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1. Introduction and preliminaries on fractional q-
calculus

In recent years, the subject of fractional calculus has gained considerable popularity
and importance due mainly to its demonstrated applications in numerous seemingly
diverse and widespread fields of science and engineering. The monographs [29–32]
are excellent sources for the theory and applications of fractional calculus. Among
all the topics, the existence of positive solutions of boundary value problems (BVPs)
for fractional differential equations is currently undergoing active investigation; see,
for example, [2, 3, 9, 19,25,26,28,36] and the references therein.

Many efforts have also been made to develop the theory of discrete fractional
calculus in various directions. For some recent work, we refer the reader to [6–8,
10–12,20–22].

Early work on fractional q-calculus can be found in [1,4]. Recently, there seems
to be new interest in the study of this subject and many new developments have
been made in the theory of fractional q-calculus ( [5, 17,18,33]).

To the best of our knowledge, there are few results available in the literature
to study the existence of positive solutions for BVPs with fractional q-derivatives;
the only papers we know of are by El-Shahed and Al-Askar [14], El-Shahed and
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Hassan [15], Ferreira [17, 18], and Graef and Kong [23, 24]. Since finding positive
solutions of BVPs is important in various fields of sciences, fractional q-calculus has
tremendous potential for applications. In this paper, we will study the existence of
positive solutions of a class of higher order BVPs with fractional q-derivatives.

To make this paper self-contained, below we recall some known facts on fraction-
al q-calculus. The presentation here can be found in, for example, [1, 17,18,29,33].

For q ∈ (0, 1), define

[a]q =
1− qa

1− q
, a ∈ R.

The q-analog of the Pochhammer symbol (the q-shifted factorial) is defined by

(a; q)0 = 1, (a; q)k =
k−1∏
i=0

(1− aqi), k ∈ N ∪ {∞}.

The q-analogue of the power function (a− b)k with k ∈ N0 := {0, 1, 2, . . .} is

(a− b)(0) = 1, (a− b)(k) =

k−1∏
i=0

(a− bqi), k ∈ N, a, b ∈ R.

The relationship between these two concepts is given by

(a− b)(k) = ak(b/a; q)k, a ̸= 0.

Their natural expansions to the reals are

(a; q)γ =
(a; q)∞
(aqγ ; q)∞

, (a− b)(γ) = aγ
(b/a; q)∞
(qγb/a; q)∞

, γ ∈ R.

Clearly,

(a− b)(γ) = aγ(b/a; q)γ , a ̸= 0,

and if b = 0, then a(γ) = aγ . We also use the notation 0(γ) = 0 for γ > 0. The
q-gamma function is defined by

Γq(x) = (q; q)x−1(1− q)1−x, x ∈ R \ {0,−1,−2, . . .}.

Obviously, Γq(x+ 1) = [x]qΓq(x).
The q-derivative of a function h is defined by

(Dqh)(x) =
h(x)− h(qx)

(1− q)x
for x ̸= 0 and (Dqh)(0) = lim

x→0
(Dqh)(x),

and q-derivatives of higher order are given by

(D0
qh)(x) = h(x) and (Dk

qh)(x) = Dq(D
k−1
q h)(x), k ∈ N.

The q-integral of a function h defined on the interval [0, b] is given by

(Iqh)(x) =

∫ x

0

h(s)dqs = x(1− q)
∞∑
i=0

h(xqi)qi, x ∈ [0, b].
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If a ∈ [0, b] and h is defined in the interval [0, b], then its integral from a to b is
defined by ∫ b

a

h(s)dqs =

∫ b

0

h(s)dqs−
∫ a

0

h(s)dqs.

Similar to derivatives, an operator Ikq is given by

(I0qh)(x) = h(x) and (Ikq h)(x) = Iq(I
k−1
q h)(x), k ∈ N.

The fundamental theorem of calculus applies to these operators Dq and Iq, i.e.,

(DqIqh)(x) = h(x),

and if h is continuous at x = 0, then

(IqDqh)(x) = h(x)− h(0).

