.

The model equation (1.1) contains many important equations in synaptically
coupled neuronal networks as particular examples.

(I) fa=0,b=0, m=1and n =0, then (1.1) reduces to the equation

g?*“::QAMH@L@K@—wH(u@J—im—m)-Qdﬂdc
+BAwWﬂ[Am“waW@¢ﬂ9ﬁ4dr

(I1) If &(c) = d(c — ¢p) and n(7) = 6(7 — 70), where ¢g > 0 and 79 > 0 are positive
constants, then (1.1) becomes the equation

%—Fm(u—n) = (a—au)/RK(z—y)H<u(y7t—clo|l’—y|>—9>dy

(8 — bu) / W — y)H (uly,t — o) — 0)dy.

(IIT) If b = 0 and S = 0, then (1.1) becomes the equation with only one kind of
delay

u
— +m(u—mn)

ot

~ aman et [ 1 (s e t) )] e

(IV) If a = 0 and a = 0, then (1.1) becomes the equation with another kind of
delay

ou

5 Fmu—n)=(8-bu) /OOO n(r) [/R Wz —y)H(u(y,t —7) — g)dy] dr.

(V) If£(c) = §(c—o0) and n(7) = 6(7), then (1.1) reduces to the equation without
any delay

G tme=n = (a—e) [ K= pHuwt) -0y

6 - bu) / Wa — ) H (u(y, 1) — 0)dy.
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(VI) If a=0,b=0,8=0,m=1,n =0 and £{(c) = 6(c — 00), then (1.1) reduces
to the equation

f—I—u—a/Kx— (u(y,t) — 0)dy.

These model equations occupy a central position in synaptically coupled neuronal
networks. For each of these equations, under appropriate assumptions on the model
equations, there exists a traveling wave front with a positive wave speed. Please
see [1]- [30].

1.2. The Main Goal

In this paper, we will couple together intermediate value theorem, mean value the-
orem and many techniques in dynamical systems to prove the existence and u-
niqueness of a traveling wave front of the model equation (1.1). We will make use
of several auxiliary functions and speed index functions and make use of rigorous
mathematical analysis to prove the existence and uniqueness of the traveling wave
front, under appropriate conditions on the constants and functions of the model
equation (1.1). The proof of the existence and uniqueness of the wave speed is the
most interesting and difficult part in this paper.

1.3. The Mathematical Assumptions
Suppose that the probability density functions & > 0 and n > 0 are defined on

(0,00). Suppose that there exists a positive constant ¢o > 0, such that £ = 0 on
[0, co] and £ > 0 on (cp, 00). Without loss of generality, let

co=sup{c>0:&=0on (0,c) and £ >0 on (c,00)}.

Suppose that the synaptic couplings K > 0 and W > 0 are at least piecewise smooth
functions defined on R. Suppose that

2
n<9<%, an < «, bn < B, (1.2)
ba — af < 2m(B — bn), (1.3)
- &(c)de =1, /00 n(r)dr =1, (1.4)
0 0
/ 1§(c)dc < 00, / n(7) exp(m7)dr < 00, (1.5)
o ¢ 0

/K(x)dle, /V[/(:E)dx:l7 (1.6)
/ ko=t [ we

D)+ W) < Cexp(—plal),  on R, (L8)

l\')\»—t
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0—n
a+pB—(a+bn
2 2m+a+b

a+B—(a+bdn  2c

0

ol (a)ate| |
for two positive constants C' > 0 and p > 0. Define the auxiliary function in
(0, ¢0) x (—00,0) by

fa= @ { [T | [ W ar]

/ { / T eo) [ / C;/(C+s(z)” K(m)dx] dc} |

Suppose that for each fixed p € (0,¢p), f1(2) = f(y, 2) is an increasing function of
z in (—00,0). Suppose that for each fixed z < 0, fo(u) = f(p, 2) is a decreasing
function of x4 in (0, cp).

Ifa=0anda=0,orif 8 =0and b =0, orif a =0 and b = 0, then the
assumptions on the monotonicity of f are automatically satisfied.

(2m +a +b)* — (2m + a)(2m + a + b)?

