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Abstract In this article we summarize the results on algebraic aspects of
integrability for polynomial differential systems and its application, which
include the Darboux, elementary and Liouvelle integrability. Darboux theory
of integrability was found by Darboux in 1878, and it becomes extremely useful
in study of the center focus problem, of bifurcation, of limit cycle problem
and of global dynamics. The importance of Darboux theory of integrability
is also presented by the Singer’s theorem for planar polynomial differential
system. That is, if a polynomial system is Liouville integrable, then it is
Darboux integrable, i.e. the system has a Darboux first integral or a Darboux
integrating factor.
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1. Introduction

The integrability theory of differential systems is classic, and it becomes a very
active subject. Because it is extremely useful in the study of dynamics of differen-
tial system, for instance, the center focus problem, the bifurcation, the limit cycle
problem and the global dynamics.

Integrability has different definition in different fields. Here we mainly summa-
rize some results related to algebraic aspects of polynomial differential systems. The
algebraic theory of integrability involves the real and complex analysis, algebraic
geometry and the field extension and so on. For further information on this subjec-
t, we refer readers to Daboux [20, 21], Jouanolou [24], Schlomiuk [42],Carnicer [2],
Chavarriga al al [3], Llibre [26], Dumortier and Llibre et al [22], Christopher et
al [19], Llibre and Zhang [32].
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2. Darboux theory of integrability

Darboux theory of integrability was founded by Darboux in 1878. He established
an essential relation between integrability and invariant algebraic curves or surfaces
of polynomial differential systems (see Darboux [20] and Poincaré [39]).

Consider polynomial differential systems

ẋ = P (x), x ∈ Kn, (2.1)

where K = C or R, P (x) = (P1(x), . . . , Pn(x)) are vector valued polynomial func-
tions, max{degP1, . . . , degPn} =: m ∈ N is called the degree of polynomial differ-
ential systems (2.1). In this paper we will always use m to denote the degree of
system (2.1). We also use

XP = P1(x)
∂

∂x1
+ . . .+ Pn(x)

∂

∂xn

to represent the vector field associated to system (2.1).
Let K[x] be the polynomial ring in x in the field K. f(x) ∈ C[x] is a Darboux

polynomial of system (2.1), if there exists a k(x) ∈ C[x] such that

XP (f) = kf. (2.2)

We call k(x) cofactor. Clearly, if f(x) is a Darboux polynomial of (2.1), then the
set {x ∈ Kn| f(x) = 0} is an invariant set of (2.1). For simplifying notations we use
f = 0 to denote {x ∈ Kn| f(x) = 0}.

We remark that even a vector field XP is real, its Darboux polynomial and
cofactor can be complex.

If f is a Darboux polynomial of (2.1), we call f = 0 an invariant algebraic
curve(n = 2), or invariant algebraic surface(n = 3), or invariant algebraic hyper-
surface(n > 3) of system (2.1).

Next we introduce Darboux first integral, integrating factor, Jacobi multiplier
and their properties. The first one is the relation between the Darboux polynomials
and their irreducible factors.

Proposition 2.1. Assume that f ∈ C[x], and f = fm1
1 . . . fmr

r are its irreducible
decomposition in C[x]. Then the following statements hold.

a) f is a Darboux polynomial of (2.1) if and only if each fj is a Darboux poly-
nomial of (2.1), j = 1, . . . , r.

b) if k(x), k1(x), . . . , kr(x) are respectively the cofactors of f(x), f1(x), . . . , fr(x),
then

k(x) = m1k1(x) + . . . ,mrkr(x).

Proof. Its proof is direct, the readers can check it easily.
From the above results, in what follows our Darboux polynomials are irreducible

if we do not specify it.

Proposition 2.2. For f ∈ C[x] irreducible, the following statements hold.

a) If f = 0 is invariant for (2.1), i.e. XP (f)|f=0 = 0, then there exists k(x) ∈
K[x] such that (2.2) hold.

b) If k(x) is a cofactor of f(x), then degk ≤ m− 1.
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Proof. b) It can be directly checked from the definition (2.2).
a) Its proof follows from Fulton [23, p18, Corrolary 1]. It can also be obtained

from the next result, see for example Olver [37, Proposition 2.10].

Proposition 2.3. Let M ⊂ Rn be an m dimensional smooth manifold, F =
(f1, . . . , fl) : M → Rl be smooth maps. If F has maximal rank on V (F ) := {x ∈
M | F (x) = 0}, i.e. for ∀x ∈ V (F ), the rank of Jacobian matrix of F at x is equal
to min{m, l}, then any smooth function g : M → R vanishes on V (F ) if and only
if there exist smooth functions q1, . . . , ql such that

g(x) = q1(x)f1(x) + . . .+ ql(x)fl(x), x ∈M.

In fact, since f is irreducible on Rn, the derivative of f has only finitely many
zeros on V (f), so it is of full rank. So there exists a smooth function k(x) on Rn

such that
XP (f)(x) = k(x)f(x), x ∈ Rn.

Moreover, we get from the above equality that k(x) is a polynomial.
Suppose that f, g ∈ C[x], if there exists L(x) ∈ Cm−1[x] with Cm−1[x] the set

of polynomials with coefficients in C of degree no more than m− 1, such that

XP (exp(g/f)) = L exp(g/f),

we call exp(g/f) exponential factor of differential system (2.1), L cofactor of
exp(g/f). Without loss of generality, in what follows when we say exponential
factor exp(g/f), we always mean that g, f are relative coprime, i.e. (g, f) = 1.

