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A NUMERICAL SOLUTION OF NONLINEAR
VOLTERRA-FREDHOLM INTEGRAL

EQUATIONS

M. Zarebnia

Abstract
In this paper, a numerical procedure for solving a class of nonlinear Volterra-

Fredholm integral equations is presented. The method is based upon the glob-
ally defined sinc basis functions. Properties of the sinc procedure are utilized
to reduce the computation of the nonlinear integral equations to some algebra-
ic equations. Illustrative examples are included to demonstrate the validity
and applicability of the method.
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1. Introduction

Consider the nonlinear Volterra-Fredholm integral equations of the form

y(x) = g(x) + (KQy)(x), x ∈ Γ = [a, b], (1.1)

where

(KQy)(x) = λ1

∫ x

a

F1(x, t)q1(t, u(t))dt+ λ2

∫ b

a

F2(x, t)q2(t, u(t))dt.

In this equations the functions g, q1, q2, and the kernels F1, F2 given and u is the
unknown function to be determined. The existence and the uniqueness are discussed
and given in Refs. [2] and [9].

The nonlinear Volterra-Fredholm integral equation (1.1) arises from various
physical and biological models. The essential features of these models are of wide
applicable [1], [3], [4] and [11].

Several numerical methods for approximating the solution of nonlinear Volterra-
Fredholm integral equations are known. The numerical solutions of the nonlinear
Volterra-Fredholm integral equations by using homotopy perturbation method was
introduced in [5]. Minggen et al. [7], used the representation of the exact solution for
the nonlinear Volterra-Fredholm integral equations in the reproducing kernel space.
The exact solution is given by the form of series. Its approximate solution is obtained
by truncating the series and a new numerical approximate method. Ordokhani [8],
applied the rationalized Haar functions to approximate of the nonlinear Volterra-
Fredholm-Hammerstein integral equations. Also, in [12], Yalçinbaş developed the
Taylor polynomial solutions for the nonlinear Volterra-Fredholm integral equations.
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The organization of the paper is as follows. In Section 2, we describe the basic
formulation of sinc approximation required for our subsequent development. Section
3 is devoted to the solution of Eq. (1.1) by using sinc method. Finally numerical
examples are given in section 4 to illustrate the efficiency of the presented method.

2. Prroperties of sinc function

The sinc function properties and the sinc method are discussed thoroughly in [6],
[10]. For any h > 0, the sinc basis functions are given by

S(j, h)(z) = sinc(
z − jh

h
), j = 0,±1,±2, · · · , (2.1)

where

sinc(z) =

{
sin(πz)

πz , z ̸= 0;
1, z = 0.

(2.2)

The sinc function for the interpolating points zk = kh is given by

S(j, h)(kh) = δ
(0)
jk =

{
1, k=j;
0, k ̸= j.

(2.3)

Let

δ
(−1)
kj =

1

2
+

∫ k−j

0

sin(πt)

πt
dt, (2.4)

then define a matrix I(−1) = [δ
(−1)
kj ] whose (k, j)th entry is given by δ

(−1)
kj . They

are based in the infinite strip Dd in the complex plane

Dd = {w = u+ iv : |v| < d ≤ π

2
}. (2.5)

To construct approximation on the interval (a, b), we consider the conformal map

ϕ(z) = ln

(
z − a

b− z

)
. (2.6)

The map ϕ carries the eye-shaped region

D =

{
z = x+ iy :

∣∣arg(z − a

b− z

)∣∣ < d ≤ π

2

}
. (2.7)

The function

z = ϕ−1(w) =
a+ bew

1 + ew
(2.8)

is an inverse mapping of w = ϕ(z). We define the range of ϕ−1 on the real line as

Γ = {ψ(u) = ϕ−1(u) ∈ D : −∞ < u <∞}. (2.9)

The sinc grid points zk ∈ (a, b) in D will be denoted by xk because they are real. For
the evenly spaced nodes {kh}∞k=−∞ on the real line, the image which corresponds
to these nodes is denoted by

xk = ϕ−1(kh) =
a+ bekh

1 + ekh
, k = ±1,±2, . . . . (2.10)
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Definition 2.1. A function y(z) is in the space Lα(D) if and only if y(z) is analytic
in D and there exists a constant, C > 0, such that

|y(z)| ≤ C
|ρ(z)|α

[1 + |ρ(z)|]2α
, z ∈ D, 0 < α ≤ 1. (2.11)

Theorem 2.1. Let y(z) ∈ Lα(D), 0 < α ≤ 1 and d > 0, let N be a positive integer,
and let h be selected by the formula

h = (
πd

αN
)

1
2 , (2.12)

then there exists positive constant c1, independent of N , such that

sup
z∈Γ

∣∣∣∣∣∣y(z)−
N∑

j=−N

y(zj)S(j, h) ◦ ϕ(z)

∣∣∣∣∣∣ ≤ c1e
−(πdαN)

1
2 . (2.13)

Theorem 2.2. Let y
ϕ′ ∈ Lα(D), let δ

(−1)
kj be defined as in (2.4), and let h = ( πd

αN )
1
2 .