< 2m(2m + a)exp {

. {(aan) /0 \x|K(x)dx+(ﬂfbn)/

—0o0 —0o0

Z—uT

1.4. The Definitions of Several Auxiliary Functions

We define the sign function and several auxiliary functions to make the statements
of the main results and the mathematical analysis as simple as possible. Define
s = s(z) by s(z) = —1 for all z < 0, s(0) = 0 and s(z) = 1 for all z > 0.
Define k1 = k1(W,2), ko = ka(u, 2), ks = k3(2), ke = ka(2), kK5 = K5(c, 1, 2),
ke = ke(T, 1, 2), k7 = k7(W, 2) and kg = Kg(w, 2) by

00 cz/(c+s(z)p)
k1(p, 2) = (a— cm)/o &(e) [/ K(m)dx] de

—00

+(8—bn) /O n(7) { /_ : W(x)dx} dr,
m+a /0 ") [ / e K(m)dx] de

K;g(,th) =
') z—uio
+b/ n(T) [/ W(x)d;v] dr,
0 —0o0
k3(z) = az/ K(m)dx—a/ zK (z)dz,
Ka(2) = bz/ W(w)dx—b/ aW (z)dz,
e cz/(c+s(2)R) o cz/(c+s(2)n) o
Ks(c p,2) = aC‘FS(Z)M/oo () I—a[m zK (z)dz,
Z2—uT z—uT
ke(T,py2) = bz — ,uT)/ W(z)dx — b/ aW (z)dx,
m [ c+ s(2)u _Oo( cz >
) = —z+ d
w7, 2) eXP{ ”OOZ /0 &(c) il K3 ct s c

# 2 [T ate - prjar |
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i = s [
{ (eramn) ”3“)*%%’?(%ﬂdc
+/0 (M{wr[Ky(z = pr) = i (—pr)]

+[ka(z = p1) = Ka(—p7)] }dT}.

Note that the auxiliary functions k1, Ko, k3, k4, K5, K¢, K7 and kg depend on the
constants (a,b), (m,n), (a, ) and the functions (£,n), (K, W) and the parameter
. These functions will help us study the dependence of the traveling wave front
on the constants (a,b), (m,n), (a, ), 8, the probability density functions (£,7) and
the kernel functions (K, W).

Let us investigate simple properties of the auxiliary functions. First of all,
because K > 0and W >0on R, £ >0 and 7 > 0 on (0,00), for all 0 < pu < ¢p and
for all z, we have

0<ki(,2) <a+p—(a+b)n,
m < ko(u,z) <m+a+b,
’{3(2) > 07 /{4(’2) > Oa R7(Hﬂz) > Oa HS(N& Z) > Oa

cz cz/(c+s(2)n) 0
= ai/ K(z)dz + a/ K (z)dz <0,
c+ S(Z)ﬂ’ —00 cz/(ct+s(z)p)
cz zs(z)p Oks cz
= )- e} <
(o) 0 i o (o) <
ra(z — pr) = Ka(—p7)

Z—pT Z—puT Z—uT
= bz/ W(z)dz — b[LT/ W (z)dx — b/ aW (z)dz <0,

—o0 —pT — T

Z— T
k(e = ur) = ki) =b [ Wiapds <o,

—pT

cz
Ks(c, i, 2) = K3 (c—i—s(z)u) >0, ke (T, 2) = Ka(z — p1) >0,

sew oo [0 o (i) o)

- ;/OOO 0(7) [ka(z — pr) = m(—MT)]dT} >0

If z # 0, then we have the derivatives

%(u,z) = (o —an) /OOo £(c) [c+ sc(z);LK (C+Csz(z)u)] i

(B bm) / TNz — pryr,
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o= [0 [k ()

0
+ b/o n(T)W(z — pr)dr,

%(z) = a/_; K(x)dx,

%(z) _ b/; W (2)da,

6325 (cp1.2) = “ﬁ /C:O/(C+S(2)u) (o),
%(T,M, z) = b/;m W (x)dz,

Ok

1
E(.uﬂ Z) = p’{2(,u’7 2)57(1‘&3 Z)v

0 [%7(#&)] _ kr(p, 2)