The next result presents a relation between exponential factor and invariant
algebraic hypersurface.

Proposition 2.4. The function exp(g/f) are exponential factor of polynomial dif-
ferential system (2.1) if and only if f is a Darboux polynomial of (2.1), and

XP (g) = gL+ fk,

where L and k are respectively the cofactors of exp(g/f) and f .

Proof. Necessity. By the definition of cofactor we have

XP (g)f − gXP (f)

f2
= L,

i.e.
XP (g)f − Lf2 = gXP (f).

Since (g, f) = 1, there is a k ∈ C[x] such that XP (f) = kf . So we have

XP (g) = Lf + gk.

Sufficiency. From the proof of necessity we have

XP

(
exp

(
g

f

))
= exp

(
g

f

)
XP (g)f − gXP (f)

f2
= L exp

(
g

f

)
.
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For g, f, f1, . . . , fr ∈ C[x], s1, . . . , sr ∈ C, the function of the form

H := exp

(
g

f

)
fs11 . . . fsrr ,

is called Darboux function. A Darboux function is usually multi–valued.
If the first integral (or integrating factor or Jacobi multiplier) of a polynomial d-

ifferential system (2.1) is a Darboux function, then it will be called Darboux first (or
Darboux integrating factor or Jacobi multiplier of Darboux type). If a first integral
is a polynomial function (or a rational function), it is called polynomial first inte-
gral (or rational first integral).

Proposition 2.5. Suppose that polynomial differential system (2.1) has p irre-
ducible Darboux polynomials f1, . . . , fp with the corresponding cofactors k1, . . . , kp,
and q relative different exponential factors E1, . . . , Eq with the corresponding cofac-
tors L1, . . . , Lq. For s1, . . . , sp, r1, . . . , rq ∈ C, the following statements hold.

a) H = fs11 . . . f
sp
p Er1

1 . . . E
rq
q is a Darboux first integral of differential system

(2.1) if and only if s1k1 + . . .+ spkp + r1L1 + . . .+ rqLq = 0.

b) M = fs11 . . . f
sp
p Er1

1 . . . E
rq
q is a Jacobian multiplier or integrating factor of

differential system (2.1) if and only if s1k1 + . . .+ spkp + r1L1 + . . .+ rqLq =
−divP .

Proof. The proof of a) follows from the fact that

XP (H) =
p∑

i=1

(
p∏

i=1

sif
si−1
i XP (fi)

)
q∏

j=1

E
rj
j +

p∏
i=1

fsii

q∑
j=1

(
q∏

j=1

rjE
rj−1
j XP (Ej)

)

=

(
p∑

i=1

siki +
q∑

j=1

rjLj

)
H.

The proof of b) can be obtained from the fact that M is a Jacobi multiplier if
and only if XP (M) = −Mdiv(f), and a).

We remark that if a real polynomial differential system XP has a complex Dar-
boux first integral, it will have a real Darboux first integral. This can be got from
the facts that the product of two first integrals is also a first integral and that if f
is a Darboux polynomial of XP , its conjugacy f is also a Darboux polynomial of
XP . In addition, for ∀ k ∈ C we have

fk f
k
=
(
(Re f)2 + (Im f)2

)Re k
exp

(
−2 Im k arctan

Imf

Ref

)
,

where Re and Im are respectively the real and imaginary parts. This last equality
can be proved with the help of

arctan z = ln

((
1− i z

1 + i z

)i/2
)
, z ∈ C,

where i =
√
−1.

Theorem 2.1. (Darboux-Jouanolou Theorem) Suppose that polynomial differential
system (2.1) has p irreducible Darboux polynomials. Set

N =

(
m+ n− 1

n

)
.
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a) If p ≥ N + 1, system (2.1) has a Darboux first integral.

b) System (2.1) has a rational first integral if and only if p ≥ N + n.

Statement a) of Theorem 2.1 was estabilished by Darboux [20, 21] in 1878. b)
was obtained by Jouanolou [24] in 1979 using the sophisticated tools of algebraic
geometry. In 2000, Christopher and Llibre provided an elementary proof of the
Jouanolou’s result in the two dimensional case. An elementary proof for higher
dimensional case was got by Llibre and Zhang until 2010. The next are the proof
of Llibre and Zhang [34].

We say that functions H1, . . . ,Hm are k–functionally independent on D1 ⊂ Kn,
if among H1, . . . , Hm there are k functionally independent elements on D1, where-
as any k + 1 elements are not functionally independent on any positive Lebesgue
measure subset of D1.

Lemma 2.1. Suppose that H1, . . . ,Hm are k (< m) functionally independent first
integrals of polynomial vector fields XP , and are analytic on the full Lebesgue mea-
sure subset of Kn. Without loss of generality, we assume that H1, . . . ,Hk are func-
tionally independent.

(a) For ∀ s ∈ {k+ 1, . . . ,m}, there exist analytic functions Cs1(x), . . ., Csk(x) on
the full Lebesgue measure subset of Cn such that

∂xHs(x) = Cs1(x)∂xH1(x) + . . .+ Csk(x)∂xHk(x). (2.3)

(b) For ∀ s ∈ {k + 1, . . . ,m}, j ∈ {1, . . . , k}, if the function Csj(x) is not a
constant, then it is first integral of the vector field XP .

