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STRANGE ATTRACTORS IN A
PERIODICALLY PERTURBED LORENZ-LIKE

EQUATION∗
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Abstract This paper studies a periodically perturbed Lorenz-like equation.
We obtain three types of attractors: (i) periodic sinks, (ii) Hénon-like attrac-
tors, and (iii) rank one attractors. Among the three, (i) represent the stable
dynamics of equation, and (ii) and (iii) represent chaotic behaviors character-
ized by an Sinai-Ruelle-Bowen(SRB) measure. Each attractor admits an basin
of positive Lebesgue measure, hence we observe it in numerical simulations.
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1. Introduction

One main theme in dynamical system is to understand the complicated behaviors
of differential equations. Chaos, characterized by sensitivity of initial state, have
a long history of research. In 1890, Poincaré discovered homoclinic tangles during
the study of three-body problem. Since then, many theories and methods have
been developed to verify chaos, such as the Birkhoff-Smale homoclinic theorem and
Melnikov method. Later, from ergodic point of view, chaos means the existence
of an invariant measure with good mixing properties. If a system admits an Sinai-
Ruelle-Bowen(SRB) measure [8] supported on a set with positive Lebesgue measure,
one can not only justify chaos rigorously but also observe the chaotic attractors from
numerical simulations. Hénon attractor is such an example with SRB measure on
D ⊂ R2 [2].

The Lorenz equations have a chaotic attractor at certain parameters. The mech-
anism of onset the chaotic Lorenz attractor interests many researchers. Whether
there is an invariant measure featuring the Lorenz attractor. This paper investigates
a Lorenz-like equation. With the homoclinic tangle theory developed by Wang and
Oksasoglu in [5, 6], three types of attractors are created for the periodically per-
turbed Lorenz-like equation. One type is the periodic sinks, dedicated by atomic
measures, representing asymptotically stable dynamics. The other two types are
Hénon-like attractors and rank one attractors, dedicated by SRB measures, repre-
senting chaotic behaviors of equation. Since the basins are with positive Lebesgue
measure, all the three types of attractors are observed in numerical simulations.
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2. Two-dimensional homoclinic tangle theory

Although homoclinic tangle was discovered earlier by Poincaré in 1890, the overall
dynamical structure is far from understood beyond horseshoe. Recently, Wang and
Oksasoglu provided a systematic study on homoclinic tangles for a second-order
equation [5]:

dx

dt
= f(x, y),

dy

dt
= g(x, y),

(2.1)

where f(x, y), g(x, y) are Cr(r ≥ 3) functions on V ⊂ R2. Equation (2.1) has
a saddle point O and one homoclinic solution ℓ(t). Assume that O is dissipative.
Consider the periodic perturbation to Eq.(2.1):

dx

dt
= f(x, y) + µP (x, y, t),

dy

dt
= g(x, y) + µQ(x, y, t),

(2.2)

where P (x, y, t), Q(x, y, t) are also Cr functions, and periodic in t of T . µ is the
magnitude of perturbation.

Usually, the homoclinic solution ℓ(t) is broken, leading to homoclinic tangles
and horseshoes. However, there is a possibility that stable and unstable manifolds
are pulling apart. Define [5]

W(θ) =

∫ ∞

−∞
[P (ℓ(t), t+ θ), Q(ℓ(t), t+ θ)] · τ⊥ℓ(t)e

−
∫ t
0
Eℓ(s)dsdt (2.3)

as the Melnikov function, where τ⊥ℓ(t) is a vector perpendicular to the tangent vector

of ℓ(t) at time t, and Eℓ(t) is the expansion rate of solutions in the neighborhood
of ℓ(t). Denote

M = max
θ∈S1

W(θ), m = min
θ∈S1

W(θ), (2.4)

where S1 = [nT, (n+ 1)T ) for n = 0, 1, 2, · · · .

Theorem 2.1. ( [5]) Assume that W(θ) is a Morse function.

(I) If m < 0 < M , then horseshoes, periodic sinks, and Hénon-like attractors are
created in the neighborhood of ℓ(t). Moreover, as µ → 0, the three dynamical
phenomena repeat with period eλT , where λ is the unstable eigenvalue of saddle
O.