Definition 1.1. Let ν ≥ 0 and h be a function defined on [0, 1]. The fractional
q-integral of Riemann-Liouville type is given by (I0qh)(x) = h(x) and

(Iνq h)(x) =
1

Γq(ν)

∫ x

0

(x− qs)(ν−1)h(s)dqs, ν > 0, t ∈ [0, 1].

Definition 1.2. The fractional q-derivative of Riemann-Liouville type of order ν ≥
0 is defined by (D0

qh)(x) = h(x) and

(Dν
qh)(x) = (Dl

qI
l−ν
q h)(x), ν > 0,

where l is the smallest integer greater than or equal to ν.

The rest of the paper is organized as follows. In Section 2, we introduce our
problem and present our main results and two illustrative examples. All the proofs
of the main results are given in Section 3.

2. Fractional boundary value problems

In this section, we are concerned with positive solutions of the higher order BVP
with fractional q-derivatives consisting of the equation

− (Dν
qu)(t) = λ[f(t, u, u) + r(t, u)], t ∈ (0, 1), (2.1)

and the boundary condition (BC)

(Di
qu)(0) = 0, i = 0, . . . , n− 2, (Dqu)(1) =

m∑
j=1

aj(Dqu)(tj), (2.2)

where q ∈ (0, 1), m ≥ 1 and n ≥ 2 are integers, n−1 < ν ≤ n, λ > 0 is a parameter,
f : [0, 1] × [0,∞) × [0,∞) → [0,∞) and r : [0, 1] × [0,∞) → [0,∞) are continuous
and satisfy certain conditions given later, aj ≥ 0 and tj ∈ (0, 1) for j = 1, . . . ,m.
By a positive solution of BVP (2.1), (2.2), we mean a function u ∈ C[0, 1] such that
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u(t) satisfies (2.1) and (2.2), and u(t) > 0 on (0, 1]. Note that one special case of
the equation (2.1) is given by

− (Dν
qu)(t) = λf(t, u, u), t ∈ (0, 1). (2.3)

When n = 3, λ = 1, f(t, u, u) = f(t, u), and aj = 0 for j = 1, . . . ,m, BVP (2.3),
(2.2) has been studied by Ferreira [17]. The well known Krasnosel’skii fixed point
theorem was applied there to obtain an existence criterion for positive solutions.
Very recently, Graef and Kong [23, 24] discussed the uniqueness, existence, and
nonexistence of positive solutions of the general BVP (2.3), (2.2). In particular,
in [23], the nonlinear term is allowed to be singular in the phase variable.

In this paper, by applying some recent results from mixed monotone operator
theory (see Lemma 3.3 below), we obtain some new existence criteria for BVPs (2.1),
(2.2) and (2.3), (2.2). In our theorems, we not only investigate the existence and
uniqueness of positive solutions of our problems, but we also discuss the dependence
of positive solutions on the parameter λ. Moreover, two sequences are constructed
in such a way so that they converge uniformly to the unique positive solution of the
problem. Two examples are provided to illustrate our theorems. Some numerical
computations are performed to confirm our theoretic results. Our results extend
and complement recent results on this subject in the literature, especially those
in [17,23,24].

Recall that the characteristic function χ on an interval I ⊆ R is given by

χI(t) =

{
1, t ∈ I,
0, t /∈ I.

Define a function G : [0, 1]× [0, 1] → R by

G(t, s) = tν−1

(1−
∑m

j=1 ajt
ν−2
j )Γq(ν)

(
(1− s)(ν−2) −

∑m
j=1 aj(tj − s)(ν−2)χ[0,tj ](s)

)
− 1

Γq(ν)
(t− s)(ν−1)χ[0,t](s).

(2.4)
Notice that, for the special case where aj = 0 for j = 1, . . . ,m, G(t, s) can be
written as

G(t, s) =
1

Γq(ν)

{
(1− s)(ν−2)tν−1 − (t− s)(ν−1), 0 ≤ s ≤ t ≤ 1,

(1− s)(ν−2)tν−1, 0 ≤ t ≤ s ≤ 1.

We need to make use of the following assumptions.