Proof. Let D1 be a full Lebesgue measure subset of Kn, such that H1, . . . , Hm

are k functionally independent on D1.
By the assumption there exists a full Lebesgue measure subsetD2 ⊂ D1 such that

for ∀x ∈ D2, ∀ s ∈ {k + 1, . . . ,m}, ∂xH1(x), . . . , ∂xHk(x) are linearly independent
on Cn, whereas ∂xHs(x) and ∂xH1(x), . . . , ∂xHk(x) are linearly dependent on Cn.
So there exist Cs1(x), . . . , Csk(x) such that the equality (2.3) hold on D2. By the
Cramer rule, these functions Cs1(x), . . . , Csk(x) defined on D2 can be expressed as
functions of ∂xH1, . . . , ∂xHk, ∂xHs, and so they are analytic on D2. This proves
statement (a).

The next proof on (b) is processed on D2. For ∀ i, j ∈ {1, . . . , n}, we get from
(2.3) that

∂Hs

∂xi
= Cs1(x)

∂H1

∂xi
+ . . .+ Csk(x)

∂Hk

∂xi
,

∂Hs

∂xj
= Cs1(x)

∂H1

∂xj
+ . . .+ Csk(x)

∂Hk

∂xj
.

Differentiating these last two equalities respectively with respect to xj and xi, and
subtracting the resulting expressions, we get

∂Cs1

∂xi

∂H1

∂xj
− ∂Cs1

∂xj

∂H1

∂xi
+ . . .+

∂Csk

∂xi

∂Hk

∂xj
− ∂Csk

∂xj

∂Hk

∂xi
= 0. (2.4)

Since k ≤ n−1, we distinguish two cases. First we assume that k = n−1. From
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(2.4) we have∑
1≤i<j≤n

((∂Cs1

∂xi

∂H1

∂xj
− ∂Cs1

∂xj

∂H1

∂xi
+ . . .+

∂Csk

∂xi

∂Hk

∂xj
− ∂Csk

∂xj

∂Hk

∂xi

)
˙

∑
σ(k1,k2...,kn−2)

(−1)τ(ijk1k2...,kn−2)
∂H2

∂xk1

∂H3

∂xk2

. . .
∂Hn−1

∂xkn−2

)
= 0,

where σ is the permutation of {1, . . . , n} \ {i, j}, and the second summation takes
over all these permutations, τ is the minimal times permutating a give order to
{1, . . . , n}. In fact, the last equation can be written in∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂Cs1

∂x1

∂Cs1

∂x2
. . .

∂Cs1

∂xn

∂H1

∂x1

∂H1

∂x2
. . .

∂H1

∂xn
...

...
. . .

...
∂Hn−1

∂x1

∂Hn−1

∂x2
. . .

∂Hn−1

∂xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (2.5)

It can be got from the next two equalities:∑
1≤i<j≤n

(
∂Cs1

∂xi

∂H1

∂xj
− ∂Cs1

∂xj

∂H1

∂xi

)
˙

∑
σ(k1,k2...,kn−2)

(−1)τ(ijk1k2...,kn−2)
∂H2

∂xk1

∂H3

∂xk2

. . .
∂Hn−1

∂xkn−2

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂Cs1

∂x1

∂Cs1

∂x2
. . .

∂Cs1

∂xn

∂H1

∂x1

∂H1

∂x2
. . .

∂H1

∂xn
...

...
. . .

...
∂Hn−1

∂x1

∂Hn−1

∂x2
. . .

∂Hn−1

∂xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

and for l = 2, . . . , k∑
1≤i<j≤n

(
∂Csl

∂xi

∂Hl

∂xj
− ∂Csl

∂xj

∂Hl

∂xi

)
˙

∑
σ(k1,k2...,kn−2)

(−1)τ(ijk1k2...,kn−2)
∂H2

∂xk1

∂H3

∂xk2

. . .
∂Hn−1

∂xkn−2

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂Csl

∂x1

∂Csl

∂x2
. . .

∂Csl

∂xn

∂Hl

∂x1

∂Hl

∂x2
. . .

∂Hl

∂xn

∂H2

∂x1

∂H2

∂x2
. . .

∂H2

∂xn
...

...
. . .

...
∂Hn−1

∂x1

∂Hn−1

∂x2
. . .

∂Hn−1

∂xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.



Algebraic aspects of integrability 57

For ∀x ∈ D2, denote by Pn−1(x) the n− 1 dimensional vector space generated
by {∂xH1(x), . . . , ∂xHn−1(x)}. Then we get from (2.5) that the vector ∂xCs1(x)
belongs to Pn−1(x). By the very definition of first integral, for ∀x ∈ D2

∂Hj(x)

∂x1
P1(x) + . . .+

∂Hj(x)

∂xn
Pn(x) = 0, for j = 1, . . . , n− 1.

This means that XP (x) = (P1(x), . . . , Pn(x)) is orthogonal to the n−1 dimensional
vector space Pn−1(x) on D2. Hence we have

∂Cs1(x)

∂x1
P1(x) + . . .+

∂Cs1(x)

∂xn
Pn(x) = 0, for all x ∈ D2.

This proves that Cs1(x) (if not a constant) is a first integral of the vector field XP

on D2.
Similarly we can prove that functions Csj(x) (if not constants), j = 2, . . . , k, are

first integrals of XP . This proves statement (b) in the case k = n− 1.
Now we assume that k < n−1. Similar to the proof of the case k = n−1, suppose

that H1, . . . , Hm are k functionally independent on D2. For arbitrary i1, . . . , ik+1

satisfying 1 ≤ i1 < i2 < . . . < ik+1 ≤ n and ∀x ∈ D2, we have∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂Cs1

∂xi1

∂Cs1

∂xi2
. . .

∂Cs1

∂xik+1

∂H1

∂xi1

∂H1

∂xi2
. . .