9 Lrnn0) ]~ o 0) 217

Moreover, we have the limits

BI;H Kl(u7z) = 07 lim Kl(,uvz) = Oé—f—ﬁ - (a+b)n7

Z—>00
lim ko(u,z) =m, lim ko(p,2) =m+a+b,
z——00 Z—00
zgr_noo r3(p, ) =0, Zl}r_noo ra(p,z) =0,
ZEEHOO 55(:“72) = 07 ZEEHOO HG(IU’?Z) = 07
: B Rz z)
zggloo wr(p, 2) =0, ZEI_HOO k7(1,0) =0

These auxiliary functions may be simplified for special cases.
(I) For the model equation

ou
5 +m(u—n)

= (o) [ e | [ K-t (u(mi- o= l) - 6) au ae

we have § =0, b = 0 and the auxiliary functions become

o0 cz/(c+s(2))
k1(p,2) = (o — an)/o &(e) l/ K(x)dx] de,

— 00

o cz/(c+s(z)p)
Kg(,u,z):m—i—a/ &(e) [/ ' K(m)dx] de
0

—0oQ

k3(z) = az /_ZOO K(x)dx — a/j><> xK(z)dx, ka(2) =0,

e [ )]
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ks, 2) = —ulz{mz + /0°° £(c)

B zs(z)p Okg cz
[@’(c + s(z),u) ria(0) + c+s(z)p 0z (c + s(z)uﬂdc}'
(IT) For the model equation

Ju

— +m(u—n)

ot
— (-0 [ atr) [ W) - e>dy] ar.

we have a = 0, a = 0 and the auxiliary functions become

w2) = (6 =) [ () [ [ W(w)dx] ar.

— 00

ko, 2) = m + b/om n(r) U_: W(x)dx} dr,

k3(2) =0,  ka(z) = bz [ ; W (z)dz — b / aW (z)dz,

— 00

(i 2) = exp{fjwi | ntrmate —uT)dT},
Ks(p,2) = —:z{mm— /Ooo n(7)
Aur Ry (2 = pr) = Ky (=pm)] + [Ka(z — p7) = Ka(—p7)] }dT}-

1.5. The Speed Index Function
Let us define the speed index function in (0, ¢g) by

/O Kr(p,2) O [ﬁl(uvz)]dz_ w1 (g, 0)
—oo K7(11,0) 0z [ K2(p, 2) K2 (4, 0)”

P(p) =

It is easy to see that ¢ = ¢(u) is a continuous function of p even if K and W are
piecewise continuous on R. Also it is easy to find that

k(s 2) : at+pf—(a+tbn
m =0, lim =— , lim = ¢(cp) > 0.
) Jim, o(1) omtath i ou) =¢lc)
The speed function is a very important concept in mathematical neuroscience and
will play very important role in proving the existence and uniqueness of the wave
speed of the traveling wave front of (1.1).
As before, the speed index function may be simplified for special cases.

(I) For the model equation

ou
5 + m(u—n)

= (a-an) [ e | [ et (u(mi- L= l) - 0) ] ae
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we have =0, b =0 and

k1(p,0)  a—an
ko(11,0)  2m+a’
i =emon [T | [T e
/{m+a/ooo£(c) l/ e )K( Ydz | de }
R
/ m—&-ou/0 (o) [/_Oo( e )M)K( )dx] dc} ,
Z:EZ:;% N L /OOO §(C)c+;§zw [K?’(cqt(;z(z)u) - ;@3(0)}dc}.
Now the speed index function becomes
= [ 2 (et - i 8%
0 c+s cz
el [

i} { [ e i (25 o}
/{m+a/o £(c) V_: e )H) K(z)dz dc}de— ;‘m_fz

(IT) For the model equation

gu +m(u—n)

ot

Bbu/

we have @« =0, a = 0 and

g = - [
H{mo [ oo
iy [

o [ atr)

e

u(y,t —7) G)dy] dr,

o[ e
[ o).
[ v
[ o).




