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Abstract In this paper we deal with the center problem for the trigono-
metric Abel equation dρ/dθ = a1(θ)ρ

2 + a2(θ)ρ
3, where a1(θ) and a2(θ) are

trigonometric polynomials in θ. This problem is closely connected with the
classical Poincaré center problem for planar polynomial vector fields.
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1. Introduction and statement of the main results

We consider the ordinary differential equation

dρ

dθ
= a1(θ)ρ

2 + a2(θ)ρ
3, (1.1)

where ρ is a real variable and ai(θ) are trigonometric polynomials in θ for i = 1, 2.
When a1(θ) and a2(θ) are identically zero, we say that (1.1) is a trivial center. We
shall denote the derivative of ρ with respect θ by dρ/dθ or ρ′. We can solve equation
(1.1) by the Picard iteration and find a solution which is unique with the prescribed
initial value ρ(0) = ρ0. We say that equation (1.1) determines a center if for any
sufficiently small initial values ρ(0) the solution of (1.1) satisfies ρ(0) = ρ(2π). The
center problem for equation (1.1) is to find conditions on the coefficients ai under
which this equation determines a center.

The original center problem arises from the study of the planar analytic differ-
ential systems first studied by Poincaré [27] and later by Liapunov [26] and other
authors, see [8, 20, 21, 24, 25]. In the case of a non-degenerate singular point the
system can be written into the form

ẋ = −y + P (x, y), ẏ = x+Q(x, y), (1.2)

where P andQ are analytic functions without constant and linear terms i.e. P (x, y) =∑∞
i=2 Pi(x, y) and Q(x, y) =

∑∞
i=2Qi(x, y), where Pi and Qi are homogeneous poly-

nomials of degree i. Poincaré proved that the origin of system (1.2) is a center if
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and only if the coefficients of P and Q satisfy a certain infinite system of algebra-
ic equations called the Poincaré-Liapunov constants. We note that taking polar
coordinates x = r cos θ and y = r sin θ system (1.2) takes the form

ṙ =
∞∑
s=2

fs(θ)r
s, θ̇ = 1 +

∞∑
s=2

gs(θ)r
s−1, (1.3)

where

fi(θ) = cos θPi(cos θ, sin θ) + sin θQi(cos θ, sin θ),

gi(θ) = cos θQi(cos θ, sin θ)− sin θPi(cos θ, sin θ).

We remark that fi and gi are homogeneous polynomials of degree i + 1 in the
variables cos θ and sin θ. In the region R = {(r, θ) : θ̇ > 0} the differential system
(1.3) is equivalent to the differential equation

dr

dθ
=

∑∞
s=2 fs(θ) r

s

1 +
∑∞

s=2 gs(θ) r
s−1

=

∞∑
i=1

ai(θ) r
i+1, (1.4)

where, since P and Q are analytic functions, we have expanded as an analytic series
in r to obtain equation (1.4) whose coefficients ai(θ) are trigonometric polynomials.
This reduces the center problem for the planar differential system (1.2) to the center
problem for the class of equations (1.4).

In the particular case that P and Q are homogeneous polynomials of degree n
then equation (1.4) takes the form

dr

dθ
=

f(θ)rn

1 + g(θ)rn−1
, (1.5)

using the Cherkas transformation (see [13])

ρ =
rn−1

1 + rn−1g(θ)
, whose inverse is r =

ρ1/(n−1)

(1− ρg(θ))1/(n−1)
, (1.6)

the differential equation (1.5) becomes the Abel differential equation

dρ

dθ
= ((n− 1)f(θ)− g′(θ)) ρ2 − (n− 1)f(θ)g(θ)ρ3, (1.7)

which corresponds to equation (1.1) with a1(θ) = ((n− 1)f(θ)− g′(θ)) and a2(θ) =
− (n− 1)f(θ)g(θ). Notice that in this case a1(θ) and a2(θ) are trigonometric poly-
nomials of degree n+ 1 and 2(n+ 1) respectively. By the regularity of the Cherkas
transformation and its inverse at r = ρ = 0, equation (1.5) has a center if and only
if equation (1.7) has a center.