(H1) 0 ≤
∑m

j=1 ajt
ν−2
j < 1.

(H2) For any (t, x, y) ∈ [0, 1] × [0,∞) × [0,∞), f(t, x, y) is increasing in x for any
fixed t and y, and decreasing in y for any fixed t and x.

(H3) There exists α ∈ (0, 1) such that

f(t, κx, κ−1y) ≥ καf(t, x, y)

for t ∈ [0, 1], κ ∈ (0, 1), x ∈ [0,∞), and y ∈ [0,∞).

(H4) For any (t, x) ∈ [0, 1]× [0,∞), r(t, x) is increasing in x for any fixed t and∫ 1

0

G(1, qs)r(s, 0)dqs > 0.
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(H5) There exists η > 0 such that

f(t, x, y) ≥ ηr(t, x) for t ∈ [0, 1], x ∈ [0,∞), and y ∈ [0,∞).

(H6) r(t, κx) ≥ κr(t, x) for t ∈ [0, 1], κ ∈ (0, 1), and x ∈ [0,∞).

(H7) For α given in (H3) with α ∈ (0, 1/2), we have

r(t, κx) ≥ καr(t, x) for t ∈ [0, 1], κ ∈ (0, 1), and x ∈ [0,∞).

It is obvious that (H7) is stronger than (H6), i.e, (H7) implies (H6).

Remark 2.1. We would like to make a few comments on the format of the nonlinear
term f in (2.1). As we mentioned earlier, the analysis of this paper mainly relies
on the mixed monotone operator theory. To apply such theory, one alternative
way in the literature is to write the nonlinearity as f(t, x) and assume, among
others, that f(t, x) can be decomposed into f(t, x) = g(t, x) + h(t, x), where g :
[0, 1] × [0,∞) → [0,∞) is continuous and nondecreasing in the second argument,
and h : [0, 1] × (0,∞) → [0,∞) is continuous and nonincreasing in the second
argument, and that there exists α ∈ (0, 1) such that

g(t, κx) ≥ καg(t, x) (2.5)

and

h(t, κ−1x) ≥ καh(t, x) (2.6)

for t ∈ [0, 1], κ ∈ (0, 1), and x > 0. The reader may refer to [13] for a related
discussion.

Here, in (2.1), the nonlinear term is written as a function of three arguments.
Then, to apply the mixed monotone operator theory, we need to assume that the
above conditions (H2) and (H3) are satisfied. By writing f this way, a larger class
of functions can be covered. For instance, if f(t, x, y) = x1/3(y + 1)−1/2, then,
f(t, x, x) cannot be decomposed into a sum of two functions g and h satisfying (2.5)
and (2.6), but f(t, x, y) does satisfy (H2) and (H3) with α = 5/6.

Throughout this paper, let C[0, 1] be the Banach space of continuous functions
equipped with the norm ||u|| = maxt∈[0,1] |u(t)|. Define the cone P ⊂ C[0, 1] by

P = {u ∈ C[0, 1] : u(t) ≥ 0 for t ∈ [0, 1]} . (2.7)

Let w(t) = tν−1. We also define a smaller cone Pw ⊂ P by

Pw = {u ∈ P : there exist c, d > 0 such that cw(t) ≤ u(t) ≤ dw(t) on [0, 1]} .
(2.8)

Our first theorem provides some results for BVP (2.1), (2.2).

Theorem 2.1. Assume that (H1)–(H6) hold. Then:

(1) BVP (2.1), (2.2) has a unique positive solution uλ(t) in P .

(2) For any u0, v0 ∈ Pw, consider the sequences {un} and {vn} defined by

un+1(t) = λ

∫ 1

0

G(t, qs)[f(s, un(s), vn(s)) + r(s, un(s))]dqs (2.9)
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and

vn+1(t) = λ

∫ 1

0

G(t, qs)[f(s, vn(s), un(s)) + r(s, vn(s))]dqs (2.10)

for n = 0, 1, 2, . . .. Then, ||un − uλ|| → 0 and ||vn − uλ|| → 0 as n → ∞.

