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GLOBAL STABILITY FOR A DYNAMIC
MODEL OF HEPATITIS B WITH ANTIVIRUS
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Abstract An epidemic model on the basis of therapy of chronic Hepatitis
B with antivirus treatment was introduced in this paper. By applying a
comparison theorem and analyzing the corresponding characteristic equations,
we obtain sufficient conditions on the parameters for the global stability of the
disease-free state. It’s proved that if the basic reproduction number R0 < 1 ,
the disease-free equilibrium is globally asymptotically stable. If R0 > 1, the
disease-free equilibrium is unstable and the disease is uniformly permanent.
Moreover, if R0 > 1, sufficient conditions are obtained for the global stability
of the endemic equilibrium.
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1. Introduction

Immune system plays an important role in the process of anti-HBV infection.
Many models considering immune response have been developed (see [11, 14]). An
immune-response model is described by the following system:

dT
dt = λ− (1− η)βTV − d1T,

dI
dt = (1− η)βTV − γIU − d2I,

dV
dt = (1− ϵ)pI − d3V,

dU
dt = s+ αIU − d4U.

(1.1)

As science develops, some kinds of drug have been introduced into the treatment
of chronic hepatitis B. In this paper, we study the model considering antivirus
treatment. The model is described below by the following system [3]:

dT
dt = λ− (1− η(t))βTV − d1T,

dI
dt = (1− η(t))βTV − γIU − d2I,

dV
dt = (1− ϵ(t))pI − d3V,

dU
dt = σc(t)

c(t)+Kc(t)s+ αIU − d4U,

(1.2)
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where

η(t) =
c(t)

c(t) + IC50
, ϵ(t) =

c(t)

c(t) +M

and

c(t) =

{
c(τ) + t

tp
(cmax − c(τ)), 0 ≤ t < tp,

cmaxe
−ω(t−tp), tp ≤ t ≤ τ.

The parameters are described as follows:

T (t)-the density of uninfected target cells;

I(t)-the density of infected cells;

V (t)-the density of free virions;

U(t)-the density of immune cells;

λ-the generation rate of target cells;

η(t)-the efficacy of the drug in blocking new infection at t;

β-the rate of infection of new target cells;

d1 - the death rate of each target cell;

γ-the rate that immune cells killing infected cells;

d2-the death rate of infected cells;

ϵ(t)-the efficacy of the drug in blocking viral production at t;

d3-the natural death rate of virions;

σ-the effect that drug concentration has on the production of immune cells;

c(t)-the drug concentration at t;

M -the control variable;

K-the control variable;

p-the average rate of each infected cell producing virions;

α-the efficacy of infected cells in damaging immune cells;

IC50-the drug concentration that makes the virus replication reduced to 50;

τ -the period of taking drugs;

tp- the time when the blood concentration reaches a maximum;

cmax-the maximum value of the blood concentration;

ω-the rate of reduced blood concentration;

d4-the natural death rate of immune cells;

s-the generation rate of immune cells.

The global stability of the disease-free equilibrium has been obtained in [6]. In
this article, we prove the global stability of the disease-free equilibrium in another
way introduced in [5]. The article is organized as follows. In section 2, we discuss the
model under the assumption that the conditions are completely ideal. In section
3, we obtain some basic results and establish a comparison principle which play
important roles in the discussion of global stability. In section 4, we introduce
auxiliary systems and the corresponding characteristic equations. With the help of
information of eigenvalues and Semigroup theory, we obtain the global stability of
the disease-free equilibrium. In the last section, we find sufficient conditions for the
global stability of the endemic equilibrium.



Global Stability for a Dynamic model of Hepatitis B 39

2. The Model

Assume that the conditions are completely ideal. That is the drug concentration
being constant, then the model is described by the following system:

dT
dt = λ− βTV − d1T,

dI
dt = βTV − γIU − d2I,

dV
dt = pI − d3V,

dU
dt = s+ αIU − d4U,

(2.1)

with boundary conditions

T (0) ≥ 0, U(0) ≥ 0, I(0) ≥ 0, V (0) ≥ 0.

