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A NUMERICAL SOLUTION OF NONLINEAR
VOLTERRA-FREDHOLM INTEGRAL
EQUATIONS
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Abstract

In this paper, a numerical procedure for solving a class of nonlinear Volterra-
Fredholm integral equations is presented. The method is based upon the glob-
ally defined sinc basis functions. Properties of the sinc procedure are utilized
to reduce the computation of the nonlinear integral equations to some algebra-
ic equations. Illustrative examples are included to demonstrate the validity
and applicability of the method.
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1. Introduction

Consider the nonlinear Volterra-Fredholm integral equations of the form

y(x) = g(z) + (KQy)(), z el = [a,b], (1.1)

where
b

(KQu)(@) = A / " Py s (b u(8))dt + Ao / Fola, g (1, u(t))dt.

In this equations the functions g, q1, g2, and the kernels Fy, F5 given and u is the
unknown function to be determined. The existence and the uniqueness are discussed
and given in Refs. [2] and [9)].

The nonlinear Volterra-Fredholm integral equation (1.1) arises from various
physical and biological models. The essential features of these models are of wide
applicable [1], [3], [4] and [11].

Several numerical methods for approximating the solution of nonlinear Volterra-
Fredholm integral equations are known. The numerical solutions of the nonlinear
Volterra-Fredholm integral equations by using homotopy perturbation method was
introduced in [5]. Minggen et al. [7], used the representation of the exact solution for
the nonlinear Volterra-Fredholm integral equations in the reproducing kernel space.
The exact solution is given by the form of series. Its approximate solution is obtained
by truncating the series and a new numerical approximate method. Ordokhani [8],
applied the rationalized Haar functions to approximate of the nonlinear Volterra-
Fredholm-Hammerstein integral equations. Also, in [12], Yal¢inbag developed the
Taylor polynomial solutions for the nonlinear Volterra-Fredholm integral equations.
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The organization of the paper is as follows. In Section 2, we describe the basic
formulation of sinc approximation required for our subsequent development. Section
3 is devoted to the solution of Eq. (1.1) by using sinc method. Finally numerical
examples are given in section 4 to illustrate the efficiency of the presented method.

2. Prroperties of sinc function

The sinc function properties and the sinc method are discussed thoroughly in [6],
[10]. For any h > 0, the sinc basis functions are given by

S(j,h)(z):sinc(z_hjh), G=0,41,42,- -, (2.1)
e sinc(z) = { %’ 2 #0; (2.2)
1, z=0. ’
The sinc function for the interpolating points z = kh is given by
s.mwn) =a ={ ¢ 23
bt -1y 1 R sin(rt)
50 =5+ /O St (2.4)

then define a matrix (-1 = [5,&;1)} whose (k,j)th entry is given by 51&?‘”' They
are based in the infinite strip Dy in the complex plane

Dd:{w:u+iv:|v|<d§§}. (2.5)

To construct approximation on the interval (a,b), we consider the conformal map

é(z) = In ('Zij) (2.6)

The map ¢ carries the eye-shaped region

D:{z:x+iy:|arg(z_5)|<d§g}. (2.7)
The function 4 pew
_ a+ be

z=¢ H(w) = Trew (2.8)

is an inverse mapping of w = ¢(z). We define the range of ~! on the real line as
I'={¢(u)=¢""(u) € D:—oco<u< oo} (2.9)

