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Abstract The main aim of this paper is to develop the basic theory of a
class of infinite dimensional stochastic differential equations with delays (IDS-
DEs) under local Lipschitz conditions. Firstly, we establish a global existence-
uniqueness theorem for the IDSDEs under the global Lipschitz condition in
C without the linear growth condition. Secondly, the non-continuable solu-
tion for IDSDEs is given under the local Lipschitz condition in C. Then, the
classical Itô’s formula is improved and a global existence theorem for IDSDEs
is obtained. Our new theorems give better results while conditions imposed
are much weaker than some existing results. For example, we need only the
local Lipschitz condition in C but neither the linear growth condition nor the
continuous condition on the time t. Finally, two examples are provided to
show the effectiveness of the theoretical results.
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1. Introduction

As the most basic and interesting problem, existence-uniqueness for partial differ-
ential equations is very important. For example, the Clay Mathematics Institute
Millennium Prize Problem on the incompressible Navier-Stokes equations asks for
a proof of global existence of smooth solutions for all smooth data, or a proof
of the converse [4]. This problem is open up to the present, which shows that
existence-uniqueness problems for partial differential equations are also very com-
plex. However, for the semilinear partial differential equations, the same results
on existence-uniqueness as ordinary differential equations have been commendably
established under the local Lipschitz conditions. It is come down to the following
abstract Cauchy problem [9,14,16],{

u′(t) = Au(t) + f(t, u(t)), t > 0,
u(0) = u0,

(1.1)
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where A is the infinitesimal operator of a C0 semigroup S(t) = etA, t ≥ 0.
Many actual systems have the property of delay effect, which is believed to occur

in mechanics, physics, chemistry, biology, economics, etc [8, 12, 25]. Therefore, it
is of significant importance to consider delay systems and many interesting results
on the existence-uniqueness of partial differential equations with delays have been
reported [11,18,20,21].

On the other hand, in most dynamical systems which describe processes in
engineering, physics and economics, stochastic components and random noise are
included. The stochastic aspects of the models are used to capture the uncer-
tainty about the environment in which the system is operating and the structure
and parameters of the models of physical processes are being studied. Stochastic
differential equations in infinite dimensional spaces are motivated by internal de-
velopment of analysis and the theory of stochastic processes. Recently, studies on
stochastic differential equations in infinite dimensional spaces have become a hot
topic [1–3, 5, 10, 13, 15, 17, 19, 22, 26]. The important representative works are as
follows.

Prato and Zabczyk [17] considered the following semilinear stochastic equation
in a Hilbert space H{

du(t) = [Au(t) + f(t, u(t))]dt+ g(t, u(t))dW (t), t ∈ [0, T ],
u(0) = u0,

(1.2)

where A is the infinitesimal operator of a C0 semigroup S(t) = etA, t ≥ 0. They
proved that system (1.2) has a unique global solution if f and g satisfy global
Lipschitz condition:

|f(t, x)− f(t, y)|H + |g(t, x)− g(t, y)|L0
2
≤ c|x− y|H ,

and linear growth condition:

|f(t, x)|2H + |g(t, x)|2L0
2
≤ c|x|2H ,

where c > 0 is a constant, | · |H and | · |L0
2
are the norms in Hilbert spaces H and

L0
2, respectively (see the definition below).
Following [3], Fu et al. [5] studied the following stochastic partial differential

equation in a bounded domain D ⊂ Rn{
∂
∂tu(t) = (κ∆− α)u(t) + f(u(t)) + g(u(t)) ∂

∂tW (t), t > 0,
u|∂D = 0, u(0) = ϕ(x),

(1.3)

where κ and α are positive constants. They employed the local Lipschitz condition:

∥f(u)− f(v)∥2L2(D) ∨ ∥g(u)− g(v)∥2L2(D) ≤ rn∥u− v∥2γ ,

for all u, v ∈ Hγ (Hγ denotes the domain of Aγ in H = L2(D)) with ∥u∥γ ∨∥v∥γ ≤
n (n = 1, 2, . . . ), where ∥ · ∥L2(D) and ∥ · ∥γ represent the norm of L2(D) and Hγ

respectively, and the priori estimate

E∥u(t)∥2γ ≤ K(t), t ≥ 0,

where K(t) is defined and finite for all t > 0. They gave a global existence-
uniqueness theorem for (1.3) on the condition that γ ∈ (0, 12 ) (see [5, Theorem
3.2]).
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Taniguchi et al. [19] investigated the following IDSDE:{
du(t) = [Au(t) + f(t, ut)]dt+ g(t, ut)dW (t), t ≥ t0,
ut0 = ϕ,

(1.4)

where A is a closed, densely defined linear operator and the generator of a certain
analytic semigroup. By using analytic semigroups approach and fractional power
operator arguments, the existence, uniqueness, and asymptotic behavior of mild
solutions of (1.4) are given under the global Lipschitz conditions.