For system (2.1), it is straightforward to see the existence of a disease-free equilib-
rium

E0(T0, 0, 0, U0) = (
λ

d1
, 0, 0,

s

d4
).

Next in order to find the positive endemic equilibrium state, we consider the fol-
lowing equations:

λ− βTV − d1T = 0,

βTV − γIU − d2I = 0,

pI − d3V = 0,

s+ αIU − d4U = 0.

(2.2)

From the third equation of (2.2), we have

V =
pI

d3
. (2.3)

Substitute (2.3) into the first equation of (2.2), we have

T =
λd3

βpI + d1d3
. (2.4)

From the last equation, we have

U =
s

d4 − αI
. (2.5)

Substitute (2.3), (2.4) and (2.5) into the second equation of (2.2), then we have

f(I) := d2pαβI
2 + ω1I + ω2 = 0, (2.6)

where
ω1 = −λpαβ − pd2d4β + d1d2d3α− γspβ,

ω2 = λpd4β − d1d3(d2d4 + γs).

It is obvious that there exists a positive enedmic equilibrium if and only if there
exists a positive solution on (0, d4

α ). Note that

f(
d4
α
) = −γs(pd4β + d1d3α)

α
< 0,
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we know when λ > d1d3(d2d4+γs)
pd4β

, (2.6) has a unique positive solution on (0, d4

α ), and

the equilibrium E∗(T ∗, I∗, V ∗, U∗) satisfies (2.3), (2.4), (2.5), (2.6) and 0 < I∗ < d4

α .

Furthermore, when λ < d1d3(d2d4+γs)
pd4β

, the positive solution does not exist.
Define the basic reproduction number R0 as follows

R0 =
λpd4β

d1d3(d2d4 + γs)
.

Next we will study the global stability of the disease-free equilibrium state.

3. Basic Results

Let us begin with considering the following linear non-autonomous ODE system

u̇ = A(t)u, u ∈ Rn, (3.1)

where A(t) = [aij(t)]n×n for t ∈ [0, T ] and aij ∈ L1([0, T ],R) and satisfies the
conditions

aij(t) ≥ 0 for i ̸= j, t ∈ [0, T ]. (3.2)

It is well known that (3.1) is a monotone system under the condition (3.2). That
is let u(t, u0) be a solution of (3.1) with u(0, u0) = u0. Then for any u ∈ Rn, ū0 ∈
Rn, u0 ≥ ū0 −→ u(t, u0) ≥ u(t, ū0) for all t ∈ [0, T ]. Through out this and next
sections, for u = (u1 · · ·un)

T ∈ Rn, v = (v1 · · · vn)T ∈ Rn, we write u ≥ v(u > v)
if ui ≥ vi for i = 1 · · ·n ( if u ≥ v and u ̸= v). In particular, if aij(t) is strictly
positive for i ̸= j, then u(t, u0) > u(t, ū0) for all t ∈ [0, T ].

Lemma 3.1. (see [5]) Let U(t), t ∈ [0, T ] be the fundamental solution matrix of
(3.1). That is, U(0) = I, where I is the identity matrix and U̇(t) = A(t)U(t). Then
U(t) : Rn → Rn is a monotone operator for all t ∈ [0, T ].

Let F : Rn → Rn such that F (·) ∈ L1(Rn,Rn), and F (·) is continuous and
increasing.

Let gi : R+ → Rn such that gi(·) ∈ L1(R+,Rn) and gi(·) is continuous.

Theorem 3.1. (see [5]) Let Wi : i = 1, 2, be the solutions of the systems

dWi(t)
dt = A(t)Wi(t) + F (Wi(t)) + gi(t),

W1(0) ≥ W2(0) = P0 ∈ Rn.
(3.3)

Suppose that A(t) satisfies the assumptions (3.2) and g1(t) ≥ g2(t) for t ≥ 0. Then

W1(t) ≥ W2(t), for t ≥ 0.