154 L. Li, N. Li, Y, Liu and L. Zhang

5[]

=m(B8 —bn) /OO n(T)W(z — pr)dr

/{m+b ) {/_;MW(QJ)dx} dr} ,

0
Z:EZ g; =exp{Tat % /OOO 1(7) [Ra(z = u7) = ma(—pem)]dr |-

Now the speed index function reduces to

bo (1) :/0 K7(p,2) 0 [/61(/,6,2):| & k1 (1, 0)

—00 I<L7(,U,, 0) E K2 (Ma Z) K2 (/La O)
0 m 1 oo
= m(B8—bn) / N exp {’uz + ; /0 n(7) [m4(z —ut) — /f4(—,m')]dr}

{/OOO n(T)W(z — m)df} / {m + b/ooo n(7) U:W W(x)dx} dT}2 dz

- - [ Oon(r)[ HTW(a:)d:z:] ar

— 00

{m+ b/ooo n(r) [ O: W(;z:)d:z:] dT} .

1.6. The Main Result

~

Theorem 1.1. There exists a unique wave speed g and there exists a unique trav-
eling wave front u(z,t) = U(x + uot) to the model equation (1.1). The traveling
wave front crosses the threshold 0 exactly once, where pg represents the wave speed
and z = x + pgt represents the moving coordinate. The front is the unique solution
of the boundary value problem

poU" +m(U —n)
— (a-a0) [ €@ | [ kG-t (U (- 221 - 0l) - 0) ] ac

+a-w0) [ [ [ W= - o) - e)dy} ar,

lim U(z) =n, lim U(z) = atf+mn lim U'(z) = 0.

z2——00 2—00 a+b+m’ z2—00

The wave speed g is the unique solution of the speed equation

/0 K)7(/1,,Z)2 ["{1(/1'72)] dz — Kl(ﬂvo)
—o0 K7(M?O> 0z ’%2(”’3) "@2(/"’0)

= n-—20.

2. The Mathematical Analysis - the Proof of the
Main Result

The main goal of this section is to prove the existence and uniqueness of the traveling
wave front and the existence and uniqueness of the wave speed.
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Suppose that u(z,t) = U(x + ut) is the traveling wave front of (1.1), where p
represents the wave speed and z = x + ut represents a moving coordinate. Then the
traveling wave front and the wave speed u satisfy the integral differential equation

pU" +m(U —n)
= (a-a) [ a0 | [ KG- (U (51— ) - o) ac

+(B —bU) /OOO n(7) [/R W(z—y)HU(y — pr) — e)dy} dr.

First of all, we will derive formal but explicit representation of the traveling wave
front of the model equation. Then, we will prove the existence and uniqueness of the
wave speed. Finally, we will prove the existence and uniqueness of the traveling wave
front. We will use the auxiliary functions and the speed index function introduced
earlier to achieve our main goal.

2.1. The Representation of the Traveling Wave Front

The main goal of this subsection is to derive the representation of the traveling wave
front of (1.1).

Recall that there exists a maximum positive constant ¢y > 0, such that £ =0
on [0,¢o] and £ > 0 on (cp,00). That is

co=sup{c>0:&=0on (0,c) and £ > 0 on (c,00)}.

Suppose that the wave speed p satisfies the condition 0 < p < ¢o. For the first
integral in the last equation, making the change of variable

_ K
w=y—=|z—yl
C
then
e = oy ey
I
(z=y) [1+ Lz —p)|

= -y 1+ s -w),

and then we find that
c

2y = m(sz),
= - W — e z—w)s'(z — w)dw.
by = chs(z—w)ud [CJrS(sz)u]?( )s'( )d

Now the above integral differential equation becomes

uU" +m(U —n)

= (o) [0 | [ st () B ) - o ac
#6=00) [ oo [ [ Wtz = ur - i) - oy .
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The traveling wave front is translation invariant. Suppose that the traveling wave
front satisfies the conditions U < 6 on (—00,0), U(0) =6, U'(0) > 0 and U > 6 on
(0,00). Then the traveling wave equation becomes

pU’ +m(U o
_ a—aU/f '/ CH(ZCW)MK<c+ciiz_wl)u>dw]dc

s =) [ o) | [T W - ur - ay] ar
— (a—al) /0 “ (o) _ /_ C:(CH(Z)“) K(m)dx] de
(B — bU) /0 ) [ / ;M W(J;)dm] dr,

where in the first integral of the right hand side, we let
c
vz c—i—s(z—w)u(z_w)’
c cl

R ) PRl R e

(z —w)s'(z — w)dw.