In [23] and [24], Xu et al. developed basic theories of existence-uniqueness for
stochastic functional differential equations under the local Lipschitz conditions in
L2(Ω, C) and C, respectively. Motivated by the above discussions, our first aim
is to establish a global existence-uniqueness theorem for the IDSDEs under the
global Lipschitz condition in C without the linear growth condition. Secondly, the
non-continuable solution for IDSDEs is given under the local Lipschitz condition
in C. Then, the classical Itô’s formula is improved and a global existence theorem
for IDSDEs is obtained. Our new theorems give better results while conditions
imposed are much weaker than some existing results. For example, we need only
the local Lipschitz condition in C but neither the linear growth condition nor the
continuous condition on the time t. Finally, two examples are provided to show the
effectiveness of the theoretical results.

2. Preliminaries

In this section, we introduce some notations and recall some basic definitions.
Let Rn denote the n-dimensional Euclidean space and Rn

+ the n-dimensional
nonnegative Euclidean space.

Let U and H be separable Hilbert spaces and let L(U,H) be the space of all
bounded linear operators from U to H. We denote the norms of elements in U , H
and L(U,H) by symbols | · |U , | · |H and | · |L(U,H) respectively.

Let (Ω,F , {Ft}t∈R,P) be a complete probability space with a filtration {Ft}t∈R
satisfying the usual conditions. We are given a Q-Wiener process in the complete
probability space(Ω,F , {Ft}t∈R,P) and having values in U , i.e. W (t) is defined as
(see [17] for more details)

W (t) =

∞∑
n=1

√
λnωn(t)en, t ≥ t0,

where ωn(t)(n = 1, 2, 3, · · · ) is a sequence of real valued one-dimensional standard
Brownian motions mutually independent on (Ω,F , {Ft}t∈R,P); λn (n = 1, 2, 3, · · · )
are nonnegative real numbers such that

∑
n≥1

λn < ∞; {en}n≥1 is a complete or-

thonormal basis in U , and Q ∈ L(U,U) is the incremental covariance operator of
the process W (t), which is a symmetric nonnegative trace class operator defined by

Qen = λnen, n = 1, 2, 3, · · · .

Denote U0 = Q
1
2U , and let L0

2 be the space of all Hilbert-Schmidt operators L0
2 =

L2(U0,H) from U0 to H. The space L0
2 is a separable Hilbert space equipped with

the following norm
|Ψ|2L0

2
= Tr (ΨQΨ∗).
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M2([a, b];H)

= {f : f isH-valued-measurableFt-adapted process and E
∫ b

a
|f(t)|2Hdt <∞}.

Especially, we let N 2([a, b];H) = {f : f is H-valued-measurable and
∫ b

a
|f(t)|2Hdt <

∞}. Similarly, we may define M2([a, b];L0
2), N 2([a, b];L0

2) and N 1([a, b];Rn).
Let C(J ;H) denote the space of all continuous functions from the interval J into

H equipped with supremum norm. Let us fix a τ > 0 and consider c > 0. If we have
a function u ∈ C([−τ, c];H), for each t ∈ [0, c] we denote by ut ∈ C([−τ, 0];H) the

function defined by ut(s) = u(t+ s),−τ ≤ s ≤ 0. Especially, let C
∆
= C([−τ, 0];H)

with the norm ∥φ∥ = sup
−τ≤s≤0

|φ(s)|H .