Lemma 3.2. (see [3]) Assume that f : [0,+∞] → R is bounded and K ∈ L1(0,+∞),
then

lim
t→+∞

sup{|
∫ t

0

K(s)f(t− s)ds|} ≤ |f |∞ ∥K∥L1(0,+∞) ,

where
|f |∞ = lim

t→∞
sup{|f |}.
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Lemma 3.3. All solutions of system (2.1) with initial value (T (0), I(0), V (0), U(0))
are positive for t > 0, where (T (0), I(0), V (0), U(0)) is nonnegative.

Proof. Since I = V = 0 is a constant solution of the second and the third equa-
tions of system (2.1), by the uniqueness and continuity of the solutions for initial
conditions, we get I(t) > 0 and V (t) > 0 for all t > 0. We prove that T (t) > 0. If
it is not true, let τ be the first time such that T (τ) = 0. From the first equation,
we obtain T ′(τ) = λ > 0. This means T (t) < 0 for t ∈ (τ − ϵ, τ), where ϵ is the
positive constant which is arbitrarily small. This is a contradiction. As the same
reason, we get U(t) > 0 for all t.

Theorem 3.2. There exists an M > 0, such that all solutions of system (2.1)
satisfy T (t), I(t), V (t), U(t) ≤ M for all large t.

Proof. By Lemma 3.3 and the first equation of (2.1), we have

T ′ = λ− βTV − d1T ≤ λ− d1T.

Therefore, there exists a t1 and an M1 > 0, such that T ≤ M1 for t > t1.
Let W = T + I. Calculating the time derivative along system (2.1), we have

W ′ ≤ λ− dW, where d = min{d1, d2}.

So there exists a t2 and an M2 such that

T + I ≤ M2, for t > t2.

Since T ≤ M1 for t > t1, there exists an M3 > 0, such that I ≤ M3 for t > t3
where t3 = max{t1, t2}. Then I(t) has an ultimately above bound. It follows
from the last two equations of system (2.1) that V (t) and U(t) have ultimately
above bounds. That is, there exists t4, t5 and M4 > 0,M5 > 0, such that V (t) ≤
M4 for t > t4, U(t) ≤ M5 for t > t5.

Let M = max{M1,M2,M3,M4,M5} > 0, t = max{t1, t2, t3, t4, t5}. Then we
complete the proof.

Remark 3.1. Theorem 3.2 shows that system (2.1) is dissipative.

Define

D = {(T, I, V, U) ∈ R4
+, 0 6 T, I, V, U 6 M}.

Hence D is a positively invariant for system (2.1).

4. Global stability of the infection-Free Equilibrium

Let us consider an auxiliary system:

dT∗
dt = λ− d1T,

dU∗
dt = s− d4U,

(4.1)

with boundary conditions

T∗(0) = T (0) ≥ 0, U∗(0) = U(0) ≥ 0. (4.2)
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It is easy to obtain the solutions of (4.1) and (4.2). That is

T∗(t) =
λ
d1

+ (T (0)− λ
d1
)e−d1t,

U∗(t) =
s
d4

+ (U(0)− s
d4
)e−d4t.

(4.3)

Hence we obtain that
limt→+∞ T∗(t) = T0,

limt→+∞ U∗(t) = U0.
(4.4)

Lemma 4.1. Let (T (t), I(t), V (t), U(t)) be the nonnegative solution of system (2.1),
then there exists an N > 0, such that for all t > N

T (t) ≤ T0, U(t) ≥ U0.

Proof. Comparing the equations for T (t) and U(t) in (2.1) with (4.1), and noticing
that

−βTV ≤ 0, αIU ≥ 0

and

T∗(0) = T (0), U∗(0) = U(0).

From the comparison theorem - Theorem 3.1, we deduce that

T (t) ≤ T∗(t), U(t) ≥ U∗(t).

From (4.4), we get that

limt→+∞ T (t) ≤ limt→+∞ T∗(t) = T0,

limt→+∞ U(t) ≥ limt→+∞ U∗(t) = U0.