Rewriting this equation as a first order nonhomogeneous linear differential equation,

we have
0o cz/(c+s(z)p)
w(U —n) + {m+a/0 &(e) [/ e K(x)dx} de

— 00

+ b/ooo n(7) U_:” W(x)dx] dT} W - n)

~ (a—an) /0 e [ [ C:(CH(Z)M K(x)dx] de

+(B8 — bn) /Ooo n(r) [/HT W(x)dx] dr.

—0o0

Now let us use the auxiliary functions introduced in Subsection 1.4 to rewrite this
equation in a simple way. We get

/
nU(z) =) + o, ) [U(2) =] = k(. 2).
Multiplying the differential equation by the integrating factor k7 (u, z) and integrat-
ing the result with respect to z, we get

!

{MK7(M7Z) [U(z) _n]} = ’%1(:“72)57(//'72%

pkr(p, 2) [U(z) —n] /Z k1 (p, ) k7 (p, z)d.

—0oQ

Therefore, the traveling wave front may be represented as

U(z)=n+ % /Z k1 (p, x) k7 (p, z)de.

7 (1,2) o
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Note that, by using integration by parts, we get

! /z k1(p, x)kr(p, x)de

NK7(M3 Z) —00

Therefore, we obtain the formal representation of the traveling wave front

Z)=n Kl(’u’z)— : "”"7(“’”3)ﬂ K1 (p, @) x
U( )_ + /{2(#72) /_OO K?7(M,Z) o [Hz(u,x)} dz.

By using the limits

zgl;noo K?l(ﬂ’a Z) = 07 ZEEHOO "{2(/1’7 Z) =m,

lim k1(p,2) =a+p—(a+bn, lm ke(u,z)=m-+a+b,
Z—00 Z—00

and by using L’Hospital’s rule, we find that

im U(z)=n,  lim U(z) = 20 Tm0 lim U'(z) = 0.

Z——00 Z—00 a+b+m ’ z—+o0

2.2. The Existence and Uniqueness of the Wave Speed

The main goal of this subsection is to prove the existence and uniqueness of the
wave speed po of the traveling wave front of (1.1).

Letting z = 0 in the solution representation, we have

=n Hl(/"o) . 0 ’%7(:[‘72)2 ’il(uvz) 5
v = +@mﬁ>tlwmwmaimmﬁﬂd‘

The wave speed pg should be the solution of the speed equation U(0) = 6, that is

o= [ e 0 )]y, m0n0)

—o0 57(:”70)% HQ(/JHZ) "4‘2(/”"0) B

Now let us use intermediate value theorem to prove the existence of the wave speed
o, which is a solution of this above equation. Recall that ki(u,z), ka(p,2) and
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k7(w, z) are defined by

00 cz/(c+s(2))
ki(p,z) = (a— an)/o (o) l/ K(x)dx} de

(8 — bn) /Ooo n(r) [/;W W(x)dx} dr,
ko(p,2) = m+ a/oo &(e) [/_c:(CH(Z)“) K(m)dm} de

+b/“ L/z'” Cﬂdx]dﬂ

R Py s
41 /Ooo n(r)a(s — m)dT} ,

I
kr(p, 2) {m /°° c+ s(z)u { ( cz > }
—— = expl—2+ c K —k3(0)| de
r7(p,0) Pk 0 {© cp “\ets(z)n 3(0)

1 oo
+ ;/ n(7) [/{4(2’ —pT) — H4(u7')]d7} .
0
It is easy to see that
Jlim ma(p,2) =0, lim Ra(p,z) = m.