In this paper, we will study the following IDSDE{
du(t) = [A(t)u(t) + f(t, ut)]dt+ g(t, ut)dW (t), t ∈ [t0, T ),
ut0 = ξ,

(2.1)

where, T > t0 is a constant or ∞, ξ = {ξ(θ) : −τ ≤ θ ≤ 0} is an Ft0 -measurable
C-valued random variable such that E∥ξ∥2 <∞. A(t) is a family of linear operators
in H, f : [t0, T ) × C → H and g : [t0, T ) × C → L0

2 are two nonlinear measurable
mappings. We shall assume that A(·) generates an evolution operator U(t, s) for
t0 ≤ s ≤ t < T . That is, U(t, s) satisfies the following conditions (see for instance
[16])

(i) U(s, s) = I (the identity mapping in H), U(t, r)U(r, s) = U(t, s) for t0 ≤ s ≤
r ≤ t < T ,

(ii) (t, s) → U(t, s) is strongly continuous for t0 ≤ s ≤ t < T ,

(iii) ∂
∂tU(t, s)u = A(t)U(t, s)u for all u ∈ D(A(t)) ⊂ H.

Definition 2.1. The mappings f and g in (2.1) are said to satisfy the local Lipschitz
condition on [t0, b] ⊂ [t0, T ) if for any n > 0 there is a constant Kn = Kn(b) > 0
such that

|f(t, ϕ)− f(t, ψ)|H ≤ Kn∥ϕ− ψ∥, |g(t, ϕ)− g(t, ψ)|L0
2
≤ Kn∥ϕ− ψ∥, (2.2)

for all t ∈ [t0, b] and φ,ψ ∈ C with ∥φ∥ ∨ ∥ψ∥ ≤ n. The mappings f and g are said
to satisfy the local Lipschitz condition on [t0, T ) if (2.2) holds for any b ∈ [t0, T ).

Definition 2.2. A predictable H-valued process u(t), t ∈ [t0, T ), is said to be a
mild solution of (2.1) if

P
(∫ t

t0

|u(s)|2Hds < +∞
)
= 1,

and for arbitrary t ∈ [t0, T ), we have

u(t) = U(t, t0)ξ(0) +

∫ t

t0

U(t, s)f(s, us)ds+

∫ t

t0

U(t, s)g(s, us)dW (s).

Definition 2.3. A predictable H-valued process u(t), t ∈ [t0, T ), is said to be a
strong solution of (2.1) if u(t) takes values in D(A(t)) almost everywhere,

P
(∫ t

t0

|A(s)u(s)|H ds < +∞
)
= 1, a.s.
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And for arbitrary t ∈ [t0, T ), we have

u(t) = ξ +

∫ t

t0

A(s)u(s)ds+

∫ t

t0

f(s, us)ds+

∫ t

t0

g(s, us)dW (s).

Definition 2.4. The mild solution u(t) of (2.1) is said to explode at t̄ > t0 if

P( sup
s∈(t̄−ε, t̄ ], ε→0

|u(s)|H = ∞) > 0.

3. Basic results on existence and uniqueness

Lemma 3.1. For any b ∈ [t0, T ), assume that

f(t, 0) ∈ N 2([t0, b];H), g(t, 0) ∈ N 2([t0, b];L
0
2), (3.1)

in addition, f and g in (2.1) satisfy the global Lipschitz condition in [t0, b] × C,
that is,

|f(t, ϕ)− f(t, ψ)|H ≤ L∥ϕ− ψ∥, |g(t, ϕ)− g(t, ψ)|L0
2
≤ L∥ϕ− ψ∥, (3.2)

for all t ∈ [t0, b] and φ,ψ ∈ C, where L is a positive constant. Then (2.1) has a
unique mild solution u(t) for t ∈ [t0 − τ, b].

Proof. To prove this theorem by using the classical contraction mapping principle,
we denote by HT the Banach space of all the H-valued predictable process Y (t) for
t ∈ [t0 − τ, T ] such that

∥Y ∥HT =
(
E sup

t∈[t0−τ,T ]

|Y (t)|2H
) 1

2 < +∞.