Then there exists a constant c2, which is independent of N , such that∣∣∣∣∣∣
∫ zk

a

y(t)dt− h
N∑

j=−N

δ
(−1)
kj

y(zj)

ϕ′(zj)

∣∣∣∣∣∣ ≤ c2e
−(πdαN)

1
2 . (2.14)

Theorem 2.3. Let y
ϕ′ ∈ Lα(D), let N be a positive integer and let h be selected by

(2.12), then there exist positive constant c3, independent of N , such that∣∣∣∣∣∣
∫
Γ

y(z)dz − h

N∑
j=−N

y(zj)

ϕ′(zj)

∣∣∣∣∣∣ ≤ c3e
−(πdαN)

1
2 . (2.15)

3. The approximate solution of nonlinear Volterra-
Fredholm integral equations

Let y(x) be the exact solution of the integral equation (1.1) and let y(x) ∈ Lα(D).
We approximate the solution of (1.1) by the following linear combinations of the
sinc functions and auxiliary functions:

y(x) =
N∑

j=−N

y(xj)αj(x), x ∈ [a, b], (3.1)

where

αj(x) =

 βa(x), j = −N ,
S(j, h) ◦ ϕ(x), j = −N + 1, . . . , N − 1,
βb(x), j = N .

(3.2)

In the above relation, auxiliary basis functions βa(x) and βb(x) are defined by

βa(x) =
1

1 + ρ(x)
, βb(x) =

ρ(x)

1 + ρ(x)
, (3.3)
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and satisfied the following conditions:

lim
x→a

βa(x) = 1, lim
x→b

βa(x) = 0,

lim
x→a

βb(x) = 0, lim
x→b

βb(x) = 1, (3.4)

where ρ(x) = eϕ(x).

Lemma 3.1. Let y(x) ∈ Lα(D), let N be a positive integer, and let h be selected
by the formula

h = (
πd

αN
)

1
2 , (3.5)

then there exists positive constant c4, independent of N , such that

sup
x∈Γ

∣∣y(x)− N∑
j=−N

y(xj)αj(x)
∣∣ ≤ c4e

−(πdαN)
1
2 , (3.6)

where αj(x) is defined in (3.2).

Proof. By using Theorem 2.1 and Eq. (3.1) it follows that

sup
x∈Γ

∣∣y(x)− N∑
j=−N

y(xj)αj(x)
∣∣ ≤ S0 + S1 + S2, (3.7)

where
S0 = supx∈Γ

∣∣y(x)−∑N−1
j=−N+1 y(xj)S(j, h) ◦ ϕ(x)

∣∣,
S1 = supx∈Γ

∣∣y(x−N )βa(x)
∣∣, S2 = supx∈Γ

∣∣y(xN )βb(x)
∣∣.

A bound for S0 is obtained by assumption y(x) ∈ Lα(D) and Theorem 2.1 as
follows

S0 ≤ supx∈Γ

∣∣y(x)−∑N
j=−N y(xj)S(j, h) ◦ ϕ(x)

∣∣
+ supx∈Γ

∣∣y(x−N )S(−N,h) ◦ ϕ(x)
∣∣+ supx∈Γ

∣∣y(xN )S(N,h) ◦ ϕ(x)
∣∣

≤ C4e
−(πdαN)1/2 + C5e

−αNh + C6e
−αNh.

(3.8)

Similarly, by considering the Eqs. (2.11) and (3.1)-(3.4), S1 and S2 are also bounded

S1 ≤ C7e
−αNh, S2 ≤ C8e

−αNh. (3.9)

Finally, the result (3.6) follows by using the relations (3.8), (3.9) and taking h as
in (3.5).

Lemma 3.2. Let y(x) is defined as (3.1), let y
ϕ′ ∈ Lα(D), and let h be selected by

(3.5) then∫ xk

a
y(t)dt = hy(t−N )

∑N
j=−N δ

(−1)
kj

wa(tj)
ϕ′(tj)

+ h
∑N−1

j=−N+1 δ
(−1)
kj

y(tj)
ϕ′(tj)

+hy(tN )
∑N

j=−N δ
(−1)
kj

wb(tj)
ϕ′(tj)

+O
(
exp−(πdαN)1/2

)
.