Let us derive lower bounds for the functions 2442 and 2 {”1(“’2)] Recall that

k7 (p,0) 0z | k2(p,2)

the probability density functions £ > 0 and > 0 on (0,00), and the synaptic
couplings K > 0 and W > 0 on R. By mean value theorem, we find that for all
z <0,

[0 o ) o [

1 ‘X’n()[m(z—/w)—m;( pr)]dr < — / W (z)dz = ﬂ

uz

Hence, by using the assumptions on the monotonicity of fi, for all z < 0, we get

K7, 2) 2m+a+b
> -
R 0) = “p{ ST
0 [k1(w,2) 4m Ok
el > — .
[@(u,z) @m+a+bE 0z 7

Let us derive lower bound and upper bound for the functions k1 (u, 2), ko(u, z) on
(0, o) x (—o0,0) and the integral f k1(p, z)dz on (0, cg). By using the definitions,
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we have
0 < A1 (/”'a Z)

o0 ez (c+s(=))
= (a—an) (e / K(x)dz| de
0

(8- bm) /0 n(r) { / ;’” w<x>d4 ar

- b
- a+p 2(a+ )n7

0o cz/(c+s(z)p)
ko(u,z) = m+a/ &(c) l/ e K(x)dx} de
0

— 00

+b/000 n(7) [/Z_W W(m)dx] dr >m+ 2,

—00

0
0 < / k1(p, z)dz

—0o0

= zr(p 7)o

/_Ow KA (c+ sc<2z>u>> dz} e

/0 P |W(z—m')dz} dr

+(a —an) /Oooﬁ(c) [
+<ﬂ—bn>/°°n(r>[ i}

_ a—an/ £(c [/ 12| (z) ]dc

+(@ =) [ (o [ / oWz — ]

— 00

0

(a—an)/_ \x|K(x)dx+(6—bn)/ 2| W (2)da

IN

Now, by using these lower bounds and upper bounds for ki(u,z), k2(u,2) and
f_ k1(u, z)dz, we get the following valuable lower bound

/0 m(uvz)a{’“(”’z)}dz

KQ(H&'Z)
S 4m /O
—_ X
~ (2m+a+10b)? _Ooep
4m O 9k
> - )

.eXp{ 27717;7:“’/ H%dz// 8”1 }

4m 2m+a+b k1(p, 2) }
= ’0 — d .
(2m+a+ b)Qﬁl(u )eXp{ 20 /m mr(p0)
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As a function of k1(u,0),

2m+a+b/0 m(u,z)dz} ~ ki(p,0)

2p —o0 K‘l(luao)

a+6—(a+b)7L)
2

4m (11,0)
—=K exp 4 —
@m +at b2 TP
is a decreasing function on (0, . Furthermore, we have the following
important lower bound on (0, ¢g) which is closely related to the speed index function

B()

dm 2m+a+b [ ki(p 2) k1(p,0)
a0 | [ e -
S 4dm a+pB—(a+bn
- (2m+a+0b)? 2
-exp{—2m+a+b 2 /0 (i Z)dz}_a-l-ﬁ—(a—i—b)n
2p a+57(a+b)n —00 7 2’{2(:“70)
S 4dm a+p—(a+b)n
- (2m + a +b)? 2
2m+a+b 2
'eXp{‘ 21 a+B—(atbn

- [(oz—cm) /0 | K (2)da + (8 — bn) /0 [ W (2)da

— 00 — 00

_a+pB—(a+b)n
2m +a
> n—=60.

The last inequality is due to assumption (1.9). Thus, we obtain the desired estimates

. a+B—(a+d)n
1 =—
uE& (1) 2m+a+b

#113010 B(p) = ¢(co)

<n-—20,

dm om+a+b (O ki(co,2)
> 0 —_— ——=d
- (2m+a+b)2ﬂ1(60’ )exp{ 2¢o /,Oo r1(co,0) ‘

_ H1(0070) > n—6.
r2(co, 0)

Therefore, by using intermediate value theorem, the existence of the wave speed pg
is easy to prove.