The sinc grid points z; € (a,b) in D will be denoted by xj, because they are real. For
the evenly spaced nodes {kh}?2 ___ on the real line, the image which corresponds
to these nodes is denoted by

a + bekn

x = ¢~ (kh) = T

k=+1,42,.... (2.10)
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Definition 2.1. A function y(z) is in the space L, (D) if and only if y(z) is analytic
in D and there exists a constant, C' > 0, such that

lp(2)*

_— D, 0 < 1. 2.11
Lt p(ee 2 €0 0<as 211)

ly(z) <C

Theorem 2.1. Lety(z) € Lo(D), 0 < a <1 andd > 0, let N be a positive integer,
and let h be selected by the formula

wd 1

h = 2 2.12
(IR, (212)

then there exists positive constant c1, independent of N, such that

N 1
sup y(2) — Y y(z)S(j,h) 0 ()| < cre” TN, (2.13)

zel .
j=—N

Theorem 2.2. Let &7 € Lo(D), let 6,&;1) be defined as in (2.4), and let h = (%)%,
Then there exists a constant co, which is independent of N, such that

o N 1
SRy ey y(z) | . —(ndan)} 2.14
/a vl hjsz(Skj ¢'(2) | e . 21

Theorem 2.3. Let % € Lo(D), let N be a positive integer and let h be selected by
(2.12), then there exist positive constant cs, independent of N, such that

N

y(z)) —(rdaN)?

z)dz — h < cze . 2.15

/ry( ) j;N &)~ (2:15)

3. The approximate solution of nonlinear Volterra-
Fredholm integral equations

Let y(x) be the exact solution of the integral equation (1.1) and let y(x) € Lo (D).

We approximate the solution of (1.1) by the following linear combinations of the
sinc functions and auxiliary functions:

N
y@)= Y ylz)a(e), =€ fa,b], (3.1)
j=—N
where
ﬂa(x)v Jj=—-N,
O[j(.]?): S(]ah)o¢(x)v J=-N+1,...,N—-1, (32)
ﬁb(x)a Jj=N.
In the above relation, auxiliary basis functions 8, (z) and S, (z) are defined by
_ 1 __r@)
/ga(‘r) - 1 + p(x)7 ﬁb('r) - 1 + p(x)7 (33)
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and satisfied the following conditions:

lim B,(z) =1, lim B,(x) =0,

z—a z—b
lim Bp(z) =0, lim Bp(z) =1, (3.4)
T—a T—b

where p(z) = e?(®),

Lemma 3.1. Let y(z) € Lo(D), let N be a positive integer, and let h be selected

by the formula
wd
= (Z0)%, (35)

then there exists positive constant cy, independent of N, such that

N

N

1
sup |y(z) - D yla)ay(@)] < cqem (TNIE, (3.6)
T J=—N

where oj(x) is defined in (3.2).

Proof. By using Theorem 2.1 and Eq. (3.1) it follows that

N
sup y(@) = 3 yla;)ay(@)] < So+ S1 + S, (3.7)

xel’ j=—N

where
So = sup,er [y(x) = Y7y y(@)S (G, h) o ¢(x)
Sy = supger [y(@—n)Ba(@)],  So = supyer [y(zn)Bs(@)].

)

A bound for Sy is obtained by assumption y(x) € Lo(D) and Theorem 2.1 as
follows

So < supger ‘y(x) - Zévzfzv y(%’)s(jv h)o (b(x)’
+ SUPger |y(x*N)S(_Nu h) o ¢($)‘ + SUPgzer |y(xN)S(Na h‘) © ¢({E)‘ (38)
< 046—(7rdaN)1/2 4 CseNh L Cge—Nh,

Similarly, by considering the Egs. (2.11) and (3.1)-(3.4), Sy and S5 are also bounded

S; < Cre @Nh Gy < Cge NI, (3.9)
Finally, the result (3.6) follows by using the relations (3.8), (3.9) and taking h as
n (3.5). O
Lemma 3.2. Let y(z) is defined as (3.1), let J; € Lo(D), and let h be selected by
(3.5) then

x 1) wq —1 L
JI oyt = hy(tn) Sy oS SN oY 2

+hy(tN)ZN 5 1)1$f’:)) + O(exp—(rdaN)'/?).

(3.10)
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Proof. By applying Theorem 2.3 and assumption o € L. (D), we have

/w t)dt = th( H ylt

ol ¢, + O (exp—(rdaN)?).