(II) If m > 0, then the stable and unstable manifolds are pulled apart. Therefore,
rank one attractors with SRB measures are generated for large ω, where ω is
the frequency of perturbation.

Theorem 2.1 grounds on one homoclinic solution with a dissipative saddle point.
Instead of one homoclinic solution, if two homoclinic solutions connect a dissipative
saddle point of Eq.(2.1), then dynamics is critically different. In this case, we
have two Melnikov functions associated with two homoclinic solutions. In terms
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of four extrema of two Melnikov functions, five types of attractors will arise in the
neighborhood of two homoclinic solutions.

Let W+(θ) and W−(θ) be two Melnikov functions. Denote

M+ = maxθ∈S1 W+(θ), m+ = minθ∈S1 W+(θ),

M− = maxθ∈S1 W−(θ), m− = minθ∈S1 W−(θ).
(2.5)

Theorem 2.2. ( [7]) Assume that W+(θ) and W−(θ) are two Morse functions.

(i) If m+,m− < 0 < M+,M−, then Eq.(2.2) shows the mixture of two homo-
clinic tangles. It contains periodic sinks, Hénon-like attractors, and rank one
attractors.

(ii) If m+ < 0 < M+, m− > 0 (or m− < 0 < M−,m+ > 0), then Eq.(2.2)
shows one homoclinic tangle and one rank one attractor. One-sided periodic
sinks, one-sided Hénon-like attractors, and one-sided rank one attractors are
created.

(iii) If m+ < 0 < M+, M− < 0(or m− < 0 < M−, M+ < 0), then Eq.(2.2)
shows one tangle mixed with one rank one attractor. Periodic sinks, Hénon-
like attractors, and rank one attractors, including two-sided and one-sided,
are permitted.

(iv) If M+ < 0, M− < 0 (or M+ < 0, m− > 0 or M− < 0, m+ > 0), then
Eq.(2.2) shows one rank one attractor.

(v) If m+ > 0, m− > 0, then Eq.(2.2) shows two rank one attractors.

As µ → 0, each dynamical pattern of the five types repeats itself with period eλT ,
where λ is the unstable eigenvalue of O.

The proof of theorem 2.1 and theorem 2.2 depend on an one-dimensional singular
limit circle map. Both the limit maps have non-degenerate critical points, which
induce the complicated dynamics. With the non-uniformly hyperbolic theory, the
return map in extended phase space admits all the invariant sets in theorem 2.1
and theorem 2.2. In fact, the distribution of orbits starting from the neighborhood
of homoclinic solutions are dedicated by an invariant measure. Let F be the return
map, and ν be the invariant measure. Then there is a set U having positive Lebesgue
measure such that for every continuous functions φ : U → R and every x ∈ U , we
have

1

n

n−1∑
i=0

φ(F ix) →
∫

φdν. (2.6)

The invariant measure ν in (2.6) is the SRB measure [8]. From (2.6), horseshoes
are negligible in measure theoretic sense. However, periodic sinks, Hénon-like at-
tractors, and rank one attractors are with the attractive basin of positive measure,
hence observable in simulations.

Given a three-dimensional equation, also possessing a dissipative saddle point
and homoclinic solutions. Do theorem 2.1 and theorem 2.2 hold yet? If hold, what
kind of attractors will arise? Do they still repeat with certain period? We explore,
through a Lorenz-like equation, the homoclinic tangle theory in three-dimensional
differential equations.
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3. Dynamics of periodically perturbed Lorenz-like
equation

3.1. Theoretical analysis

We start with a Lorenz-like equation [1, 3]:

dx

dt
= β(x− y),

dy

dt
= −4βy + xz + εx3,

dz

dt
= −αβz + xy + δz2,

(3.1)

where β > 1, α > 0, δ, and ε are parameters. Equation (3.1) acts an interesting
model to optical effects in nematic-liquid-crystal films [3]. If δ = 0 and x3 is x,
Eq.(3.1) turns to the famous Lorenz equation.

Evidently, Eq.(3.1) has an equilibrium point O(0, 0, 0). The eigenvalues are

λ1 = β, λ2 = −4β, λ3 = −αβ. (3.2)

β > 1 and α > 0 lead to λ1 > 0, λ2 < 0, and λ3 < 0. So λ1 + λ2 + λ3 < 0,
hence O(0, 0, 0) is a dissipative saddle point. Reference [3] reported the first gluing
bifurcation happening at β = 1.8, α = 1.5, δ = −0.07, and ε = 0.076071. At these
values, we find the double homoclinic solutions to saddle O(0, 0, 0); see Fig.1.