Choose t∗ ∈ [t0, b] such that

2L2(t∗ − t0)[N
2(b)(t∗ − t0) + 4] < 1, (3.3)

where N(b) = sup
t0≤s≤t≤b

∥U(t, s)∥. Let Γ(u)(t) =

{
U(t, t0)ξ(0) +

∫ t

t0
U(t, s)f(s, us)ds+

∫ t

t0
U(t, s)g(s, us)dW (s), t ∈ [t0, t

∗],

ξ(t− t0), t ∈ [t0 − τ, t0].
(3.4)

Firstly, we will show that Γ maps Ht∗ into Ht∗ . To this end, let u ∈ Ht∗ , by
Jensen’s inequality, then we have for t ∈ [t0, t

∗]

E sup
t0−τ≤t≤t∗

|Γ(u)(t)|2H

= E sup
t0≤t≤t∗

|U(t, t0)ξ(0) +
∫ t

t0
U(t, s)f(s, us)ds+

∫ t

t0
U(t, s)g(s, us)dW (s)|2H

≤ 3E sup
t0≤t≤t∗

[
|U(t, t0)ξ(0)|2H + |

∫ t

t0
U(t, s)f(s, us)ds|2H

+|
∫ t

t0
U(t, s)g(s, us)dW (s)|2H

]
≤ 3N2(b)E∥ξ∥2 + 3E sup

t0≤t≤t∗

[ ∫ t

t0
|U(t, s)f(s, us)|Hds

]2
+3E sup

t0≤t≤t∗
|
∫ t

t0
U(t, s)g(s, us)dW (s)|2H .

(3.5)
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It follows from (3.1) that there is a positive constant M such that∫ t

t0

|f(s, 0)|2Hds ∨
∫ t

t0

|g(s, 0)|2L0
2
ds ≤M, ∀ t ∈ [t0, t

∗]. (3.6)

By Hölder’s inequality and (3.6), we can get

E sup
t0≤t≤t∗

[ ∫ t

t0
|U(t, s)f(s, us)|Hds

]2
≤ N2(b)E sup

t0≤t≤t∗

[ ∫ t

t0
|f(s, us)|Hds

]2
≤ N2(b)(t∗ − t0)E

∫ t∗

t0
|f(s, us)|2Hds

≤ 2N2(b)(t∗ − t0)E
∫ t∗

t0

[
|f(s, us)− f(s, 0)|2H + |f(s, 0)|2H

]
ds

≤ 2N2(b)(t∗ − t0)
[
L2(t∗ − t0)E supt∈[t0−τ,t∗] |u(t)|2H +M

]
.

(3.7)

By Lemma 7.2 in [17, p.182] and (3.6), we find that

E sup
t0≤t≤t∗

|
∫ t

t0
U(t, s)g(s, us)dW (s)|2H

≤ 4N2(b)E
[ ∫ t∗

t0
|g(s, us)|2L0

2
ds
]

≤ 8N2(b)E
∫ t∗

t0

[
|g(s, us)− g(s, 0)|2

L0
2
+ |g(s, 0)|2

L0
2

]
ds

≤ 8N2(b)
[
L2(t∗ − t0)E supt∈[t0−τ,t∗] |u(t)|2H +M

]
.

(3.8)

Then (3.5)-(3.8) together imply that ∥Γ(u)∥Ht∗ < +∞ if u ∈ Ht∗ . Thus Γ maps
Ht∗ into Ht∗ .

Now we will show that Γ has a unique fixed point. For any u, v ∈ Ht∗ , we have

E sup
t0−τ≤t≤t∗

∣∣∣Γ(u)(t)− Γ(v)(t)
∣∣∣2
H

= E sup
t0≤t≤t∗

∣∣∣ ∫ t

t0
U(t, s)[f(s, us)− f(s, vs)]ds

+
∫ t

t0
U(t, s)[g(s, us)− g(s, vs)]dW (s)

∣∣∣2
H

≤ 2E sup
t0≤t≤t∗

[
|
∫ t

t0
U(t, s)[f(s, us)− f(s, vs)]ds|2H

+|
∫ t

t0
U(t, s)[g(s, us)− g(s, vs)]dW (s)|2H

]
≤ 2(t∗ − t0)N

2(b)
∫ t∗

t0
E|f(s, us)− f(s, vs)|2Hds

+8E[
∫ t∗

t0
|g(s, us)− g(s, vs)|2L0

2
ds]

≤ 2L2[N2(b)(t∗ − t0) + 4]
∫ t∗

t0
E∥us − vs∥2ds

≤ 2L2(t∗ − t0)[N
2(b)(t∗ − t0) + 4]∥ut − vt∥2Ht∗

,

(3.9)

which shows that Γ is contractive by using (3.3). Consequently then Γ has a unique
fixed point u in Ht∗ , which is the unique mild solution of (2.1). Moreover, by
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induction, we can get that (2.1) has a mild solution on intervals [t0 − τ, t∗], [t∗ −
τ, 2t∗ − t0], · · · . Therefore, we have that (2.1) has a unique mild solution u(t) for
t ∈ [t0 − τ, b].