(3.11)
Using the explicitly form of y(¢) from (3.1), the collocation result is written as
1 a
S ydt = hy(ton) TNy oD e
1 o
+h ZJ——N-H y(t ‘){Zl:_N 5( ) S(4,h)oo(tr)

+hy(tn) Zl*

@' (t) }
(—1) wb(tz
=—N kl

5 T O(exp—(rdaN)'/?).
The (3.10) is given straightforwardly by using sinc function properties and set-
ting | = j.

(3.12)

Lemma 3.3. Let y(x) is defined as in (3.1), let 57 € Lo(D), and let h be selected
by (3.5) then

0
Jry(ydt = hy(t_y) >3

y(t;)
-N ¢’<t > +h Y N S
+hy(ty) YLy S

U (3.13)
N ) + O(exp—(rdaN)'/?).
Proof. The proof is similar to Lemma 3.2

Now, let y(z) be the exact solution of (1.1) that is approximated by the following
expansion

O
Z yjou (@

), = € [a,b],
j=—N

(3.14)
where a;(x) is defined as (3.2). By replacing approximate solution (3.14) in the Eq
(1.1), it follows that

T b
yn(z) = g(z) + )\1/ Fy(z,t)q (t,yn (t))dt + )\2/

F2($7 t)QZ(tv yN(t))dtv (315)
for convenience, we consider

a1 (t,yn (1) = Qn (1),
Thus the term is written as

a2 (t,yn (1) = Q% (1) (3.16)

b
Z yjaj(z) = g(x) +A1/ let>QN<>dt+A2/ Fy(w, )Q (t)dt.
j=—N

a

(3.17)
for k = —N

Let F’ QZ € Lo(D), i = 1,2. Having substituted sinc-collocation points z = x4
, N and having applied the Lemmas 3.1, 3.2 and 3.3, we obtain

Yy Nﬁa(xk)+2j‘\[:_jN+1 y]S(‘%h)o(b(xk)—"_yNﬁb(xk)
= glzp) + MA YN ol D Blet)

Mo @n(h)
+Ah L Fz;ffw’f;l)@]v(tl)

(3.18)
k=—N,...,N,
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where
. N-1
Q?\I(tl) =q; (tl7 nyﬁG,(xk) + Z y]S<,7; h) o ¢($k¢) + yNBb(xk))7 1= 17 2.
j=—N+1

We then rewrite these equations in the matrix form which are the nonlinear
system o o y
AY — Mh(I5Y 0 1) QY — MhFQ2 = G. (3.19)

143

The notation “o” denotes the Hadamard matrix multiplication. (-1 = [6,((0]_.1)],

F, = [Fi(zk,t5)], i = 1,2, where I-1 and F; are square matrices of order (2N +
1) x (2N + 1),
Ba(fo) 0 0 ﬁb('r*N)
Ba(z-n+1) 1 0 By(r_ny1)
A= : : : : :
Ba(zn-1) 0 1 By(wn-1)
Ba(zn) 0O 0 Bolan) (3.20)
Y= [y-ny-nNt1s- YN,
- . . . . T
i—  |@n(-n) Qn(t-nNi1) Qn(tv-1) Qn(tn) -
Gi= [y, Gy, Gylinap Ge]® o1,
G=[g(e-n),9(@-ns1).... glan)]".

The above nonlinear system consists of 2/V + 1 equations with 2NV + 1 unknowns
{y; };V:_ - Solving this nonlinear system by Newton’s method, we can obtain an
approximation to the solution of (1.1):

N
yn(x) = Z yja;(z), z € [a,b], (3.21)
j=—N

where a;(z) is defined as (3.2). Each Newton iteration step involves evaluation of

the vector F(Z), the Jacobian matrix J®) and AY (). Whenever the distance between
two iteration is less than a given tolerance, €, then the algorithm is to stop.