(3) If, in addition, (H7) holds, then the unique solution uλ(t) satisfies the follow-
ing properties:

(a) uλ(t) is strictly increasing in λ, i.e., λ1 > λ2 > 0 implies uλ1(t) > uλ2(t);

(b) limλ→0+ ||uλ|| = 0 and limλ→∞ ||uλ|| = ∞;

(c) uλ(t) is continuous in λ, i.e., λ → λ0 > 0 implies ||uλ − uλ0 || → 0.

The next result is for BVP (2.3), (2.2).

Theorem 2.2. Assume that (H1), (H2), and (H3) hold. Then,

(1) BVP (2.3), (2.2) has a unique positive solution uλ(t) in P .

(2) For any u0, v0 ∈ Pw, consider the sequences {un} and {vn} defined by

un+1(t) = λ

∫ 1

0

G(t, qs)f(s, un(s), vn(s))dqs (2.11)

and

vn+1(t) = λ

∫ 1

0

G(t, qs)f(s, vn(s), un(s))dqs (2.12)

for n = 0, 1, 2, . . .. Then, ||un − uλ|| → 0 and ||vn − uλ|| → 0 as n → ∞.

(3) If, in addition, α ∈ (0, 1/2), then the unique solution uλ(t) satisfies the three
properties specified in the conclusion (3) of Theorem 2.1.

We end this section with the following two examples.

Example 2.1. In BVP (2.1), (2.2) let

ν = 5/2, q = 1/2, m = 1, n = 3, a1 = 0, t1 = 1/4,

f(t, x, y) = x1/3 + y−1/4, and r(t, x) = x1/3.

Then, it is easy to see that conditions (H1)–(H7) hold. In fact, in (H3) and (H7), we
can take α = 1/3, and in (H5), we can choose η = 1. Therefore, the conclusions of
Theorem 2.1 hold. In fact, with the help of MATLAB, we performed the following
computations.

(1) For λ = 100, the first 15 iterations of the two sequences {un(t)} and {vn(t)}
given in (2.9) and (2.10) are computed numerically with u0(t) = t3/2 and
v0(t) = 50t3/2. By Theorem 2.1, both {un(t)} and {vn(t)} converge uniformly
to the unique solution uλ(t) of BVP (2.1), (2.2). For this choice of the initial
functions, the differences between the u ,

ns (between the v ,
n s) are small for

n ≥ 6 (see Figures 1 and 2).

(2) For several different values of λ, the unique solutions u(t) of BVP (2.1), (2.2)
are computed numerically. The computations are consistent with properties
(a) and (b) of conclusion (3) (see Figure 3).
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Figure 1. un → uλ
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Figure 2. vn → uλ
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Figure 3. Dependence on λ

Example 2.2. In BVP (2.3), (2.2) let

v = 5/2, q = 1/2, m = 1, a1 = 1/2, t1 = 1/4, and f(t, x, y) = x1/3(y + 1)−1/2.

Then, it is easy to see that conditions (H1)–(H3) hold. In fact, in (H3), we can take
α = 5/6. Therefore, the conclusions of Theorem 2.2 hold. In fact, with the help of
MATLAB, we performed the following computations.

(1) For λ = 100, the first 25 iterations of the two sequences {un(t)} and {vn(t)}
given in (2.11) and (2.12) are computed numerically with u0(t) = t3/2 and
v0(t) = 50t3/2. By Theorem 2.2, both {un(t)} and {vn(t)} converge uniformly
to the unique solution uλ(t) of BVP (2.3), (2.2). For this choice of the initial
functions, the differences between the u ,

ns (between the v ,
n s) are small for

n ≥ 19 (see Figures 4 and 5).

(2) For several different values of λ, the unique solution u(t) of BVP (2.3), (2.2)
are computed numerically. The computations are consistent with properties
(a) and (b) of conclusion (3) (see Figure 6).
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Figure 6. Dependence on λ

3. Proofs of the main results

Lemma 3.1 below gives some properties of the function G(t, s) defined by (2.4).