∂H1

∂xik+1

...
...

. . .
...

∂Hk

∂xi1

∂Hk

∂xi2
. . .

∂Hk

∂xik+1

.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

That is, for ∀x ∈ D2, ∂xCs1(x) belonging to the k dimensional vector space gener-
ated by {∂xH1(x), . . . , ∂xHk(x)}, denoted by Pk(x).

On the other hand, since H1(x), . . . , Hk(x) are the first integrals of XP , so for
∀x ∈ D2 the vector fields XP (x) and Pk(x) are orthogonal. This means that XP (x)
and ∂xCs1(x) are orthogonal. Hence we prove that Cs1(x) are first integrals of the
vector fields XP on D2. Similarly we can prove that Cs2, . . . , Csk are first integrals
of the vector field XP . This proves statement (b).
Proof of Theorem 2.1. Suppose that f1(x), . . . , fp(x) are the Darboux polyno-
mials of XP , k1(x), . . . , kp(x) are the corresponding cofactors.
a) Since each polynomial in C[x] is uniquely determined by its coefficients, and so
Cm−1[x] is an N dimensional vector space. By the assumption p ≥ N + 1 we get
that the cofactors k1(x), . . . , kp(x) are linearly dependent on Cm−1[x]. So there
exist s1, . . . , sp ∈ C such that

s1k1(x) + . . .+ spkp(x) = 0.

It follows from Proposition 2.5 that H = fs11 . . . f
sp
p is a first integral of the vector

field XP . This proves (a).
For proving (b), we only need to prove the sufficiency, because the necessity is

obvious.
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Let V be the vector space generated by {k1(x), . . ., kN+n(x)}. Set ρ := dimV,
then ρ ≤ N . For simplifying the notation we assume that p = N and k1(x), . . . , kN (x)
∈ V are linearly independent. The case p < N can be proved similarly, and so the
details are omitted.

For ∀ s ∈ {1, . . . , n}, there exist (σs1, . . . , σsN , 1) ∈ CN+1 such that

σs1k1(x) + . . .+ σsNkN (x) + kN+s(x) = 0. (2.6)

Since ki = XP (fi)/fi, equation (2.6) can be written as

XP (log (fσs1
1 . . . fσsN

N fN+s)) = 0.

This means that

Hs = log (fσs1
1 . . . fσsN

N fN+s) , s = 1, . . . , n,

are analytic first integrals of the vector field XP on some full Legesgue measure
subset of Cn.

Clearly these n first integrals H1, . . . , Hn are functionally dependent on some
positive Lebesgue measure subset of D3. Otherwise these first integrals are func-
tionally independent on some subset D4 of D3, then

∂Hi(x)

∂x1
P1(x) + . . .+

∂Hi(x)

∂xn
Pn(x) = 0, i = 1, . . . , n, x ∈ D4.

From their functionally independence, this n dimensional homogenous algebraic
equations can have only trivial solution Pi(x) = 0, i = 1, . . . , n on D4. And so the
polynomial vector field XP ≡ 0, x ∈ Cn, a contradiction.

Define

r(x) := rank{∇H1(x), . . . ,∇Hn(x)}, d = max{r(x) : x ∈ D3}.

There exists an open subset O of D3 such that d = r(x), x ∈ O, and d < n. Without
loss of generality we assume that {∂xH1(x), . . . , ∂xHd(x)} has rank d on O. Hence
by Lemma 2.1(a), for ∀x ∈ O there exist Ck1(x), . . . , Ckd(x) such that

∂xHk(x) = Ck1(x)∂xH1(x) + . . .+ Ckd(x)∂xHd(x), k = d+ 1, . . . , n. (2.7)

By Lemma 2.1(b), the function Ckj(x) (if not a constant), j ∈ {d + 1, . . . , n}, is a
first integral of the vector field XP on O.

Next we prove that Ckj(x) are rational first integrals. From the construction
of H1, . . . ,Hn, each ∂xHi, i = 1, . . . , n, is a vector valued rational function. Since
{∂xH1(x), . . . , ∂xHd(x)} are linearly independent onO, linear algebraic system (2.7)
has a unique solution (Ck1(x), . . . , Ckd(x)), k = d+ 1, . . . , n, on O. Obviously each
Ckj(x), j ∈ {1, . . . , d}, is rational, and satisfies

∂Ckj(x)

∂x1
P1(x) + . . .+

∂Ckj(x)

∂xn
Pn(x) = 0 x ∈ O.

Since O is an open subset of Cn, and so Ckj(x) is a rational function. Hence Ckj(x)
satisfies the above equation on a full Lebesgue measure subset of Cn (except where
Ckj has no definition). This proves that if function Ckj(x) is not a constant, it
should be a rational first integral of XP .
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Last we prove that there are Ckj not a constant.If all functions Ck1, . . . , Ckd are
constant, we get from the linear algebraic equations (2.7) that

Hk(x) = Ck1H1(x) + . . .+ CkdHd(x) + logCk,

where Ck are constant. This forces that for k ∈ {d+ 1, . . . , n}

fσk1
1 . . . fσkN

N fN+k = Ck (f
σ11
1 . . . fσ1N

N fN+1)
Ck1 . . . (fσd1

1 . . . fσdN

N fN+d)
Ckd .

This is in contradiction with the facts that the polynomials f1, . . . , fN+d are irre-
ducible and are pairwise different. Hence there exist some j0 ∈ {1, . . . , d} such that
Ck0j0(x) is a non constant function. This proves Theorem 2.1.