Theorem 3.1. Assume the condition (3.1) holds. If f and g satisfy the the local
Lipschitz condition on [t0, T ), then there must be t̄ ∈ (t0, T ) such that (2.1) has a
unique mild solution u(t) for t ∈ [t0 − τ, t̄). Moreover, u(t) explodes at t̄ if t̄ < T .
Otherwise, the solution u(t) exists globally in [t0 − τ, T ).

Proof. Since f and g satisfy the local Lipschitz condition on the interval [t0, b],
for any n > 0, there exist positive constant Kn such that

|f(t, ϕ)− f(t, ψ)|H ≤ Kn∥ϕ− ψ∥, |g(t, ϕ)− g(t, ψ)|L0
2
≤ Kn∥ϕ− ψ∥, (3.10)

for all t ∈ [t0, b] and φ,ψ ∈ C with ∥φ∥∨∥ψ∥ ≤ n. For the above n, define functions
fn and gn as follows:

fn(t, ut) = f(t,
n ∧ ∥ut∥
∥ut∥

ut), gn(t, ut) = g(t,
n ∧ ∥ut∥
∥ut∥

ut), (3.11)

where we set ∥ut∥
∥ut∥ = 1 when ut ≡ 0. Then it is obvious that fn and gn satisfy

the global Lipschitz condition (3.2) on [t0, b] × C. By Lemma 3.1, the following
equation,

un(t) = U(t, t0)un(t0) +
∫ t

t0
U(t, s)fn(s, (un)s)ds

+
∫ t

t0
U(t, s)gn(s, (un)s)dW (s),

(3.12)

(un)t0 = un(t0 + s) =

{
ξ, if ∥ξ∥ ≤ n,
0, if ∥ξ∥ > n,

s ∈ [−τ, 0], (3.13)

has a unique mild solution un(t) on [t0 − τ, b].
Define a sequence of stopping time δn by

δn = b ∧ inf{t ∈ (t0, b] : |un(t)|H ≥ n}.

From (3.11) and (3.13), for t ∈ [t0, δn], we have known that

fn+1(s, (un)s) = fn(s, (un)s) = f(s, (un)s),
gn+1(s, (un)s) = gn(s, (un)s) = g(s, (un)s).

(3.14)

That is, (3.12) and the following equation for t ∈ [t0, b],

un+1(t) = U(t, t0)un+1(t0) +
∫ t

t0
U(t, s)fn+1(s, (un+1)s)ds

+
∫ t

t0
U(t, s)gn+1(s, (un+1)s)dW (s)

have the same coefficients for t ∈ [t0, δn] and their initial data overlap in D = {ut ∈
C : ∥ut∥ ≤ n}. Thus, by the similar proof of Theorem 5.2.1 [6], we can get that

un+1(t) = un(t), t ∈ [t0 − τ, δn], a.s..

This further implies that δn is increasing in n. So we can define δ = limn→∞ δn.
Now we suppose that

Ω(t) = {ω ∈ Ω : δ ∈ [t0, t] ⊆ [t0, b]}, (3.15)

t̄ = sup
t0≤t≤b

{s ∈ [t0, t] : P(Ω(s)) = 0}. (3.16)
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From the definition of t̄, there must be a sequence {tk : tk ∈ [t̄, b]} with limk→∞ tk =
t̄ such that

P(Ω(tk)) > 0. (3.17)

For the above given tk, we can choose an integer Ntk satisfying

Ntk > N
∆
= E∥ξ∥2, and P(Ω(tk))N2

tk
> N + 1.

Let
Ωn(t) = { sup

t0−τ≤s≤t
|un(s)|H > n}.

Then we have limn→∞ Ωn(t) = Ω(t) and P(Ω(tk)) ≤ P(ΩNtk
(tk)). So, we can get

E(|uNtk
(δNtk

)|2H) ≥ E(IΩNtk
|uNtk

(δNtk
)|2H) ≥ P(Ω(tk))N2

tk
> N + 1, (3.18)

where I(·) denote the indicator function of (·). If t̄ = t0, noting that t0 ≤ δNtk
≤ tk,

we have
δNtk

→ t0, when tk → t0.