Now we will use mean value theorem to prove the uniqueness of the wave speed.
It is not difficult to use condition (1.2) to find that

R T

—uT

W(a)da] ar

) — T
/ {Qm +a+ 2b/ n(T) { W(x)da:} dr} > 0,
0 —00
and then use condition (1.3) to estimate the derivative

L] = e [t

2

/{2m+a+2b/00077(7)[ _HTW(x)dx] dT} <o0.

— 00
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Additionally, by using condition (1.2) and the monotonicity of f2, we have

3 )

= L { [0 [ ()| )

i =) { [~ o)W - prar

o cz/(ct+s(z)p)
—(aB — ba) {/0 &(e) /_ K(m)dm} dc}
: )
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——
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8
e
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| a— N
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8 L
>
+
W
O
=
Ja
&
ol
&
| IR ) S—
(oW
o)

in (0,¢g) X (—00,0). Similarly, we have

e s

+ % /OOO n(r) [5a(z = pr) = /@4(—MT)]dT} >0,

and

2 H7(M72> _ ’%7(“72")% P
O [57(%0)} a s(:7)

= —Mlz{mz—k/ooo &(e) [/13 <c+iz(z)u> — #3(0)
+Cfiill;ua<9?) <c+iz(z)ﬂ)}dc
+/OOO n(r){pr[Ky(z = pr) = K4 (=p)] + [Fa(z — pr) = H4(_M7)]}d7}

.H7(:U’? Z)
H7(ﬂ70)

Additional to all assumptions made in Subsection 1.3, let us make the last assump-
tion

> 0.

w5 [ 5]+ L) >
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in (0, cp) X (—00,0). This condition is reasonable because rg(u, z) > "Lf' in (0, co) x
(—00,0). Now, it is not difficult to see that

[ s[5 o)
)}m
0.

/{{ﬂmﬂ[ﬁﬁWZ&&iﬁmﬂ
[}a=
Therefore, we obtain

K7 u, z) {m(u,Z)}jL o [m(u,z
s = [ gr{mea s [ e- 2 [

= [{8
,0)

for all 0 < p < ¢p. By using intermediate value theorem and mean value theorem,

we know that there exists a unique wave speed 1, such that ¢(ug) =n — 6.

~— | —

ko (p, 2) oudz | ko, 2

2.3. The Existence and Uniqueness of the Traveling Wave
Front

The main goal of this subsection is to prove the existence and uniqueness of the
traveling wave front of the model equation (1.1).

Suppose that the kernel functions are nonnegative synaptic couplings defined on
R. By the assumption on the monotonicity of f;, we have

A=)

= {mieaen{ [ a0 | ()|

/000 n(r)W(z — ur)dr}

o0 e/ (c+s(2)1)
+(af — ba) {/0 &(e) l/ K(a:)dx] dc}

—(af — ba) { /O T ) { [ ;M W(x)dx} dT}
AL o e () oo}
/ {m ta /0 ") [ /_ C;/(C+S(ZW K(m)dx} de

2

b /0007,(7) [/ZO;MW(:U)dw] dT} >0,
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in (0,cp) X (—00,0). Therefore, if we let p = pg in the formal representation of the
traveling wave front, then we find that

U'(z) = M/ w7 (po, ) & [“1(%7%)] dz >0, on R,
Ho —oo k7(t0, 2) Ox | K2 (0, T)

In particular, we have U’(0) > 0. Thus, the traveling wave front u(x,t) = U(z+ uot)
satisfies the desired conditions U < 6 on (—00,0), U(0) =6, U'(0) > 0 and U > 0
on (0,00). This means that the traveling wave front is a solution of the model
equation (1.1).

The proof of Theorem (1.1) is completely finished.

2.4. Some Remarks

In this paper, assuming that both kernel functions K and W are nonnegative on R,
we have proved the existence and uniqueness of the wave speed and the existence
and uniqueness of the traveling wave front of the model equation (1.1). Nevertheless,
we did not prove the same or similar results when the kernel functions represent
lateral inhibitions or lateral excitations in synaptically coupled neuronal networks.
We hope that these results are also true.

The stability of the traveling wave front is very important/interesting in math-
ematical neuroscience, see [9,18,23-28]. This is worth of rigorous mathematical
analysis.