Darboux–Jouanolou theorem was generalized from different aspects. Christo-
pher [8, 11, 12] in 1994 introduced the exponential factor, Chavarriga, Llibre and
Sotomayor [6] in 1997 bringed independent singularities into the generalization of
Darboux–Jouanolou theorem. This theory had be extended to surfaces, see exam-
ple [31].

Pereira [38], and Christopher, Lliber and Pereira [19] further generalized the
Darboux–Jouanolou theorem to take into account the multiplicity of invariant al-
gebraic curve by using the Extactic curves. Llibre and Zhang [32–35] improved the
Darboux theory of integrability to higher dimensional systems taking into account
not only the algebraic multiplicity of invariant algebraic hypersurface but also that
of infinity using the Poincaré compactification.

Darboux theory of integrability depends on the number of invariant algebraic
curves or surfaces. In [28–30] Llibre and Zhang provided an effective theory to find
invariant algebraic surfaces of Lorenz system, Rikitake system and Rössler system.
Related to the dynamics of these systems having an invariant algebraic surfaces
Zhang et al [1, 7] characterized their dynamics on the invariant algebraic surfaces.

On the degree of invariant algebraic curves, there are also lots of works, see e.g.
[2, 4, 13, 26, 27]. Related to the classification of invariant algebraic curves of degree
4 for quadratic differential systems, there is an excellent work [5] by Chavarriga,
Llibre and Sorolla.

For the inverse problem on Darboux theory of integrability, Christopher, Llibre,
Pantazi and Walcher did a series works [14–17]. They deal with multiple invariant
algebraic curves, Darboux integrating factor and Darboux theory of integrability.
Related to the inverse problem, see also Christopher, Llibre, Pantaziand Zhang [18].

3. Liouville and elementary integrability

Liouville and elementary first integrals are respectively first integrals and are Liou-
ville and elementary functions, which will be defined later on. Prelle and Singer [40]
in 1983 presented an reduction of elementary first integrals. Singer [43] in 1992
proved the equivalence between the existence of Liouville first integral and Darboux
integrating factor of planar polynomial differential systems. So in two dimensional
case Liouville integrability is equivalent to the Darboux integrability. For introduc-
ing the results of Prelle and Singer, we need the knowledge on field extension.

3.1. Elementary on differential field extension

Let K be a ring. Its summation and product are denoted by ⊕ and ⊗, the zero and
unit element of K under the summation and product are respectively 0K and 1K .
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The ring K has characteristic 0 if for arbitrary r ∈ N,

1K + . . .+ 1K︸ ︷︷ ︸
r

= 0K ,

does not hold. If there exists a positive integer r such that the above equality holds,
such minimal positive integer is called characteristic of K, denoted by char(K). For
example, R and Z are respectively field and ring of characteristic 0. Whereas Z/(rZ)
is a ring of characteristic r.

A derivative on a ring K is an operator δ : K → K satisfying

δ(x+ y) = δx+ δy, δ(xy) = (δx)y + x(δy), ∀x, y ∈ K.

A differential field (K, ∆) consists of the field K and the set ∆ of commutative
derivatives defined on K. In this paper all fields have characteristic 0.

An extension of differential field of a differential field (K, ∆) is a differential
field (L, ∆′), which satisfies K ⊂ L and for ∀ δ′ ∈ ∆′ we have δ′|K ∈ ∆.

Since the relation between the derivative of differentia field (K, ∆) and its field
extension (L, ∆′), we also use ∆ to represent ∆′. For simplifying notations we also
use L/K to denote that (L,∆) is a field extension of (K,∆).

For differential field extension L/K,

• α ∈ L is called

– an algebraic element of K, if there exists a polynomial with coefficients
in K such that F (α) = 0.

– transcendental element of K, if α is not an algebraic element over K.

• A subset S ⊂ L is algebraic independent over K, if for ∀ s1, . . . , sr ∈ S,
there does not exist polynomial P (Z1, . . . , Zr) with coefficients in K such
that P (s1, . . . , sr) ≡ 0.

• The maximal cardinality of sets consisting of algebraic independent elements
of L over K is called transcendental degree of L/K.

• If each element of L is algebraic over K, we call L/K an algebraic extension
of field K.

Given a field K,

• A separating field of a polynomial p(x) over K is a minimal field extension
of K such that p(x) can be decomposed into product of linear factors over
this field extension, i.e. p(x) =

∏
(x − ai), ai ∈ L, L/K is the minimal field

extension such that this decomposition can happen.

• We say that an algebraic field extension L/K of K is normal, if L is a sepa-
rating field of polynomials in K[x].

• The normal closure of an algebraic field extension L/K is a field extension L
of L such that L/K is normal, and L is the minimal field extension satisfying
this property.

• Field automorphism over field K is a bijective map φ : K → K which keep-
s the algebraic properties of K. Keeping algebraic properties means that
φ(0K) = 0K , φ(1K) = 1K , φ(a+ b) = φ(a) + φ(b) and φ(ab) = φ(a)φ(b).
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• The set of all field automorphisms over field K fixing elements of a subfield
K ′ ⊂ K forms a group under the composition of maps, it is called Galois
group.

• The order of a group is the number of elements of a group G, denoted by |G|.

Give a field extension L/K,

• L can be considered as a vector space over K: the elements of L are treated
as vectors, and elements of K are treated as scalars, and the summation of
vectors is that of elements of field and the product of elements of L and K is
the that of elements of field L.

• The dimension of this vector space is called degree of this differential field
extension, denoted by [L : K].

• If [L : K] ∈ N, we call L/K finite field extesion.