In [11,12,22] it is studied the center problem for the analytic ordinary differential
equation

dρ

dθ
=

∞∑
i=1

ai(θ)ρ
i+1, (1.8)

on the cylinder (ρ, θ) ∈ R × S1 in a neighborhood of ρ = 0 and where ai(θ) are
trigonometric polynomials in θ. An explicit expression for the first return map of
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equation (1.8) is given in [11], see also [12]. The expression of the first return map
is given in terms of the following iterated integrals of order k,

Ii1,...,ik(a) :=

∫
· · ·

∫
0≤s1≤···≤sk≤2π

aik(sk) · · · ai1(s1) dsk · · · ds1,

where, by convention, for k = 0 we assume that this equals 1. Actually, iterated
integrals appear historically in the study of Abel equations, see for instance [3,18,19].
Let ρ(θ; ρ0; a), θ ∈ [0, 2π], be the solution of equation (1.8) corresponding to a with
initial value ρ(0; ρ0; a) = ρ0. Then P (a)(ρ0) := ρ(2π; ρ0; a) is the first return map
of this equation and in [11,12] it is proved the following result.

Theorem 1.1. For sufficiently small initial values ρ0 the first return map P (a) is

an absolute convergent power series P (a)(ρ0) = ρ0 +
∞∑

n=1

cn(a)ρ
n+1
0 , where

cn(a) =
∑

i1+···+ik=n

ci1,...,ikIi1,...,ik(a), and

ci1,...,ik = (n− i1 + 1) · (n− i1 − i2 + 1) · (n− i1 − i2 − i3 + 1) · · · 1.

By Theorem 1.1 the center set C of equation (1.8) is determined by the system
of polynomial equations cn(a) = 0, for n = 1, 2, . . ..

In [12] it is given the definition of universal center in terms of the monodromy
group associated to equation (1.8). In fact we have a universal center when the
monodromy group is trivial. Hence, the set U of universal centers is, in a sense, a
stable part of the center set C. It is also well-known that, in general, U ̸= C, see
for instance [22]. The following proposition establishes the characterization of the
universal centers in terms of iterated integrals and it is also given in [12].

Proposition 1.1. Equation (1.8) determines a universal center if and only if for
all positive integers i1, . . . , ik with k ≥ 1 the iterated integral Ii1,...,ik(a) = 0.

In [12] it is also considered the case when equation (1.8) has a finite number of
terms, i.e.

dv

dθ
=

n∑
i=1

ai(θ)v
i+1. (1.9)

It is proved that equation (1.9) with all ai trigonometric polynomials has a uni-
versal center if and only if there are trigonometric polynomials q and polynomials
p1, . . . , pn ∈ C[z] such that

ãi = pi ◦ q, 1 ≤ i ≤ n, ãi(x) =

∫ x

0

ai(s)ds. (1.10)

Conditions (1.10) are called composition conditions. The vanishing of all iterated
integrals Ii1,...,ik(a) = 0 for all positive integers i1, . . . , ik with k ≥ 1 is equivalent
to composition conditions for equation (1.9), as it is proved in [12]. This result is
generalized to equation (1.8) in [22] where the following theorem is established.

Theorem 1.2. Any center of the differential equation (1.8) is universal if and only
if equation (1.8) satisfies the composition condition.
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The composition conditions have been studied in several papers in the last years
in different contexts, see for instance [1, 2, 4–6,10,14,16] and references therein.

Given an angle α ∈ [0, π), we say that the differential equation (1.8) is α-
symmetric if its flow is symmetric with respect to the straight line θ = α. Obviously,
this is equivalent to that equation (1.8) is invariant under the change of variables
θ 7→ 2α− θ. Any differential equation (1.8) which is α-symmetric has a center, due
to the symmetry.

We say that the differential equation (1.8) is of separable variables if the function
on the right-hand side of equation (1.8) splits as product of two functions of one
variable, one depending on ρ and the other on θ, that is, dρ

dθ = a(θ) b(ρ). In such a

case there is only one center condition which is
∫ 2π

0
a(θ) dθ = 0.

In [22] it is also proved the following result for equation (1.8).

Theorem 1.3. If the differential equation (1.8) has a center which is either α-
symmetric, or of separable variables, then it is universal.