YD —y O <e.
Algorithm of the method

initialize: Y =Y,

[ ]

o forl=0,1,2,...

o FO—ay|Y - NIV o 7)Y — MhEQ2 " - 6.
o if |[F?| is small enough, stop.

e compute JU.

e solve JOVAYD = —F(y®),

o YU —yO) L AYD,

e end.
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4. Numerical examples

In order to illustrate the performance of the sinc method in solving of the nonlinear
Volterra-Fredholm integral equations and justify the accuracy and efficiency of the
method, we consider the following examples. The examples have been solved by
presented method with different values of N and o, 0 < a < 1. In all examples,
we take o = %, d = 3, which yields h = W(%)%. The errors are reported on the set
of sinc grid points

S:{‘r,N,...7$0,...,$N}7
a + bekh
xk:W, ]{I:—N,,N (41)

The maximum error on the sinc grid points is

[Es(Mlloo = max |u(z;) — un(z;)]. (4.2)

We stopped the numbers of iteration in the Newton method when we achieved the
accuracy € = 107%. The numerical results are tabulated in Tables 4.1, 4.2 and
shown in Figures 4.1 and 4.2.

Example 4.1. Consider the following nonlinear Volterra-Fredholm integral equa-
tion with the exact solution y(z) =1 — =z,

y(z) = g(z) + / "y (1 y () dE + / Fa(a, Oan(t,y(8))dt, = €T = [0,1],
0 0
(4.3)
where

Fi(z,t) =sin(z — t), Fa(z,t)=x—1,

a(t,y(t)) =cos(y(t)), qa(t,y(t)) =1+y3(x),

g(z) = 15(19 — 28z + 6sin 1z cos z — 6 cos 1z sinz + 6sin 1sinz).

The Example 4.1 is solved for different values of N. The maximum of absolute
errors on the sinc grid S are tabulated in Table 4.1. This table indicates that as N
increases the errors are decrease more rapidly. The exact and approximate solutions
of Example 4.1 are shown in Fig. 4.1 for N =1 and N = 5.

N h [ E5(R) |

5 | 1.40496 | 2.42903x103
10 | 0.99346 | 1.97337x10~*
20 | 0.70248 | 5.97438x10°6
30 | 0.57357 | 3.93851x10~ "
40 | 0.49673 | 3.92648x108
50 | 0.44429 | 5.10671x107?
60 | 0.40558 | 8.03961x1010

Table 4.1: Results for Example 1.
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0.2 0.4 0.6 0.8 1

Figure 4.1. Exact and approximate solutions for Example 4.1,(N = 1,5)

Example 4.2. Consider the integral equation

with exact solution y(x) = 2z.

The approximate solution is calculated for different values of N, a = %, d=7%
and h = ﬂ(%)%. The maximum absolute errors on the sinc grid S are tabulated in
Table 4.2. This table indicates that as IV increases the errors are decrease rapidly.
The exact and approximate solutions of Example 4.2 are shown in Fig. 4.2 for
N =1and N =5.

N h [ E5(R) |

5 | 1.40496 | 3.64982x103
10 | 0.99346 | 2.92645x10~*
20 | 0.70248 | 8.34053x10°6
30 | 0.57357 | 5.23380x10~ "
40 | 0.49673 | 4.97018x10~8
50 | 0.44429 | 6.15092x10~?
60 | 0.40558 | 9.18873x10~ 10

Table 4.2: Results for Example 4.2.
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AL
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Figure 4.2. Exact and approximate solutions for Example 4.2,(N = 1,5)

In general, the above Figures 4.1 and 4.2 show that for larger values of N(N > 5),

the approximate solutions are indistinguishable(for the given scale) from the exact
solution.

Conclusion

The sinc functions are used to solve the nonlinear Volterra-Fredholm integral equa-
tions. The numerical examples show that the accuracy improve with increasing the
number of sinc grid points N.
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