Figure 1. Double homoclinic solutions of Eq.(3.1) at β = 1.8, α = 1.5, δ = −0.07,
ε = 0.076071148687. (a) Three-dimensional phase portrait; (b) Projection on x− y
plane.

Consider the periodically perturbation to Eq.(3.1):

dx

dt
= β(x− y) + µsinωt,

dy

dt
= −4βy + xz + εx3,

dz

dt
= −αβz + xy + δz2,

(3.3)
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where µ and ω are parameters. From homoclinic tangle theory of two-dimensional
differential equations [7], we expect three types of attractors arising from double
homoclinic tangles. Figure 2 is bifurcation diagram of Eq.(3.3) with respect to the
parameter µ. From Fig.2, Eq.(3.3) have both chaotic and periodic motions in an
intermittent way. However, what is the mechanism of these motions.

Figure 2. Bifurcation diagram of equation (3.3) with respect to µ at β = 1.8, α =
1.5, δ = −0.07 and ε = 0.076071148687.

3.2. Numerical simulations

In this section, we do numerical experiment to find all the attractors for Eq.(3.3)
when µ varies in (0, 0.1). We take the viewpoint that observable events correspond
to positive Lebesgue measure sets.

3.2.1. Simulation procedure

(i) First we fix parameters (β, α, δ) = (1.8, 1.5,−0.07). Then, using the fourth-order
Runge-Kutta routine, we numerically integrate Eq.(3.1) to find the corresponding
value of ε for double homoclinic solutions at initial point (x0, y0, z0) = (0.01, 0, 0).
This initial point is fixed throughout. Since µ reaches 10−8 in magnitude in simu-
lations, we calculate the value of ε up to the precision of 10−12. Figure 1 is a plot
of double homoclinic solutions with ε = 0.076071148687.
(ii) Then varying µ ∈ (0, 0.1), we observe different dynamical phenomenon for
Eq.(3.3). We do this by fixing a µ value, and varying t0 over [0, 0.1) with time step
∆t0 = 0.001. This is to say we observe, from statistical point of view, one thousand
solutions for a given µ value.

3.2.2. Simulation results

Let ω = 2π. Our simulation results, for all values of µ, return one of the following
dynamical phenomena.
(I) Periodic sinks. We observe Fig.3 at µ = 3×10−4 and t0 = 0, which is a periodic
sink representing stable dynamics of equation (3.3). The horizontal lines in part(c)
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show that the discrete orbit plotted in part (a) is indeed a periodic orbit. Part
(b) is the projection of part (a) on x− y plane. Since Eq.(3.1) has two homoclinic
solutions, we have two cases of periodic sinks: two-sided periodic sink going around
the two homoclinic solutions in Fig.3, and one-sided periodic sink staying around
one of the two homoclinic solutions in Fig.4.

Figure 3. Two-sided periodic sink for equation (3.3) at µ = 3×10−4 and t0 = 0. (a)
Three-dimensional phase portrait; (b) Projection on x−y plane; (c) Time evolution
of x(t).

Figure 4. One-sided periodic sink for equation (3.3) at µ = 1.780 × 10−5 and
t0 = 0. (a) Three-dimensional phase portrait; (b) Projection on x − y plane; (c)
Time evolution of x(t).

(II) Hénon-like attractors. The plots returned are as in Fig.5 and Fig.6. They
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are strange attractors with invariant SRB measures, representing chaotic behaviors
around periodic solutions. The time evolution in part (c) displays the stochastic
distribution of orbits. Part (d) is the continuous Fourier spectrum.

Figure 5. Two-sided Hénon-like attractors for equation (3.3) at µ = 5× 10−4 and
t0 = 0. (a) Three-dimensional phase portrait; (b) Projection on x − y plane; (c)
Time evolution of x(t); (d) Fourier spectrum of x(t).