This result gives two big families of universal centers also for the Abel equation
(1.1).

2. Universal centers of the Abel equation (1.1)

In this section we study the universal centers of equation (1.1). It is well-know
that not all the centers of equation (1.1) are universal due to the following fact.
Any quadratic system in the plane, i.e. system (1.2) with homogeneous P and Q
of degree at most 2, can be transformed to an Abel equation of the form (1.7)
where a1(θ) and a2(θ) are trigonometric polynomials of degree 3 and 6 respectively.
Moreover in [22] it is proved that there are centers of the quadratic system (1.2)
which are not universal (for instance the Darboux component except its intersection
with the symmetric one). In [22] it is proved that these non-universal centers of the
quadratic system (1.2) give non-universal centers of the associated Abel equation
(1.7). In [15] there is another example of a center of an Abel equation which is not
universal and where a1(θ) and a2(θ) are trigonometric polynomials of degree 3 and
6 respectively. Hence, the following open problem can be established:

Open problem: To determine the lowest degree of the trigonometric polynomials
a1(θ) and a2(θ) such that the Abel equation (1.1) has a center which is not universal.

Blinov in [9] proved the following result which shows that the lowest possible
degree such that an Abel equation can have a non-universal center is at least 3.

Proposition 2.1. All the centers of equation (1.1) when a1(θ) and a2(θ) are trigono-
metric polynomials of degree 1 and 2 are universal centers and, in consequence,
verify the composition condition.

For sake of completeness we give a short proof of Proposition 2.1 in the appendix.
The proof given in [9] and ours consist in solving the center problem for equation
(1.1) with a1(θ) and a2(θ) of degree at most 2 and to check that all the center cases
are universal. However, this procedure is unapproachable for higher degrees due to
the cumbersome computations needed to solve the center problem.

In this paper we study the centers of equation (1.1) when a1(θ) and a2(θ) are
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trigonometric polynomials of degree 3, i.e.,

a1(θ) = b00 + b10 cos θ + b01 sin θ + b20 cos(2θ) + b02 sin(2θ)
+b30 cos(3θ) + b03 sin(3θ),

a2(θ) = c00 + c10 cos θ + c01 sin θ + c20 cos(2θ) + c02 sin(2θ)
+c30 cos(3θ) + c03 sin(3θ),

(2.1)

where bij and cij are real constants. We remark that if a1(θ) and a2(θ) are both
identically null, then we have a trivial center. If a1(θ) or a2(θ) is identically null,
then all the centers are of separable variables and, consequently, all the centers are
universal. Thus, we can assume that none a1(θ) or a2(θ) is identically null. Indeed,
the first two center conditions c1(a) = 0 and c2(a) = 0 imply that b00 = c00 = 0,
see Theorem 1.1. In order to make a systematic study of the problem for the Abel
equation (1.1) with a1(θ) and a2(θ) of the form (2.1), we assume that the subdegree
of a1(θ) is either 1, 2 or 3. In each case, we can make an affine change of the variable
θ and a rescalling of ρ such that a1(θ) takes one of the following forms:

Case I. a1(θ) = sin θ + h.o.t.,

Case II. a1(θ) = sin(2θ) + h.o.t.,

Case III. a1(θ) = sin(3θ) + h.o.t.,

where h.o.t. means higher order terms. We have not been able to completely study
Case I. Theorem 2.1 deals with Cases II and III.

The procedure is to compute a set of necessary conditions cn(a) = 0 for n = 3,M ,
with M large, which are the coefficients of the first return map, see Theorem
1.1. In general, these necessary conditions are very long. Therefore, it is com-
putationally very difficult to determine the irreducible components of the variety
V := V (⟨c3, c4, . . . , cM ⟩). We are using the classical notation of computational
algebra given for instance in the textbook [17]. If the center conditions are small-
er, as for instance in the proof of Proposition 2.1 given in the appendix, one can
use resultants between polynomials of several variables to find the points of this
variety. When this computations cannot be overcome, we look for the irreducible
decomposition of the variety V . This is an extremely difficult computational prob-
lem. We have followed the algorithm described in [28] which makes use of modular
arithmetics. The last step of this algorithm has not been verified. This step en-
sures that all the points of the variety V have been found. That is, we know that
all the encountered points belong to the decomposition of V but we do not know
whether the given decomposition is complete. We remark that, nevertheless, it is
practically sure that the given list is complete, see for instance [7,28]. Therefore, in
the following we provide sufficient conditions to have a center, which are practically
necessary. We denote this situation by the expression with probability close to 1.