(3.10)
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Proof. By applying Theorem 2.3 and assumption y
ϕ′ ∈ Lα(D), we have

∫ xk

a

y(t)dt = h

N∑
l=−N

δ
(−1)
kl

y(tl)

ϕ′(tl)
+O

(
exp−(πdαN)1/2

)
. (3.11)

Using the explicitly form of y(t) from (3.1), the collocation result is written as∫ xk

a
y(t)dt = hy(t−N )

∑N
l=−N δ

(−1)
kl

wa(tl)
ϕ′(tl)

+h
∑N−1

j=−N+1 y(tj){
∑N

l=−N δ
(−1)
kl

S(j,h)◦ϕ(tl)
ϕ′(tl)

}

+hy(tN )
∑N

l=−N δ
(−1)
kl

wb(tl)
ϕ′(tl)

+O
(
exp−(πdαN)1/2

)
.

(3.12)

The (3.10) is given straightforwardly by using sinc function properties and set-
ting l = j.

Lemma 3.3. Let y(x) is defined as in (3.1), let y
ϕ′ ∈ Lα(D), and let h be selected

by (3.5) then∫
Γ
y(t)dt = hy(t−N )

∑N
j=−N

wa(tj)
ϕ′(tj)

+ h
∑N−1

j=−N+1
y(tj)
ϕ′(tj)

+hy(tN )
∑N

j=−N
wb(tj)
ϕ′(tj)

+O
(
exp−(πdαN)1/2

)
.

(3.13)

Proof. The proof is similar to Lemma 3.2.
Now, let y(x) be the exact solution of (1.1) that is approximated by the following

expansion

yN (x) =
N∑

j=−N

yjαj(x), x ∈ [a, b], (3.14)

where αj(x) is defined as (3.2). By replacing approximate solution (3.14) in the Eq.
(1.1), it follows that

yN (x) = g(x) + λ1

∫ x

a

F1(x, t)q1(t, yN (t))dt+ λ2

∫ b

a

F2(x, t)q2(t, yN (t))dt, (3.15)

for convenience, we consider

q1(t, yN (t)) = Q1
N (t), q2(t, yN (t)) = Q2

N (t). (3.16)

Thus the term is written as

N∑
j=−N

yjαj(x) = g(x) + λ1

∫ x

a

F1(x, t)Q
1
N (t)dt+ λ2

∫ b

a

F2(x, t)Q
2
N (t)dt. (3.17)

Let Fi

ϕ′Q
i
N ∈ Lα(D), i = 1, 2. Having substituted sinc-collocation points x = xk

for k = −N, . . . , N and having applied the Lemmas 3.1, 3.2 and 3.3, we obtain

y−Nβa(xk) +
∑N−1

j=−N+1 yjS(j, h) ◦ ϕ(xk) + yNβb(xk)

= g(xk) + λ1h
∑N

l=−N δ
(−1)
kl

F1(xk,tl)
ϕ′(tl)

Q1
N (tl)

+λ2h
∑N

l=−N
F2(xk,tl)
ϕ′(tl)

Q2
N (tl), k = −N, . . . , N,

(3.18)
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where

Qi
N (tl) = qi

(
tl, y−Nβa(xk) +

N−1∑
j=−N+1

yjS(j, h) ◦ ϕ(xk) + yNβb(xk)
)
, i = 1, 2.

We then rewrite these equations in the matrix form which are the nonlinear
system

AY − λ1h
(
I(−1) ◦ F̃1

)
Q̃1 − λ2hF̃2Q̃2 = G̃. (3.19)

The notation “ ◦ ” denotes the Hadamard matrix multiplication. I(−1) =
[
δ
(−1)
kj

]
,

F̃i =
[
Fi(xk, tj)

]
, i = 1, 2, where I(−1) and F̃i are square matrices of order (2N +

1)× (2N + 1),

A =


βa(x−N ) 0 · · · 0 βb(x−N )
βa(x−N+1) 1 · · · 0 βb(x−N+1)

...
...

. . .
...

...
βa(xN−1) 0 · · · 1 βb(xN−1)
βa(xN ) 0 · · · 0 βb(xN )

 ,

Y = [y−N , y−N+1, . . . , yN ]T ,

Q̃i =
[
Qi

N (t−N )
ϕ′(t−N ) ,

Qi
N (t−N+1)

ϕ′(t−N+1)
, . . . ,

Qi
N (tN−1)

ϕ′(tN−1)
,
Qi

N (tN )
ϕ′(tN )

]T
, i = 1, 2,

G̃ = [g(x−N ), g(x−N+1), . . . , g(xN )]T .

(3.20)

The above nonlinear system consists of 2N + 1 equations with 2N + 1 unknowns
{yj}Nj=−N . Solving this nonlinear system by Newton’s method, we can obtain an
approximation to the solution of (1.1):

yN (x) =
N∑

j=−N

yjαj(x), x ∈ [a, b], (3.21)

where αj(x) is defined as (3.2). Each Newton iteration step involves evaluation of

the vector F(l), the Jacobian matrix J(l) and ∆Y (l). Whenever the distance between
two iteration is less than a given tolerance, ϵ, then the algorithm is to stop.