Therefore, there exists an N > 0, such that for all t > N

T (t) ≤ T0, U(t) ≥ U0.

Now let us consider the linear system:

dĪ
dt = βT0V̄ − (γU0 + d2)Ī ,

dV̄
dt = pĪ − d3V̄ ,

(4.5)

with boundary conditions

Ī(0) = I(0), V̄ (0) = V (0).

We let
k∗ = sup{Rek : k is an eigenvalue of (4.5)},

where the eigenvalue is determined by the following problem:

dĪ
dt = βT0V̄ − (k + γU0 + d2)Ī ,

dV̄
dt = P Ī − (k + d3)V̄ .

(4.6)

Note that the eigenvalue problem corresponds a monotone linear system. Hence
k∗ is an eigenvalue of the problem (4.6), and the corresponding eigenfunctions are
positive. The following theorem gives the necessary and sufficient condition for
k∗ < 0.
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Theorem 4.1. k∗ < 0 if and only if R0 < 1.

Proof. By (4.5), we obtain the characteristic equation

k2 + (γU0 + d2 + d3)k + γU0d3 + d2d3 − βpT0 = 0.

Note that
γU0 + d2 + d3 > 0,

γU0d3 + d2d3 − βpT0 = d1d3(d2d4+γs)−λpd4β
d1d4

.

Therefore we can clearly see that k∗ < 0 if and only if R0 < 1.

Lemma 4.2. Suppose that R0 < 1, then all nonnegative solutions (Ī(t), V̄ (t)) of
(4.5) converges to zero as t −→ +∞.

Proof. (4.5) is a linear system which generates a strong continuous semigroup
T (t) such that (

Ī(t)
V̄ (t)

)
= T (t)

(
Ī0
V̄0

)
for Ī(t0) = Ī0, V̄ (t0) = V̄0.

By theorem 3.2 and note that R0 < 1 implies the leading eigenvalue k∗ < 0. It
follows that there are M > 0 and ϵ > 0 such that∥∥∥∥T (t)( Ī0

V̄0

)∥∥∥∥
L1

≤ Me−ϵt

∥∥∥∥( Ī0
V̄0

)∥∥∥∥
L1

.

Hence ∥∥∥∥T (t)( Ī0
V̄0

)∥∥∥∥
L1

−→ 0 as t → +∞.

Corollary 4.1. Under the assumption of R0 < 1, if (T (t), I(t), V (t), U(t)) is a
nonnegative solution of (2.1). Then

∥(I(t), V (t))T ∥L1 −→ 0 as t → +∞.

Proof. By (4.5), the equation for I(t), V (t) can be written as

dI
dt = βT0V − (γU0 + d2)I + β(T − T0))V − γ(U − U0)I,

dV
dt = pI − d3V.

Noticing by Lemma 4.1,

T (t) ≤ T0, U(t) ≥ U0, for t > N.

Hence for t > N ,
β(T − T0)V − γ(U − U0)I ≤ 0.

Recall that
I(0) = Ī(0), V (0) = V̄ (0).

Then by applying Theorem 3.1, we conclude that

I(t) ≤ Ī(t), V (t) ≤ V̄ (t), for t > N.
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Corollary 4.1 immediately follows from Lemma 4.2.
Next we study the asymptotical behavior of T (t) and U(t) in (2.1). We introduce

the transform
T̃ (t) = T (t)− T∗(t),

Ũ(t) = U(t)− U∗(t),
(4.7)

where T∗ and U∗ is the solution of (4.1). So T∗ and U∗ satisfy the equations

−Ṫ∗ + λ− d1T∗ = 0,

−U̇∗ + s− d4U∗ = 0.
(4.8)

With (2.1), (4.7) and (4.8) we obtain the equations for T̃ (t) and Ũ(t) as

dT̃ (t)
dt = −d1T̃ (t)− βT (t)V (t),

dŨ(t)
dt = −d4Ũ(t) + αI(t)U(t),

(4.9)

with the boundary condition

T̃ (0) = Ũ(0) = 0.