Theorem 2.1. All the centers of equation (1.1) when a1(θ) and a2(θ) are trigono-
metric polynomials of degree 3 of the form (2.1) with either

• b10 = b01 = b20 = 0 and b02 = 1 (Case II), with probability close to 1, or;

• b10 = b01 = b20 = b02 = b30 = 0 and b03 = 1 (Case III)

are universal centers and, consequently, verify the composition condition.
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Proof. To proof this result we have computed eleven necessary conditions cn(a) =
0 for n = 3, 13. These necessary conditions are very long, so we do not present
them here. However, one can check our computations with the help of any available
computer algebra system. In this case, in order to obtain the families of centers
we look for the irreducible decomposition of the variety V (I) of the ideal I =
⟨c3, c4, . . . , c13⟩. We have used the routine minAssGTZ of the computer algebra
system Singular [23] and we have found the irreducible decomposition of the variety
of the ideal I over the field of rational numbers for (Case III) and over the finite
field Z/(p), with p = 32003, for (Case II).

The obtained decomposition for the case b10 = b01 = b20 = 0 and b02 = 1 (Case
II) consists of 3 components defined by the following ideals

1) ⟨b03, c03, c20, c01⟩;
2) ⟨b30, c30, c20, c10⟩;
3) ⟨c20, c01, c10, b03c02 − c03, c02b30 − c30⟩.

In the first case 1) we have a1(θ) = sin(2θ) + b30 cos(3θ) and a2(θ) = c10 cos θ +
c02 sin(2θ) + c30 cos(3θ). Therefore equation (1.1) is invariant under the change of
variables θ 7→ π−θ and the differential equation (1.1) is α-symmetric with α = π/2
and, thus, it is universal by Theorem 1.3.

In the second case 2) we have a1(θ) = sin(2θ)+b03 sin(3θ) and a2(θ) = c01 sin θ+
c02 sin(2θ) + c03 sin(3θ). Therefore equation (1.1) is invariant under the change of
variables θ 7→ −θ and the differential equation (1.1) is also α-symmetric with α = 0.

The third case 3) corresponds to a particular case studied in Theorem 2.2 given
by b10 = b01 = c10 = c01 = 0.

Finally, we take the eleven necessary conditions cn(a) = 0 for n = 3, 13 and we
impose the case b10 = b01 = b20 = b02 = b30 = 0 and b03 = 1 (Case III). Here we
can obtain the irreducible decomposition of the variety V (I) over the field Q. To
show that all the obtained families are universal centers for equation (1.1) we refer
to the case studied in Theorem 2.2 given by b10 = b01 = b30 = 0.

Moreover, although we cannot completely solve Case I, we present the following
result.

Theorem 2.2. All the centers (with probability close to 1) of equation (1.1) when
a1(θ) and a2(θ) are trigonometric polynomials of degree 3 of the form (2.1) with
either

• b10 = b01 = c10 = c01 = 0 or;

• b20 = b02 = c20 = c02 = 0 or;

• b10 = b01 = b30 = 0 or;

• b10 = b01 = b03 = 0

are universal centers and, consequently, verify the composition condition.

Proof. To proof this result we have followed the same computations than in the
previous theorem to obtain eleven center conditions cn(a) for n = 3, 13, and we
have proceeded analogously.

The obtained decomposition for the case b10 = b01 = c10 = c01 = 0 consists of 3
components defined by the following ideals

1) ⟨c30, c03, b20, b02, b30, b03⟩;
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2) ⟨b03c30 − b30c03, b02c20 − b20c02, b02c30 − b30c02⟩;
3) ⟨b03c30−b30c03, b02c20−b20c02,−3b202b

2
03b20+b

2
03b

3
20+2b302b03b30−6b02b03b

2
20b30+

3b202b20b
2
30 − b320b

2
30⟩.