This together with (3.18) implies that

E(|ξ(0)|2H) > N + 1 = E∥ξ∥2 + 1,

which contradicts the initial condition E∥ξ∥2 = N . Therefore, we get t̄ > t0. For
t̂ ∈ [t0, t̄), we have

lim
n→∞

P(Ωn(t)) = 0 for t ∈ [t0, t̂]. (3.19)

For this case, we can prove u(t) defined by

u(t, ω) = lim
n→∞

un(t, ω), if ω ̸∈ lim
n→∞

Ωn(t̂), ∀ t ∈ [t0, t̂] (3.20)

is the solution of (2.1). In fact, u(t, ω) = un(t, ω) if ω ̸∈ Ωn(t̂) for t ∈ [t0, t̂], and
we get

∥ut∥ ≤ n a.s. for ω ̸∈ Ωn(t̂), t ∈ [t0, t̂]. (3.21)

Combining with (3.21), we have for ω ̸∈ Ωn(t̂),

fn(t, (un)t) = f(t, ut), gn(t, (un)t) = g(t, ut), a.s. ∀ t ∈ [t0, t̂]. (3.22)

From (3.12) and (3.22), we have for ω ̸∈ Ωn(t̂) and t ∈ [t0, t̂],

un(t) = U(t, t0)un(t0) +
∫ t

t0
U(t, s)f(s, (un)s)ds

+
∫ t

t0
U(t, s)g(s, (un)s)dW (s), a.s..

(3.23)

This implies u(t) = un(t) for ω ̸∈ Ωn(t̂), which is also the mild solution of (2.1)
for ω ̸∈ Ωn(t̂). Combining (3.19), we get u(t) defined by (3.20) is the mild solution
of (2.1) for all almost ω ∈ Ω and t ∈ [t0, t̂]. From the arbitrariness of taking t̂, the
solution u(t) exists in [t0 − τ, t̄).

From the procedure of the above proof, it is obvious that the mild solution u(t)
explodes at t̄ defined by (3.16) if there is a t > 0 such that t̄ < t or t̄ = t and
P(Ω(t)) > 0. Otherwise, from the arbitrariness of choosing t, the mild solution u(t)
exists in [t0 − τ, T ). Then, the proof is completed.
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Remark 3.1. In Theorem 3.1, the condition (3.1) is necessary, for example, con-
sider the following equation:

du(t) = [uxx + f(t, u)]dt, u(0) = u0, (3.24)

where f(t, u) = u(t) + α(t), α(t) = 1
t for t > 0 and α(0) = 0. It is obvious that

f in (3.24) satisfies the Lipschitz condition, but the condition (3.1) is not satisfied.
However, (3.24) does not have a solution.

4. Global existence

Since the stochastic convolution in Definition 2.2 is no longer a martingale, we
can not employ Itô’s formula for mild solutions directly on most occasions of our
arguments. We encounter a difficulty that we need strong solution in order to use
Itô’s formula. We can handle this problem, however, by introducing approximating
systems with strong solutions and using a limiting argument. This idea has appeared
in [10, 13] for semilinear stochastic evolution equations under the global Lipschitz
condition. Motived by the works mentioned above, we shall establish corresponding
results for IDSDEs under the local Lipschitz condition. By the approximation
method, we can establish a useful result, which can be applied as the Itô’s formula
for the mild solution of (2.1). Finally we will obtain a global existence theorem for
IDSDEs.

To this end, we introduce an approximating system of (2.1) as follows:{
du(t) = [A(t)u(t) +R(λ)f(t, ut)]dt+R(λ)g(t, ut)dW (t), t ∈ [t0, T ),
ut0(s) = R(λ)ξ(s) ∈ D(A(t)), s ∈ [−τ, 0], (4.1)

where λ ∈ ρ(A(t)), the resolvent set of A(t) and R(λ) = λR(λ,A(t)), R(λ,A(t)) is
the resolvent operator of A(t).

Lemma 4.1. Under the hypothesis of Theorem 3.1, for any fixed λ, system (4.1)
has a unique strong solution uλt ∈ D(A(t)) in t ∈ [t0, t̄).