∥Y (l+1) − Y (l)∥ ≤ ϵ.

Algorithm of the method

• initialize: Y = Y (0).
• for l = 0, 1, 2, . . ..

• F(l) = AY
∣∣(l) − λ1h

(
I(−1) ◦ F̃1

)
Q̃1

∣∣(l) − λ2hF̃2Q̃2
∣∣(l) − G̃.

• if ∥F(l)∥ is small enough, stop.

• compute J(l).
• solve J(l)∆Y (l) = −F(Y (l)).
• Y (l+1) = Y (l) +∆Y (l).
• end.
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4. Numerical examples

In order to illustrate the performance of the sinc method in solving of the nonlinear
Volterra-Fredholm integral equations and justify the accuracy and efficiency of the
method, we consider the following examples. The examples have been solved by
presented method with different values of N and α, 0 < α ≤ 1. In all examples,
we take α = 1

2 , d = π
2 , which yields h = π( 1

N )
1
2 . The errors are reported on the set

of sinc grid points

S = {x−N , . . . , x0, . . . , xN},

xk =
a+ bekh

1 + ekh
, k = −N, . . . , N. (4.1)

The maximum error on the sinc grid points is

∥Es(h)∥∞ = max
−N≤j≤N

|u(xj)− uN (xj)| . (4.2)

We stopped the numbers of iteration in the Newton method when we achieved the
accuracy ϵ = 10−4. The numerical results are tabulated in Tables 4.1, 4.2 and
shown in Figures 4.1 and 4.2.

Example 4.1. Consider the following nonlinear Volterra-Fredholm integral equa-
tion with the exact solution y(x) = 1− x,

y(x) = g(x) +

∫ x

0

F1(x, t)q1(t, y(t))dt+

∫ 1

0

F2(x, t)q2(t, y(t))dt, x ∈ Γ = [0, 1],

(4.3)
where

F1(x, t) = sin(x− t), F2(x, t) = x− t,

q1(t, y(t)) = cos(y(t)), q2(t, y(t)) = 1 + y2(x),

g(x) = 1
12 (19− 28x+ 6 sin 1x cosx− 6 cos 1x sinx+ 6 sin 1 sinx).

The Example 4.1 is solved for different values of N . The maximum of absolute
errors on the sinc grid S are tabulated in Table 4.1. This table indicates that as N
increases the errors are decrease more rapidly. The exact and approximate solutions
of Example 4.1 are shown in Fig. 4.1 for N = 1 and N = 5.

N h ∥Es(h)∥∞
5 1.40496 2.42903×10−3

10 0.99346 1.97337×10−4

20 0.70248 5.97438×10−6

30 0.57357 3.93851×10−7

40 0.49673 3.92648×10−8

50 0.44429 5.10671×10−9

60 0.40558 8.03961×10−10

Table 4.1: Results for Example 1.
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0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

N= 1 ó ó ó

N= 5 • • •
Exact ———

Figure 4.1. Exact and approximate solutions for Example 4.1,(N = 1, 5)

Example 4.2. Consider the integral equation

y(x) = 2x− 1

12
x4− 5

3
+
1

4

∫ x

0

(x−t)[y(t)]2dt+
∫ 1

0

(1+t)y(t)dt, x ∈ Γ = [0, 1], (4.4)

with exact solution y(x) = 2x.

The approximate solution is calculated for different values of N , α = 1
2 , d = π

2

and h = π( 1
N )

1
2 . The maximum absolute errors on the sinc grid S are tabulated in

Table 4.2. This table indicates that as N increases the errors are decrease rapidly.
The exact and approximate solutions of Example 4.2 are shown in Fig. 4.2 for
N = 1 and N = 5.

N h ∥Es(h)∥∞
5 1.40496 3.64982×10−3

10 0.99346 2.92645×10−4

20 0.70248 8.34053×10−6

30 0.57357 5.23380×10−7

40 0.49673 4.97018×10−8

50 0.44429 6.15092×10−9

60 0.40558 9.18873×10−10

Table 4.2: Results for Example 4.2.
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0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

N= 1 ó ó ó

N= 5 • • •
Exact ———

Figure 4.2. Exact and approximate solutions for Example 4.2,(N = 1, 5)

In general, the above Figures 4.1 and 4.2 show that for larger values ofN(N ≥ 5),
the approximate solutions are indistinguishable(for the given scale) from the exact
solution.

Conclusion

The sinc functions are used to solve the nonlinear Volterra-Fredholm integral equa-
tions. The numerical examples show that the accuracy improve with increasing the
number of sinc grid points N .
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