If we let B=

(
−d1 0
0 −d4

)
,

W (t) =

(
T̃ (t)

Ũ(t)

)
, H(t) =

(
−βT (t)V (t)
αI(t)U(t)

)
.

Then we can write (4.9) as

dW
dt = BW (t) +H(t),

W (0) = 0.
(4.10)

Lemma 4.3. Let Z(t) be the solution of the linear system

dZ

dt
= BZ(t), (4.11)

with the initial condition Z(0) = 0. Then Z(t) = 0 for t ≥ 0.

Now let T̃ (t) : t ≥ 0 be the semigroup generated by the solutions to the linear
system (4.11) i.e.

T̃ (t)Z0 = Z(t, Z0),

where Z(t, Z0) is the solution of (4.11) and Z0 = Z(t0).
Then it is well known that T̃ (t) is strongly-continuous semigroup. Hence, T̃ (t)

is uniformly bounded. That is, there is a constant M ′ such that

|T̃ |∞ ≤ M ′, for all t ≥ 0.

Theorem 4.2. Let W (t) be a solution of (4.10), then

∥W (t)∥L1 −→ 0, as t → +∞.
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Proof. By applying the Variation-of-constant formula to (4.10), we have

W (t) = T̃ (t)W (0) +
∫ t

0
T̃ (t− s)H(s)ds

=
∫ t

0
T̃ (t− s)H(s)ds.

(4.12)

(4.12) and Lemma 3.2 yield that for t ≥ 0,

limt→+∞ ∥W (t)∥L1 ≤ limt→+∞ sup{|
∫ t

0
H(s)T̃ (t− s)ds|}

≤ |T̃ |∞ ∥H∥L1(0,+∞)

≤ M ′ ∥H∥L1(0,+∞) .

It is apparent that by Corollary 4.1 and the definition of H(t), we have

lim
t→+∞

∥H(t)∥L1 = 0.

Hence, we deduce that

∥(T̃ (t), Ũ(t))∥L1 = ∥W (t)∥L1 −→ 0, as t → +∞.

Theorem 4.3. Suppose that R0 < 1, then the disease-free equilibrium (T0, 0, 0, U0)
of (2.1) is globally stable.

Proof. Using Corollary 4.1, under the assumption of R0 < 1, if
(
T (t), I(t), V (t),

U(t)
)
is a nonnegative solution of (2.1). Then

∥(I(t), V (t))T ∥L1 −→ 0 as t → +∞

and Theorem 4.2 states that if W (t) be a solution of (4.10), then

∥(T̃ (t), Ũ(t))∥L1 = ∥W (t)∥L1 −→ 0 as t → +∞,

which implies that

T −→ T∗, U −→ U∗, since T̃ = T − T∗, Ũ = U − U∗.

From (4.4), it’s obvious that

T −→ T0 and U −→ U0, as t → +∞.

This proves Theorem 4.3.

5. Global stability of the positive Equilibrium

By (2.6), it is easy to know that if R0 > 1, there exists a positive equilibrium
E∗(T ∗, I∗, V ∗, U∗) and it is bounded.

Theorem 5.1. If R0 > 1, the positive equilibrium E∗(T ∗, I∗, V ∗, U∗) of (2.1) is
locally asymptotically stable.
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Proof. Consider the linear system at E∗(T ∗, I∗, V ∗, U∗),

dT
dt = −(βV ∗ + d1)T − βT ∗V + (λ+ βT ∗V ∗),

dI
dt = βV ∗T + βT ∗V − (γU∗ + d2)I − γI∗U − βT ∗V ∗ + γI∗U∗,

dV
dt = pI − d3V,

dU
dt = (αI∗ − d4)U + αU∗I + s− αI∗U∗.

Constructing a suitable Lyapunov function

L =
a1
2
(T + bI)2 +

a2
2
V 2 +

a3
2
U2.