We now show that equation (1.1) has a universal center under these conditions.
In the first case 1) we have that a1(θ) = 0 and a2(θ) = c20 sin(2θ) + c02 cos(2θ).
Therefore equation (1.1) is in this case of separable variables and by Theorem 1.3
it has a universal center. In the second case we have b20a2(θ) = c20a1(θ). Hence
we have composition condition and equation (1.1) has a universal center. In the
third case 3) we take b20 = r0 sinβ and b02 = r0 cosβ and it is easy to see that
equation (1.1) is invariant under the change of variables θ 7→ π − β − θ. Hence the
differential equation (1.1) is α-symmetric with α = (π − β)/2 and by Theorem 1.3
it has a universal center.

The obtained decomposition for the case b20 = b02 = c20 = c02 = 0 consists of 4
components defined by the following ideals

1) ⟨b03c30 − b30c03, b01c10 − b10c01, b01c03 − b03c01⟩;
2) ⟨b03c30 − b30c03, b01c10 − b10c01,−3b201b03b10 + b03b

3
10 + b301b30 − 3b01b

2
10b30⟩;

3) ⟨b03c30 − b30c03, b10, b01,−b30c301 + 3b03c
2
01c10 + 3b30c01c

2
10 − b03c

3
10⟩;

4) ⟨b01c10 − b10c01, b30, b03,−3b201b10c03 + b310c03 + b301c30 − 3b01b
2
10c30⟩.

We now show that equation (1.1) has a universal center under these conditions.
In the first case 1) we have that b01a2(θ) = c01a1(θ). Hence we have composition
condition and equation (1.1) has a universal center. In the second case 2) and fourth
case 4) we take b10 = r1 sinβ1 and b01 = r1 cosβ1 and it is easy to see that equation
(1.1) is invariant under the change of variables θ 7→ −2β1−θ. Hence the differential
equation (1.1) is α-symmetric with α = −β1 and by Theorem 1.3 it has a universal
center. In the third case 3), if we take c10 = r2 sinβ2 and c01 = r2 cosβ2, it is easy
to see that equation (1.1) is invariant under the change of variables θ 7→ −2β2 − θ.
Therefore the differential equation (1.1) is also α-symmetric with α = −β2 and by
Theorem 1.3 it has a universal center.

The decomposition for the case b10 = b01 = b30 = 0 consists of 4 components
defined by the following ideals

1) ⟨b03, b02, b20⟩;
2) ⟨b03, b02c20 − b20c02,−3c201c03c10 + c03c

3
10 + c301c30 − 3c01c

2
10c30⟩;

3) ⟨c30, c01, c10, b02c20 − b20c02, c20b03 − b20c03⟩;
4) ⟨c30, c20, c10, b20⟩.

In the first case 1) we have that a1(θ) = 0. Therefore equation (1.1) is of separable
variables and by Theorem 1.3 it has a universal center. In the second case 2) we
take c10 = r4 sinβ4 and c01 = r4 cosβ4 and it is easy to see that equation (1.1)
is invariant under the change of variables θ 7→ −2β4 − θ. Hence the differential
equation (1.1) is α-symmetric with α = −β4 and by Theorem 1.3 it has a universal
center. The third case 3) correspond to case 2) of the decomposition studied in the
case b10 = b01 = c10 = c01 = 0 (first paragraph of this proof). In the last case 4) we
have a1(θ) = b02 sin(2θ)+ b03 sin(3θ) and a2(θ) = c01 sin θ+c02 sin(2θ)+c03 sin(3θ).
Therefore equation (1.1) is invariant under the change of variables θ 7→ −θ and the
differential equation (1.1) is also α-symmetric with α = 0.
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The decomposition for the case b10 = b01 = b03 = 0 also consists of 4 components
defined by the following ideals

1) ⟨b30, b02, b20⟩;
2) ⟨b30, b02c20 − b20c02,−3c201c03c10 + c03c

3
10 + c301c30 − 3c01c

2
10c30⟩;

3) ⟨c03, c01, c10, b02c20 − b20c02, c20b03 − b20c03⟩;
4) ⟨c03, c20, c01, b20⟩.