3. Conclusion

3.1. Summary

We have coupled together intermediate value theorem, mean value theorem and

many techniques in dynamical systems to prove the existence and uniqueness of

the wave speed pp and the existence and uniqueness of the traveling wave front

u(x,t) = U(x+pot) of the model equation in synaptically coupled neuronal networks
Ju

§+m(ufn)

e 1
— (o) [ e | [ &t (u (=T l) - 0) o ae
0 R
=) [Tat) | [ W= pane - - o] ar
0 R
The wave speed g is the unique solution of the speed equation

/O k7 (pho, 2) O {fﬁ(ﬂoaz)} g _ f1(o, 0)

~ oo #7(10,0) 0z | Ka(po, 2) K2 (fo, 0)

[l [0 [ (i) -]

1 oo

s L n(T)[m(z—uoT)—m(—uoT)]dT} 0

- {a — an+2(8 — bn) /OOO n(r) U: W (z)dz

d(po) =
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/ {2m Fat2 /OOO n(7) [/_:T W(x)dx] dT}

= n—40
A very important step in establishing the uniqueness of the wave speed pg is to
show that
(b/(/.}/) _ /0 8{/@'7(”,2)8 |:/£1(/,L,Z :|}d2—8 |:l§31(/.t,0):|
—oo O L K7(1,0) 02 | Ka(p, 2 o [ K2(p,0)
z

- /ig ol {win g [ 2] 4 05 [ s
o L) o

In the above model equation, u = u(x,t) stands for the membrane potential of a
neuron at position x and time ¢ in synaptically coupled neuronal networks. The
kernel functions K > 0 and W > 0 represent synaptic couplings between neurons.
The Heaviside step function H represents the gain function and it is defined by
H(u—0) =0 forallu < ¢, H0) =% and H(u—#6) =1 for all u > 6. The functions
¢ and n are probability density functions. The function f(u) = m(u—n) represents
a sodium current, where m > 0 is a positive constant and n is a real constant. The
constants @ > 0,6 >0, « > 0, B > 0, 8 > 0 represent biological mechanisms. This
model equation is motivated by previous models in synaptically coupled neuronal
networks, see [1,3,5,7,9,17,18,21,23-28].

Overall, there exists a unique traveling wave front u(z,t) = U(z + pot) to this
model equation, where g = pg(a,b,m,n,«, 3,€,n, K,W,0) represents the wave
speed and z = x + pot represent the moving coordinate. The traveling wave front
u(x,t) = U(z + pot) and the wave speed pp satisfy the traveling wave equation

U’ +m(U —

= (afaU/ |:/KZ <y|zy|)0)dy}dc
+a=30) [ ) | [ W= D HW - por) - ),

and some boundary conditions at z = +o0.

3.2. Open Problems

Consider the nonlinear singularly perturbed system of integral differential equations
in synaptically coupled neuronal networks
Ju

E—i—m(u—n)

oo [e0 ][ Kt (u(ne- L) o) ]

=) [Ta) | [ W -0 - o)) an

ow
= e(yu — w),
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where u = u(x,t) represents the membrane potential of a neuron at position  and
time ¢, w = w(x,t) represents the leaking current in synaptically coupled neuronal
networks. The kernel functions K and W represent synaptic couplings between
neurons in synaptically coupled neuronal networks. The gain function is given by
the Heaviside step function: H(u—0) =0 for all u < 6, H(0) = %, and H(u—0) =
for all u > . The probability density functions £ and n are defined on (0, c0).

The traveling pulse solutions (u(z,t),w(z,t)) = (U(z + p(e)t), W (z + p(e)t))
and their wave speeds p = u(e) would satisfy

pU" +m(U —n)+ W

_ (a—aU/ [/Kz— U(y—‘c‘z—m)—e)dy]dc

—|—(5—bU/ [/Wz— (y—uT)—Q)dy}dT,
pW' =e(U — W),

if they exist, where z = x + u(e)t represents a moving coordinate. However, the
existence and stability /instability of fast/slow traveling pulse solutions of the non-
linear singularly perturbed system of integral differential equations have not been
proved yet. They are worth of rigorous mathematical investigation.
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