Lemma 3.1. Assume (H1) holds. The function G(t, s) has the following properties:

(a) G(t, qs) ≥ 0 for t, s ∈ [0, 1];

(b) G(t, qs) ≥ tν−1G(1, qs) for t, s ∈ [0, 1];

(c) G(t, qs) ≤ tν−1k(qs) for t, s ∈ [0, 1], where

k(s) =
1(

1−
∑m

j=1 ajt
ν−2
j

)
Γq(ν)

(
(1− s)(ν−2)−

m∑
j=1

aj(tj − s)(ν−2)χ[0,tj ](s)

)
.

Proof. Parts (a) and (b) were proved in [24, Lemma 2.1]. Part (c) follows directly
from the definition of G(t, s).

The following result follows directly from [24, Lemma 2.2] and shows that G(t, s)
can be used to obtain the equivalent integral forms for some given BVPs.
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Lemma 3.2. Assume that (H1) holds and w ∈ C[0, 1]. Then, u(t) is a solution of
the BVP consisting of the equation

−(Dν
qu)(t) = w(t), t ∈ (0, 1),

and BC (2.2) if and only if

u(t) =

∫ 1

0

G(t, qs)w(s)dqs.

To prove our results, we also need to recall some knowledge from the mixed
monotone theory. Let (X, || · ||) be a real Banach space. By θ we denote the zero
element of X. Recall that a nonempty closed convex subset P ⊂ X is called a cone
if it satisfies: (i) u ∈ P and k > 0 implies ku ∈ P ; (ii) u ∈ P and −u ∈ P implies
u = θ. A cone P is said to be normal if there exists a constant C > 0 such that,
for all u, v ∈ X, θ ≤ u ≤ v implies ||u|| ≤ C||v||. The constant C is called the
normality constant of P .

Below, we assume that X is partially ordered by a normal cone P ⊂ X, i.e.,
u ≤ v if and only if v − u ∈ P . If u ≤ v and u ̸= v, then we write u < v or v > u.

For any u, v ∈ X, we use the notation u ∼ v to mean that there exist c > 0 and
d > 0 such that cv ≤ u ≤ dv. Clearly, ∼ is an equivalent relation.

In the following, we let w ∈ X be such that w > θ (i.e., w ≥ θ and w ̸= θ) and
define Pw = {u ∈ X : u ∼ w}. It is easy to see that Pw ⊂ P . We now recall
several definitions.

Definition 3.1. An operator A : Pw×Pw → X is called mixed monotone if A(x, y)
is nondecreasing in x and nonincreasing in y, i.e., for x1, x2, y1, y2 ∈ Pw, we have

x1 ≤ x2 and y1 ≥ y2 implies A(x1, y1) ≤ A(x2, y2).

Moreover, an element u ∈ Pw is said to be a fixed point of A if A(u, u) = u.

Definition 3.2. An operator B : Pw → X is called sub-homogeneous if it satisfies

B(κu) ≥ κBu for all u ∈ Pw and κ ∈ (0, 1).

Definition 3.3. Let α ∈ [0, 1). An operator B : Pw → X is called α-concave if it
satisfies

B(κu) ≥ καBu for all u ∈ Pw and κ ∈ (0, 1).

Remark 3.1. From the definitions, we see that if B is α-concave, then it is also
sub-homogeneous.

Let A : Pw × Pw → X and B : Pw → X be two operators, and λ > 0. Consider
the two operator equations on Pw

λ(A(u, u) +Bu) = u (3.1)

and

λA(u, u) = u. (3.2)

The following lemma is crucial in the proofs of our results. For its proof, see [27,
Lemma 2.1], [34, Corollary 2.3], and [35, Theorem 2.1 and Theorem 2.3].
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Lemma 3.3. Let α ∈ (0, 1) and A : Pw × Pw → X be a mixed monotone operator
satisfying

A(κu, κ−1v) ≥ καA(u, v) for all u, v ∈ Pw and κ ∈ (0, 1). (3.3)

(A) Assume that B : Pw → X is an increasing sub-homogeneous operator and the
following conditions hold:

(i) A(w,w) ∈ Pw and Bw ∈ Pw;

(ii) there exists a constant η > 0 such that A(u, v) ≥ ηBu for all u, v ∈ Pw.