The derivative of L with respect to t gives

L′ =a1(T + bI)(T ′ + bI ′) + a2V V ′ + a3UU ′

=a1(T + bI)[−(d1 + βV ∗ − bβV ∗)T − (βT ∗ − bβT ∗)V − b(γU∗ + d2)I − bγI∗U ]

+ a2V (pI − d3V ) + a3U [(αI∗ − d4)U + αU∗I]

=− a1[d1 + (1− b)βV ∗]T 2 − a1b
2(γU∗ + d2)I

2 − a2d3V
2 − a3(d4 − αI∗)U2

− a1(1− b)βT ∗TV − a1b[γU
∗ + d2 + d1 + (1− b)βV ∗]TI − a1bγI

∗TU

− [a1b(1− b)βT ∗ − a2p]IV − (a1b
2γI∗ − a3αU

∗)UI.

Note that E∗(T ∗, I∗, V ∗, U∗) ̸= 0 and E∗(T ∗, I∗, V ∗, U∗) ∈ D, choose a1, a2, a3,
b such that they satisfy the following conditions

0 < b < 1,

a1b(1− b)βT ∗ − a2p ≥ 0,

a1b
2γI∗ − a3αU

∗ ≥ 0,

then we get L′ < 0.
By Lyapunov stability theorem, E∗(T ∗, I∗, V ∗, U∗) is locally asymptotically sta-

ble.

Definition 5.1. The system (2.1) is said to be uniformly persistent in D, if there
exists a constant c > 0 such that any solution (T (t), I(t), V (t), U(t)) of system (2.1)
with initial value(T (t), I(t), V (t), U(t)) ∈ intD satisfies

min{lim inf
t→+∞

T (t), lim inf
t→+∞

I(t), lim inf
t→+∞

V (t), lim inf
t→+∞

U(t)} ≥ c.

Similar to [1], we can get:

Theorem 5.2. System is uniformly persistent in intD if and only if R0 > 1.

Remark 5.1. The uniform persistence of system (2.1) in the bounded set D is
equivalent to the existence of a compact K ⊂ D that is absorbing for (2.1).(see [1])

Next we investigate the global stability of the endemic equilibrium of model (2.1).
A geometrical approach developed in [8](see also [1, 9]) for proving global stability
will be used in our discussion. Now we briefly outline a general mathematical
framework developed in [8] for proving the global stability.
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Consider the autonomous dynamical system:

dx

dt
= f(x), (5.1)

where x 7−→ f(x) ∈ Rn is a C1 function about x in Ω ⊂ Rn.
Assume that the following hypothesis hold:

(H1) : Ω is simply connected;

(H2) : There is a compact absorbing set K ⊂ Ω;

(H3) : Differential equation (5.1) has a unique equilibrium x∗ in Ω.

Let x → P (x)(n2 ) × (n2 ) matrix-valued function that is C1 for x ∈ Ω. Assume that
P−1(x) exists and is continuous for x ∈ K.

A quantity q is defined as

q = lim
t→∞

sup sup
x∈K

1

t

∫ t

0

µ(B(x(s, x0)))ds,

where B = PfP
−1 + P ∂f [2]

∂x P−1, the matrix Pf is

(pij(x))f = (∂pij(x)/∂x)
T · f(x) = ∇pij(x) · f(x)

and the matrix J [2] is the second addictive compound matrix of the Jacobian matrix
J , i.e. J(x) = Df(x).

The quantity µ(B) is the Lozinski measure of B with respect to a vector norm
| · | in RN , N = (n2 ), defined by

µ(B) = lim
h→0+

|I + hB| − 1

h
.

If the equilibrium x∗ is locally stable, then the global stability is assured provided
that (H1)− (H3) hold and no constant periodic solution of (5.1) exists. Besides, it
is remarked that under the assumptions (H1)− (H3), q < 0 also implies the global
stability of x∗. The following global stable result is proved in Theorem 3.5 of [8].

Lemma 5.1. Suppose that Ω is simply connected and that assumption (H1)− (H3)
hold, then the unique equilibrium x∗ is globally stable in Ω if q < 0.

Now we apply the theory developed in [8], in particular Lemma 5.1, to prove
the global stability of E∗.