• Let S ⊂ L,

– K(S) denotes the minimal subfield of L including K and S.

– If S contains only one element, we call K(S) the minimal field extension
of K.

A differential field extension is elementary, if this differential field extension can
be written in differential field extensions of tower form

K = K0 ⊂ K1 ⊂ . . . ⊂ Kr = L,

such that each extension satisfies

(a) Ki+1 is a finite algebraic extension of Ki, or

(b) Ki+1 = Ki(t), where t satisfies : for each δ ∈ ∆, there exists a x ∈ Ki such
that δt

t = x, or

(c) Ki+1 = Ki(t), where t satisfies: for each δ ∈ ∆, there exists a x ∈ Ki such
that δt = δx

x .

We note that an elementary extension of a field is finitely many times to add al-
gebraic elements to the original field, the minimal extension of exponential and
logarithm of the element in the original field. The Ki in the tower is called tower
element, i = 0, 1, . . . , r.

A differential field extension is Liouville, if this differential field extension can
be written in tower form such that

(a) Ki+1 is a finite algebraic extension of Ki, or

(b) Ki+1 = Ki(t), where t satisfies: for each δ ∈ ∆,
δt

t
∈ Ki, or

(c) Ki+1 = Ki(t), where t satisfies: for δ ∈ ∆, δt ∈ Ki.

We note that the Liouville extension of a field is the minimal field extension consist-
ing of elementary extension and finitely many times integrating of original fields.

Is the integrating of an elementary function still an elementary one? Liouville
proved the following result, see e.g [36,41]. Let (K, ∆) be a differential field. Set

Con(K,∆) = {k ∈ K| δk = 0, ∀δ ∈ ∆}.

We also use Con(K) to denote Con(K,∆) if there is no confusion.
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Theorem 3.1. (Liouville) Let (L, δ) be an elementary field extension of (K, δ).
Assume that Con(K) = Con(L). If x ∈ K, y ∈ L satisfy δy = x, then there exist
c1, . . . , cm ∈ Con(K), and w0, w1, . . . , wm ∈ K such that

x = δw0 +
m∑
j=1

ci
δwi

wi
.

3.2. Integrability theorem of Prelle and Singer

The results introduced in this section were obtained by Prelle and Singer [40] in
1983, and Singer [43] in 1992.

Theorem 3.2. (Prelle and Singer theorem) Assume that (L,∆) is a field extension
of (K,∆), and Con(L) = Con(K). Choose δ1, . . . , δn ∈ ∆, y1, . . . , yn ∈ K, and set
X = y1δ1 + . . . + ynδn. If Con(L,∆) is a proper subset of Con(L,D), then there
exist c1, . . . , cm ∈ Con(K,∆), and the algebraic elements w0, w1, . . . , wm over K,
such that

Xw0 +
m∑
i=1

ci
Xwi

wi
= 0, δw0 +

m∑
i=1

ci
δwi

wi
̸= 0, ∀δ ∈ ∆.

From Theorem 3.2 of Prelle and Singer, we can obtain the next result.

Corollary 3.1. If a planar polynomial differentia system has an elementary first
integral, then it must have an integrating factor of the form

fn1
1 . . . fnp

p , fi ∈ C[x, y], ni ∈ Z,

where fi are Darboux polynomials, i = 1, . . . , 0.

In 1992 Singer [43, Theorem 1] characterized properties of planar polynomial
differential systems

ẋ = P (x, y), ẏ = Q(x, y), (3.1)

when some orbits are contained in vanishing set of a Liouville function, where
P,Q ∈ C[x, y].

Theorem 3.3. (Singer theorem) Assume that polynomial differential system (3.1)
has an analytic solution (x, y) = (φ(t), ψ(t)) defined on some open subset V of
C. If there is a Liouville function F (x, y), which is analytic on some open subset
containing S := {(φ(t), ψ(t))| t ∈ V }, and F (x, y)|S = 0, then either S is an
algebraic solution, or system (3.1) has an integrating factor

R(x, y) := exp

(∫ (x,y)

(x0,y0)

U(x, y)dx+ V (x, y)dy

)
,

where U, V ∈ C(x, y) satisfy ∂yU = ∂xV .

This theorem indicates that invariant algebraic curves play an important role
in the study of dynamics of planar polynomial differential systems. For planar
polynomial differential systems, differential (K,∆) = (C(x, y), {∂x, ∂y}).

An important corollary of this last theorem characterize the equivalence of Li-
ouville integrability and Darboux integrabilty [43, Corollary] for planar polynomial
differential systems.
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Theorem 3.4. (Singer theorem) A polynomial differential system (3.1) has a Li-
ouville first integral if and only if it has Darboux integrating factor.

Proof. This proof follows from Christopher [10]. For differential field (K,∆) =
(C(x, y), {∂x, ∂y}), δ ∈ ∆ implies δ = ∂x, or δ = ∂y.
Sufficiecy. Assume that differential system (3.1) has a Darboux integrating factor

R. Then by the definition of Darboux, we have
δR

R
∈ C(x, y), i.e. R satisfies the

condition (b) in the tower elements of Liouville extension. So RP, RQ belong to
some tower element. Hence we get from the condition (c) of the tower elements in
the Liouville extension that

H(x, y) =

∫ (x,y)

(x0,y0)

RPdy −RQdx,

is a Liouville function, and consequently is a Liouville first integral of system (3.1).
Necessity. Denote by X the vector field associated to system (3.1). Without loss of
generality we assume (P,Q) = 1.