Then:

(1) for any λ > 0, Eq. (3.1) has a unique solution uλ in Pw;

(2) for any initial values u0, v0 ∈ Pw, consider the sequences {un} and {vn}
defined by

un = λ(A(un−1, vn−1) +Bun−1)

vn = λ(A(vn−1, un−1) +Bvn−1),
n = 1, 2, . . . .

Then, ||un − uλ|| → 0 and ||vn − uλ|| → 0 as n → ∞;

(3) if we further assume that α ∈ (0, 1/2) and B is α-concave, then the
unique solution uλ satisfies the properties:

(a) uλ is strictly increasing in λ, that is, if λ1 > λ2 > 0, then uλ1 > uλ2 ;

(b) limλ→0+ ||uλ|| = 0 and limλ→∞ ||uλ|| = ∞;

(c) uλ is continuous in λ, that is, if λ → λ0 > 0, then ||uλ − uλ0 || → 0.

(B) Assume that A(w,w) ∈ Pw. Then:

(1) for any λ > 0, Eq. (3.2) has a unique solution uλ in Pw;

(2) for any initial values u0, v0 ∈ Pw, consider the sequences {un} and {vn}
defined by

un = λA(un−1, vn−1), vn = λA(vn−1, un−1), n = 1, 2, . . . .

Then, ||un − uλ|| → 0 and ||vn − uλ|| → 0 as n → ∞;

(3) if we further assume that α ∈ (0, 1/2), then the unique solution uλ sat-
isfies the three properties (a), (b), and (c) specified in (3) of part (A).

Now, we prove Theorem 2.1.
Proof of Theorem 2.1. Clearly, the cone P defined by (2.7) is normal. Let
w(t) = tν−1 and Pw be defined by (2.8). Define two operators Aλ : Pw × Pw → X
and Bλ : Pw → X by

Aλ(u, v)(t) = λ

∫ 1

0

G(t, qs)f(s, u(s), v(s))dqs

and

Bλ(u)(t) = λ

∫ 1

0

G(t, qs)r(s, u(s))dqs.

Then, by Lemma 3.2, we see that u(t) is a solution of BVP (2.1), (2.2) if and only
if u = A(u, u) +Bu. Moreover, from the monotonicity of f and r assumed in (H2)
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and (H4), Aλ is mixed monotone and B is increasing. For u, v ∈ Pw and κ ∈ (0, 1),
from (H3), we have

Aλ(κu, κ
−1v)(t) = λ

∫ 1

0
G(t, qs)f(s, κu(s), κ−1v(s))dqs

≥ καλ
∫ 1

0
G(t, qs)f(s, u(s), v(s))dqs

= καAλ(u, v)(t),

i.e., (3.3) of Lemma 3.3 holds. Similarly, by (H6),

Bλ(κu)(t) = λ
∫ 1

0
G(t, qs)r(s, κu(s))dqs

≥ κλ
∫ 1

0
G(t, qs)r(s, u(s))dqs

= κBλ(u)(t),

i.e., Bλ is sub-homogeneous.
Note that 0 ≤ w(t) = tν−1 ≤ 1 on [0, 1]. Then, from Lemma 3.1 and (H2),

Aλ(w,w)(t) = λ
∫ 1

0
G(t, qs)f(s, w(s), w(s))dqs

≥ λtν−1
∫ 1

0
G(1, qs)f(s, 0, 1)dqs

= c1w(t),

and
Aλ(w,w)(t) = λ

∫ 1

0
G(t, qs)f(s, w(s), w(s))dqs

≤ λtν−1
∫ 1

0
k(qs)f(s, 1, 0)dqs

= d1w(t)

where

c1 = λ

∫ 1

0

G(1, qs)f(s, 0, 1)dqs (3.4)

and

d1 = λ

∫ 1

0

k(qs)f(s, 1, 0)dqs. (3.5)