The first case 1) and the second case 2) are studied in the decomposition of the
case b10 = b01 = b30 = 0 (previous paragraph of this proof). The third case
3) corresponds to case 2) of the decomposition studied in the case b10 = b01 =
c10 = c01 = 0 (first paragraph of this proof). In the last case 4) we have a1(θ) =
b02 sin(2θ) + b30 cos(3θ) and a2(θ) = c10 cos θ + c02 sin(2θ) + c30 cos(3θ). Therefore
equation (1.1) is invariant under the change of variables θ 7→ −θ − π and the
differential equation (1.1) is again α-symmetric with α = −π/2.
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Appendix

Proof of Proposition 2.1. First we study the case when a1(θ) and a2(θ) are
trigonometric polynomials of degree 1, therefore we have

a1(θ) = b00 + b10 cos θ + b01 sin θ,

a2(θ) = c00 + c10 cos θ + c01 sin θ,

where bij and cij are real constants. We recall that the first two center conditions
imply that b00 = 0 and c00 = 0. The next center condition is c3(a) = 0 with
c3(a) = b01c10 − b10c01. We take b10 = kc10 and c01 = kc01, with k ∈ R, and some
of the next center conditions are zero. In this case equation (1.1) takes the form

ṙ = r2(k + r)(c10 cos θ + c01 sin θ). (2.2)

Equation (2.2) is of separable variables and by Theorem 1.3 has a universal center.
Second, in the case where a1(θ) and a2(θ) are trigonometric polynomials of

degree 2 we have

a1(θ) = b00 + b10 cos θ + b01 sin θ + b20 cos(2θ) + b02 sin(2θ),

a2(θ) = c00 + c10 cos θ + c01 sin θ + c20 cos(2θ) + c02 sin(2θ),

where bij and cij are real constants. The first conditions to have a center are, as
before, that b00 = 0 and c00 = 0. Applying a rotation and a rescaling we can divide
the study in two separate cases:

(i) b10 = 1 and b01 = 0 and (ii) b10 = b01 = 0.
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We begin to study case (i). In this case the next center condition is c3(a) = 0
with c3(a) = −2c01 − b20c02 + b02c20 = 0. From this condition we isolate c01 =
(b02c20 − b20c02)/2. The next center conditions take the form

c4(a) = b02b20c02 − 2b20c10 + 2c20 − b202c20,

c5(a) = −12b20c02 − 5b202b20c02 + 3b320c02 − 4b20c
2
02 + 2b320c

2
02 + 16b02b20c10

+8b02b20c02c10 − 8b20c
2
10 − 4b02c20 + 5b302c20 − 3b02b

2
20c20

+4b02c02c20 − 4b02b
2
20c02c20 + 8c10c20 − 8b202c10c20 + 2b202b20c

2
20.

The resultant between these two polynomials with respect to c10 gives the following
result

res(c4(a), c5(a), c10) = b20(b20c02 − b02c20)C56,

where

C56 = −12b20 + 3b202b20 + 3b320 − 4b20c02 + 2b202b20c02 + 2b320c02 + 4b02c20

−2b302c20 − 2b02b
2
20c20.

a) Case b20 = 0. In this case the condition c4(a) = 0 with c4(a) = (b202 − 2)c20.
The cases b02 = ±

√
2 do not satisfy the next center conditions, so they do not

give rise to centers. In the case c20 = 0 equation (1.1) takes the form

ṙ = r2 cos θ(1 + c10r + 2(b02 + c02r) sin θ). (2.3)

System (2.3) has an α-symmetric center, with α = π/2, because it has the
symmetry θ → π − θ and in virtue of Theorem 1.3 it is a universal center.

b) Case b20c02−b02c20 = 0 and b20 ̸= 0. In this case we take b20 = c20k and b02 =
c02k and the next center condition is c4(a) = 0 with c4(a) = c20(c10k − 1).
The case c02 = 0 implies b20 = 0 which is out of our assumptions in this case.
Hence we must take c10 = 1/k. In this case equation (1.1) has the form

ṙ = r2(k + r)(cos θ + c20k cos 2θ + c02k sin 2θ)

which is of separable variables and by Theorem 1.3 it has a universal center.