We separate the proof in two parts. First we prove that

Lemma 3.1. If system (3.1) has a Liouville first integral, then it has an integrating
factor

R = exp

(∫
Udx+ V dy

)
, U, V ∈ C(x, y), ∂yU = ∂xV.

Proof. In order for proving this lemma, we only need to prove that there exist
U, V ∈ C(x, y) such that

∂yU = ∂xV, PU +QV = ∂xP + ∂yQ, (3.2)

We now prove Lemma 3.1. By the assumption there exists an element H(x, y)
belonging to some Liouville extension L of the field C(x, y), such that

X (H) ≡ 0, P∂xH +Q∂yH ≡ 0.

Since (P,Q) = 1, there exists h ∈ L such that

h∂xH = Q, h∂yH = −P. (3.3)

Set

A =
∂xh

h
, B =

∂yh

h
.

Then A,B ∈ L, and

∂yA = ∂xB, PA+QB = ∂xP + ∂yQ, (3.4)

where the second equality was obtained by differentiating the first equation of (3.3)
with respect to y, and the second equation with respect to x, and then subtracting
these two resulting equations.

The functional equation (3.4) indicates that

R(x, y) := exp

(∫ (x,y)

(x0,y0)

−A(x, y)dx−B(x, y)dy

)
,
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is an integrating factor of system (3.1). From the construction of A,B, they belong
to the same tower element of the Liouville field extension. Next we prove that if
A,B ∈ Ki+1, then we can find C,D ∈ Ki such that instead of A,B by C,DR, (3.4)
still hold. And so by induction we can find U, V ∈ C(x, y) satisfying (3.4).

By the tower form of the Liouville extension, we distinguish three cases (a), (b)
and (c). In (b) and (c), we assume without loss of generality that t is a transcendental
element. Otherwise Ki(t) is an algebraic extension of Ki, and so it belongs to (a).
(a) Assume that Ki+1 is a finite algebraic extension of Ki. Let Ki+1 be the normal
closure ofKi+1, and G is the group formed by the automorphisms overKi+1 keeping
Ki unchanged. Then from Emil Artin’s result (see e.g. [25, Theorem 1.1] and its
proof) we get that the group G is finite order, denoted by N = |G|, and N =[
Ki+1 : Ki

]
.

Since the element of G keep elements of Ki unchanged and keep the algebraic
structure of Ki+1, and P,Q ∈ C(x, y) ⊂ Ki, it follows from (3.4) that∑

φ∈G
φ(PA+QB) =

∑
φ∈G

φ (∂xP + ∂yQ)

=⇒ P
∑
φ∈G

φ(A) +Q
∑
φ∈G

φ(B) =
∑
φ∈G

(∂xφ(P ) + ∂yφ(Q)) = N (∂xP + ∂yQ) ,

σ(∂yA) = σ(∂xB) =⇒ ∂yσ(A) = ∂xσ(B), ∀σ ∈ G.

Since A,B are algebraic functions of Ki, there exist minimal polynomials f(z),
g(z) with coefficients in Ki such that f(A) = 0, g(B) = 0. Now φ ∈ G keeps
elements of Ki, we have f(φ(A)) = 0, g(φ(B)) = 0. That is

φ(A), φ(B) ∈ Ki+1, ∀φ ∈ G.

Set

C :=
1

N

∑
φ∈G

φ(A), D :=
1

N

∑
φ∈G

φ(B).

Using C,D to replace A,B, we also have (3.4). Since C and D are the averages of
all elements of the Galois group G acting on A and B, we have

φ(C) = C, φ(D) = D, ∀φ ∈ G.

This proves that C,D ∈ Ki.
(b) Assume that Ki+1 = Ki(t) with t a transcendental element over Ki, and δt/t ∈
Ki and δ ∈ {∂x, ∂y}. Since A, B ∈ Ki(t), we assume without loss of generality that
A = a(t), B = b(t) ∈ Ki(t), they are rational functions in t with coefficients in Ki.
Expanding a(t), b(t) in Laurent series in the transcendental element t

a(t) = C +
∑
i ̸=0

ait
i, b(t) = D +

∑
i̸=0

bit
i.

Then the coefficients of this series all belong to Ki. Direct calculations show that

∂yA = ∂ya(t) = ∂yC +
∑
i ̸=0

(∂yai + iaip)t
i,

∂xB = ∂xb(t) = ∂xD +
∑
i ̸=0

(∂xbi + ibiq)t
i,
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where p, q ∈ Ki satisfies p = ∂yt/t, q = ∂xt/t. Substituting the expansions of
A = a(t), B = b(t) and the partial derivatives in to (3.4), equating the coefficients
of t0 gives

∂yC = ∂xD, PC +QD = ∂xP + ∂yQ.

(c) Assume that Ki+1 = Ki(t) with t transcendental over Ki, and δt ∈ Ki and
δ ∈ {∂x, ∂y}. Set A = a(t), B = b(t) ∈ Ki(t), and expand a(t), b(t) in Laurent
series in the transcendental 1/t

a(t) =

r∑
i=−∞

ait
i, b(t) =

r∑
i=−∞

bit
i,

where ai, bi ∈ Ki. Direct calculations show that

∂yA = ∂ya(t) =
r∑

i=−∞
(∂yai−1 + iaip)t

i−1 + ∂yart
r,

∂xB = ∂xb(t) =
r∑

i=−∞
(∂xbi−1 + ibiq)t

i−1 + ∂xbrt
r,

where p, q ∈ Ki satisfy p = ∂yt, q = ∂xt. Substituting the expansions of A =
a(t), B = b(t) and the above partial derivatives into (3.4), equating the coefficients
of tr gives

when r ̸= 0, ∂yar = ∂xbr, Par +Qbr = 0; or

when r = 0, ∂ya0 = ∂xb0, Pa0 +Qb0 = ∂xP + ∂yQ.