Theorem 5.3. If R0 > 1, the endemic equilibrium E∗(T ∗, I∗, V ∗, U∗) is globally
asymptotically stable.

Proof. Firstly, we consider the sub-system of system (2.1)

dT

dt
= λ− βTV − d1T,

dI

dt
= βTV − γIU − d2I,

dV

dt
= pI − d3V.

(5.2)
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The Jacobian matrix of system (5.2) is

J =

 −βV − d1 0 −βT
βV −γU − d2 βT
0 p −d3


and its second addictive compound matrix is

J [2] =

 −βV − γU − d1 − d2 βT βT
p −βV − d1 − d3 0
0 βV −γU − d2 − d3

 .

Choose the function P (x) = P (T, I, V ) = diag(1, I
V , I

V ), then

Pf = diag(0, I′V−IV ′

V 2 , I′V−IV ′

V 2 ),

PfP
−1 = diag(0, I′

I − V ′

V , I′

I − V ′

V ),

PJ [2]P−1 =

 −βV − γU − d1 − d2
βTV
I

βTV
I

pI
V −βV − d1 − d3 0
0 βV −γU − d2 − d3

 .

The matrix B = PfP−1 + P ∂f [2]

∂x P−1 can be written in matrix form

B =

(
B11 B12

B21 B22

)
,

where

B11 = −βV − γU − d1 − d2,

B12 = (
βTV

I
,
βTV

I
), B21 = (

pI

V
, 0)T ,

B22 =

(
I′

I − V ′

V − βV − d1 − d3 0

βV I′

I − V ′

V − γU − d2 − d3

)
.

Let (u, v, w) be a vector in R3, its norm ∥ · ∥ is defined as

∥(u, v, w)∥ = max{|u|, |v + w|}.

Let µ(B) be the Lozinski measure with respect to this norm. Then we choose

µ(B) ≤ sup{g1, g2},

where
g1 = µ1(B11) + |B12|, g2 = |B21|+ µ1(B22).

|B12|, |B21| are matrix norms with respect to the L1 vector norm, and µ1 denotes
the Lozinski measure with respect to this L1 norm, then

µ1(B11) = −βV − γU − d1 − d2,

|B21| =
pI

V
, |B12| =

βTV

I
,

µ1(B22) = max{I
′

I
− V ′

V
− d1 − d3,

I ′

I
− V ′

V
− γU − d2 − d3} ≤ I ′

I
− V ′

V
− h− d3,
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where

h = min{d1, d2} > 0.

Therefore, we have

g1 = βTV
I − βV − γU − d1 − d2,

g2 ≤ pI
V + I′

I − V ′

V − h− d3.

From (2.1), we get
I′

I = βTV
I − γU − d2,

V ′

V = pI
V − d3.

Then we have

g1 = I′

I − βV − d1,

g2 ≤ I′

I − h.

Furthermore, we obtain

µ(B) ≤ sup{g1, g2} ≤ I ′

I
− h.

Since I(t) > 0 for t > 0, then for a given t0 > 0, I(t0) > 0. Then we get that

1

t

∫ t

0

µ(B)ds ≤ 1

t

∫ t

0

(
I ′

I
− h)ds =

1

t

∫ t0

0

I ′

I
ds+

1

t
ln

I(t)

I(t0)
− h,

which implies

q = lim
t→∞

sup sup
x∈K

1

t

∫ t

0

µ(B(x(s, x0)))ds ≤ −h

2
< 0.

Then based on Theorem 3.5 of [8], we know that the positive equilibrium
(T ∗, I∗, V ∗) is globally asymptotically stable.

Now we consider equation

dU

dt
= s+ αIU − d4U

and its limit system is
dU

dt
= s+ αI∗U − d4U.

We get

U(t) = e−(d4−αI∗)t[U(0) + s

∫ t

0

e(d4−αI∗)τdτ ],

which implies that

U(t) −→ s

d4 − αI∗
= U∗, t → ∞.

Then we get that E∗ is globally asymptotically stable. The proof is completed.
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