Figure 6. One-sided Hénon-like attractors for equation (3.3) at µ = 3.307 × 10−5

and t0 = 0. (a) Three-dimensional phase portrait; (b) Projection on x − y plane;
(c) Time evolution of x(t); (d) Fourier spectrum of x(t).
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(III) Rank one attractors. Figure 7 is the rank one attractor observed at µ =
1.211× 10−4 and t0 = 0. Part (a) is the phase portrait in three-dimensional space.
Although it looks like part (a) in Fig.1, they are critically different from the time
evolution in part (c). Rank one attractor is chaotic with good mixing properties. It
is an invariant set with a basin of positive Lebesgue measure. Though every orbit
from its basin behaves randomly, it converges to a uniformly distribution dedicated
by a global SRB measure. Part (b) is the projection of part (a) on x − y plane.
Part (d) is the continuous Fourier spectrum of x(t).

Figure 7. Rank one attractors for equation (3.3) at µ = 1.211×10−4 and t0 = 0. (a)
Three-dimensional phase portrait; (b) Projection on x−y plane; (c) Time evolution
of x(t); (d) Fourier spectrum of x(t).

For varied µ ∈ (0, 0.1), all simulation results are tabulated in Table 1. We list
out the transient values of µ from one dynamical phenomenon to another. The
symbols “R2”, “S1”, “S2”, “HL1”, “HL2” stand for two-sided rank one attractors,
one-sided periodic sinks, two-sided periodic sinks, one-sided Hénon-like attractors,
and two-sided Hénon-like attractors. For two effective digits, there are 12 cases in
one dynamical pattern. From table 1, the actual ratio meets well with the theoretical
period eβ ≈ 6.0496, where β is the unstable eigenvalue of saddle O(0, 0, 0).

4. Conclusion

Three types of attractors present in a periodically perturbed Lorenz-like equation:
Hénon-like attractors, rank one attractors, and periodic sinks. They form a fixed
pattern repeating with certain period, and are observed in numerical simulations.
The results are in perfect harmony with the two-dimensional homoclinic tangle
theory, and will push the three-dimensional homoclinic tangle theory forward.
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β=1.8 ,α=1.5, δ=-0.07
ε=0.076071148687, ω = 2π
Theoretical Multiplicity = eβ ≈ 6.0496

µ Dynamical behavior Actual ratio
9.4× 10−4 R2 -
7.5× 10−4 HL2 -
7.3× 10−4 R2 -
6.5× 10−4 S1 -
6.4× 10−4 R2 -
5.1× 10−4 HL2 -
4.8× 10−4 S2 -
3.8× 10−4 R2 -
3.0× 10−4 S2 -
2.9× 10−4 R2 -
2.0× 10−4 HL1 -
1.9× 10−4 S1 -

1.572× 10−4 R2 5.9796
1.228× 10−4 HL2 6.1075
1.211× 10−4 R2 6.0280
1.077× 10−4 S1 6.0353
1.074× 10−4 R2 5.9590
8.445× 10−5 HL2 6.0390
7.925× 10−5 S2 6.0567
6.423× 10−5 R2 5.9162
4.968× 10−5 S2 6.0386
4.698× 10−5 R2 6.1728
3.309× 10−5 HL1 6.0441
3.229× 10−5 S1 5.8841

2.604× 10−5 R2 6.0407
2.030× 10−5 HL2 6.0462
2.002× 10−5 R2 6.0489
1.780× 10−5 S1 6.0449
1.777× 10−5 R2 6.0438
1.395× 10−5 HL2 6.0537
1.311× 10−5 S2 6.0450
1.060× 10−5 R2 6.0594
8.216× 10−6 S2 6.0460
7.769× 10−6 R2 6.0471
5.472× 10−6 HL1 6.0471
5.329× 10−6 S1 6.0693

4.307× 10−6 R2 6.0459
3.356× 10−6 HL2 6.0488
3.309× 10−6 R2 6.0502
2.943× 10−6 S1 6.0483
2.939× 10−6 R2 6.0462
2.306× 10−6 HL2 6.0494
2.171× 10−6 S2 6.0387
1.752× 10−6 R2 6.0502
1.358× 10−6 S2 6.0501
1.284× 10−6 R2 6.0506
9.047× 10−7 HL1 6.0484
8.810× 10−7 S1 6.0465

Table 1. The periodic pattern of equation (3.3)