If the latter holds, choose C = a0, D = b0, we can finish the proof.
If the former holds, since Par +Qbr = 0, (P,Q) = 1, there h ∈ Ki such that

P = −brh, Q = arh.

So we from ∂yar = ∂xbr that

∂xP + ∂yQ = −br∂xh+ ar∂yh = P
∂xh

h
+Q

∂yh

h
.

Choose

C =
∂xh

h
, D =

∂yh

h
.

Then we have C,D ∈ Ki, and ∂yC = ∂xD.
By induction, there exist U, V ∈ K0 = C(x, y) such that (3.2) holds. Lemma 3.1

follows.
According to the plan of the proof, we next prove

Lemma 3.2. If polynomial differential system (3.1) has integrating factor

R = exp

(∫
Udx+ V dy

)
, where U, V ∈ C(x, y), and ∂yU = ∂xV.

Then it has a Darboux integrating factor

exp

(
g

f

)∏
i

f lii ,

where g, f, fi ∈ C[x, y], li ∈ C.
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Proof. We now prove Lemma 3.2. Since U, V ∈ C(x, y), we treat their numerators
and denominators as polynomial in x with coefficients in C(y). LetK be the minimal
normal algebraic field extension of C(y) such that it is the separating field of the
numerators and denominators of U, V . Then U, V can be expanded over K as

U =

r∑
i=1

ni∑
j=1

αij

(x− βi)j
+

p∑
i=0

ξix
i,

V =
s∑

i=1

mi∑
j=1

γij
(x− βi)j

+

q∑
i=0

ηix
i,

where αij , γij , βi, ξi, ηi ∈ K, and they can be partially zero. Since

∂yU =

r∑
i=1

ni∑
j=1

(
α′
ij

(x− βi)j
− jαijβ

′
i

(x− βi)j+1

)
+

p∑
i=0

ξ′ix
i,

∂xV =
s∑

i=1

mi∑
j=1

−jγij
(x− βi)j+1

+

q∑
i=0

(i+ 1)ηi+1x
i,

where ‘′’ denotes the derivative with respect to y. Comparing the coefficients of
∂yU = ∂xV we get

ξ′i = (i+ 1)ηi+1, α′
i,j+1 − jβ′

iαij + jγij = 0. (3.5)

Set j = 0 in the second equality, we get αi1 ∈ C.
Set

Φ(x, y) =
∑
i

αi1 log(x− βi) +
∑
i,j

−1

j − 1

αij

(x− βi)j−1
+
∑
i

γix
i+1

i+ 1
+

∫
η0dy,

where the last integrating represents any primitive function of η0. Direct calcula-
tions show that ∂xΦ = U . Since

∂yΦ(x, y) =
∑
i

αi1
−β′

i

x− βi
+
∑
i,j

−1

j − 1

(
α′
ij

(x− βi)j−1
− (j − 1)αij

(x− βi)j

)
+
∑
i

γ′ix
i+1

i+ 1
+η0,

by the equality (3.5) we get ∂yΦ = V . Hence Φ(x, y) =
∫
Udx+ V dy.

Denote by G the automorphism group keeping C(y) over K. Then by the selec-
tion of K, G is a finite group. Denote by N = |G| the order of G. Set

Ψ =
1

N

∑
σ∈G

σ(Φ).

Since σ ∈ G keeps the algebraic structure of K, we get from the property of auto-
morphisms over algebraic field extension that

σ (αi1 log(x− βi)) = αi1 log(x− σ(βi)), σ

(∫
η0dy

)
=

∫
σ(η0)dy,

where integrating equality is in the sense that they maybe have a constant difference.
Since σ ∈ G keeps C(x, y), we have

σ(∂xΦ) = σ(U) =⇒ ∂xσ(Φ) = σ(U) = U,

σ(∂yΦ) = σ(V ) =⇒ ∂yσ(Φ) = σ(V ) = V.
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It follows that
∂xΨ = U, ∂yΨ = V.

Furthermore, we get from the expression of Φ and the definition of Ψ that

Ψ(x, y) =
∑
i

li logRi(x, y) +R(x, y) +

∫
S(y)dy,

where Ri, R ∈ C(x, y), S ∈ C(y). Note that Ri ∈ C(x, y). It can be obtained from

Ri =
∏
φ∈G

(x− φ(βi)),

and that Ri is unchanged under the action of each φ ∈ G. Since S(y) has partial
fractional expansions in C, so we have∫

S(y)dy =
∑
j

kj log(Sj(y)) + S0(y),

where Sj ∈ C[y], j ̸= 0, S0 ∈ C(y).
Taking exponential of Ψ, we get the Darboux integrating factor

exp (Ψ) = exp (R(x, y) + S0(y))
∏
i

Rli
i (x, y)

∏
j

S
kj

j (y).

This proves Lemma 3.2.
Summarizing Lemma 3.1 and 3.2, we complete the proof of Theorem 3.4.
For differential systems having an Darboux integrating factor but its first in-

tegral not Darboux, Zoladek posed the definition of Darboux–Schwatz–Christoffel
first integral and Darboux–Hyperelliptic first integrals. These first integrals can
be distinguished by holonomy group. Note that Darboux–Hyperelliptic first inte-
grals are elementary, whereas Darboux–Schwartz–Christoffel first integrals are not
elementary, see e.g. Christopher [9].
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