By (H2), (H4), and (H5), we have

f(s, 1, 0) ≥ f(s, 0, 1) ≥ ηr(s, 0) ≥ 0. (3.6)

Then, from (H4) and (3.4)–(3.6), we have d1 ≥ c1 > 0. Thus, Aλ(w,w) ∈ Pw.
Similarly, from Lemma 3.1 and (H4),

Bλ(w)(t) = λ
∫ 1

0
G(t, qs)r(s, w(s))dqs

≥ λtν−1
∫ 1

0
G(1, qs)r(s, w(s))dqs

≥ c2w(t)

and
Bλ(w)(t) = λ

∫ 1

0
G(t, qs)r(s, w(s))dqs

≤ λtν−1
∫ 1

0
k(qs)r(s, w(s))dqs

= d2w(t),
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where

c2 = λ

∫ 1

0

G(1, qs)r(s, w(s))dqs and d2 = λ

∫ 1

0

k(qs)r(s, w(s))dqs.

Then, using the fact that r(s, w(s)) ≥ r(z, 0) on [0, 1] and (H4), we see that Bλw ∈
Pw. Hence, the condition (i) of part (A) of Lemma 3.3 is satisfied.

For u, v ∈ Pw, from (H5), it follows that

Aλ(u, v)(t) = λ
∫ 1

0
G(t, qs)f(s, u(s), v(s))dqs

≥ ηλ
∫ 1

0
G(t, qs)r(s, u(s))dqs

≥ ηBλ(u)(t).

Then, the condition (ii) of part (A) of Lemma 3.3 holds. Therefore, by the con-
clusion (1) of Lemma 3.3 (A), we see that, for any λ > 0, BVP (2.1), (2.2) has a
unique solution uλ(t) in Pw, which is obviously positive, and from the conclusion
(2) of Lemma 3.3 (A), the conclusion (2) of Theorem 2.1 holds. We now prove the
following claim.

Claim: If, for any λ > 0, we assume that uλ(t) is a positive solution of BVP (2.1),
(2.2), then uλ ∈ Pw.

In fact, if uλ(t) is a positive solution of BVP (2.1), (2.2), then, by Lemma 3.2,
we have

uλ(t) = λ

∫ 1

0

G(t, qs)[f(s, uλ(s), uλ(s)) + r(s, uλ(s))]dqs.

Then, from Lemma 3.1, (H2), and (H4), it follows that

uλ(t) ≥ λtν−1
∫ 1

0
G(1, qs)[f(s, 0, ||uλ||) + r(s, 0)]dqs

= c3w(t)

and
uλ(t) ≤ λtν−1

∫ 1

0
k(qs)[f(s, ||u||, 0) + r(s, ||u||)]dqs

= d3w(t),

where

c3 = λ

∫ 1

0

G(1, qs)[f(s, 0, ||uλ||) + r(s, 0)]dqs

and

d3 = λ

∫ 1

0

k(qs)[f(s, ||u||, 0) + r(s, ||u||)]dqs.

As in (3.6), we have

f(s, ||u||, 0) ≥ f(s, 0, ||uλ||) ≥ ηr(s, 0) ≥ 0

and
r(s, ||u||) ≥ r(s, 0) ≥ 0.

Then, by (H4), we see that d3 ≥ c3 > 0. This shows that uλ ∈ Pw, i.e., the claim
is true.
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Now, by the claim, we see that BVP (2.1), (2.2) has a unique positive solution
in P .

Finally, if (H7) holds, we have α ∈ (0, 1/2) and

Bλ(κu)(t) = λ
∫ 1

0
G(t, qs)r(s, κu(s))dqs

≥ καλ
∫ 1

0
G(t, qs)r(s, u(s))dqs

= καBλ(u)(t),

i.e., Bλ is α-concave. Thus, the conclusion (3) of Theorem 2.1 follows from the last
conclusion of Lemma 3.3 (A). This completes the proof of Theorem 2.1. �

Using part (B) of Lemma 3.3, by an argument similar (but much simpler) to the
proof of Theorem 2.1, we can prove Theorem 2.2; the details are omitted.
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