c) Case C56 = 0 with b20c02 − b02c20 ̸= 0 and b20 ̸= 0. In this case we compute
the following resultants:

res(c4(a), c6(a), c10) = b20(−b20c02 + b02c20)C57,

res(c4(a), c7(a), c10) = b20(−b20c02 + b02c20)C58,

res(c4(a), c8(a), c10) = b20(−b20c02 + b02c20)C59,

res(c4(a), c9(a), c10) = b20(−b20c02 + b02c20)C510,

where C57, C58, C59 and C510 are polynomials in the variables b20, b02, c20
and c02. The next step is to make the following resultants with respect to c02.

res(C56, C57, c02) = b20C67, res(C56, C58, c02) = b220C68,

res(C56, C59, c02) = b220C69, res(C56, C510, c02) = b320C610,
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where C67, C68, C69 and C610 are polynomials in the variables b20, b02 and
c20. Now we perform the following resultants with respect to b02.

res(C67, C68, b02) = b1020C78,

res(C67, C69, b02) = b820(b
2
20 − 2)c20C79,

res(C67, C610, b02) = b1220C710,

where C78, C79 and C710 are polynomials in the variables b20 and c20. The
cases b220 − 2 = 0 and c20 = 0 give no common root. Hence, we make the
following resultants with respect to c20.

res(C78, C79, c02) = b4820(b20 + 2)2(b20 − 2)2C89,

res(C78, C710, c02) = b7220(b20 + 2)2(b20 − 2)2C810,

where C89, and C810 are polynomials uniquely in the variable b20. The cases
b220 − 4 = 0 give no common root. Therefore we make the last resultant with
respect to b20 which gives the result

res(C89, C810, b20) ̸= 0.

Therefore, there is no common root and consequently there are no more cases.

Now we study the case (ii) b10 = b01 = 0. In this case the first center condition has
the form c3(a) = 0 with c3(a) = b02c20 − b20c02. We take b20 = c20k and b02 = c02k
and the next center conditions are c4(a) = 0 and c5(a) = k(−2c01c02c10 + c201c20 −
c210c20).

a) Case k = 0. In this case a2(θ) = 0 and (1.1) is of separable variables and by
Theorem 1.3 it has a universal center.

b) Case −2c01c02c10 + c201c20 − c210c20 = 0. We take c20 = 2c01c10m and c02 =
(c201 − c210)m, with m ∈ R, and equation (1.1) takes the form

ṙ = r2ψ(θ)(r + 2ψ′(θ)m(k + r)), (2.4)

where ψ(θ) = c10 sin θ + c01 cos θ. In this case equation (2.4) has an α-
symmetric center, with α = −τ , because it has the symmetry θ → −2τ − θ
where τ = arctan(c01/c10). Hence, by Theorem 1.3 it is also a universal center.

Part of this work has been presented in the congress XXIII CEDYA / XIII CMA
2013, held in Castellón (Spain), and it has been published in the corresponding
proceedings in electronic form.
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[1] A. Álvarez, J.L. Bravo and C. Christopher, On the trigonometric moment prob-
lem, Ergodic Theory Dynam. Systems., to appear. doi: 10.1017/etds.2012.143

[2] M.A.M. Alwash, On a condition for a centre of cubic nonautonomous equations,
Proc. Roy. Soc. Edinburgh Sect. A, 113 (1989), 289-291.

[3] M.A.M. Alwash, Word problems and the centers of Abel differential equations,
Ann. Differential Equations, 11 (1995), 392-396.



Composition conditions in the trigonometric Abel equation 143

[4] M.A.M. Alwash, On the composition conjectures, Electron. J. Differential E-
quations, 69( 2003), 4 pp. (electronic).

[5] M.A.M. Alwash, The composition conjecture for Abel equation, Expo. Math.,
27 (2009), 241-250.

[6] M.A.M. Alwash and N.G. Lloyd, Nonautonomous equations related to polyno-
mial two-dimensional systems, Proc. Roy. Soc. Edinburgh Sect. A, 105 (1987),
129-152.

[7] E.A. Arnold, Modular algorithms for computing Grbner bases, J. Symbolic
Comput., 35 (2003), 403-419.
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