Proof. By Theorem 3.1, system (4.1) has a unique mild solution uλt in [t0, t̄).
Thus, it suffices to prove that the mild solution uλt is also a strong solution of system
(4.1). By the closed graph theorem, R(λ,A(t)) is bounded. Then A(t)R(λ) =
λ2R(λ,A(t))− λI is a bounded operator. Thus, we have almost surely∫ t̄

t0

∫ t

t0

|A(t)U(t, r)R(λ)f(r, uλr )|Hdrdt <∞,

and ∫ t̄

t0

∫ t

t0

Tr((A(t)U(t, r)R(λ)g(r, uλr ))Q(A(t)U(t, r)R(λ)g(r, uλr ))
∗)drdt <∞.

Thus, by the classic Fubini theorem, we have for t ∈ [t0, t̄)∫ t

t0

∫ s

t0
A(s)U(s, r)R(λ)f(r, uλr )drds

=
∫ t

t0

∫ t

r
A(s)U(s, r)R(λ)f(r, uλr )dsdr

=
∫ t

t0
U(t, r)R(λ)f(r, uλr )dr −

∫ t

t0
R(λ)f(r, uλr )dr.

(4.2)



458 D. Xu, X. Wang and Z. Yang

On the other hand, in view of stochastic Fubini theorem [17, Theorem 4.18], we
also have ∫ t

t0

∫ s

t0
A(s)U(s, r)R(λ)g(r, uλr )dW (r)ds

=
∫ t

t0

∫ t

r
A(s)U(s, r)R(λ)g(r, uλr )dsdW (r)

=
∫ t

t0
U(t, r)R(λ)g(r, uλr )dW (r)−

∫ t

t0
g(r, uλr )dW (r).

(4.3)

Hence, A(t)uλ(t) is integrable almost surely for t ∈ [t0, t̄),∫ t

t0
A(s)uλ(s)ds

= U(t, t0)ξ(0)− ξ(0) +
∫ t

t0
U(t, r)R(λ)f(r, uλr )dr −

∫ t

t0
R(λ)f(r, uλr )dr

+
∫ t

t0
U(t, r)R(λ)g(r, uλr )dW (r)−

∫ t

t0
R(λ)g(r, uλr )dW (r)

= uλ(t)− ξ(0)−
∫ t

t0
R(λ)f(r, uλr )dr −

∫ t

t0
R(λ)g(r, uλr )dW (r).

So, the mild solution uλt ∈ D(A(t)) is also a strong solution of (4.1) in [t0, t̄).

Let C1,2([t0, T ) ×H;R+) denote the space of all real-valued functions Ψ(t, x) :
[t0, T )×H → R+ with properties:

(i) Ψ(t, x) is differentiable in t ∈ [t0, T ) and Ψt(t, x) is continuous on [t0, T )×H,

(ii) Ψ(t, x) is twice Frechet differentiable in x, Ψx(t, x) ∈ H and Ψxx(t, x) ∈
L(H,H) are continuous on [t0, T )×H.

From Lemma 4.1, we can give a useful theorem, which can be applied as the
Itô’s formula for the mild solution of (2.1).
Lemma 4.2. Under the hypothesis of Theorem 3.1, let Ψ ∈ C1,2([t0, T )×H;R+),
u(t) be the mild solution of (2.1) for t ∈ [t0, t̄), τn the random variable equal to the
time at which the process u(t) first leaves Un = {|u|H < n}, τn(t) = τn ∧ t. Then,
for any t0 ≤ s ≤ t < t̄, it holds that

E
(
Ψ(τn(t), u(τn(t)))

)
=EΨ(s, u(s)) + E

∫ τn(t)

s

LΨ(r, u(r))dr, (4.4)

where the operator L is defined by

LΨ(t, u(t)) = Ψt(t, u(t)) + ⟨Ψu(t, u(t)), A(t)u(t) + f(t, ut)⟩H

+1
2Tr

[
Ψuu(t, u(t))g(t, ut)Q

(
g(t, ut)

)∗]
,

where ⟨·, ·⟩H denotes the inner product of Hilbert space H.

Proof. From Proposition 1.3.6 [13, P.26], there exists a subsequence uk(t) of the
strong solution uλ(t) of (4.1) such that for any t ∈ [t0, t̄), u

k(t) → u(t) almost surely
as k → ∞, uniformly with respect to [t0, t], where k ∈ ρ(A(t)).

Let τkn the random variable equal to the time at which the process uk(t) first
leaves Un = {|u|H < n} and τkn(t) = τkn ∧ t. It is well known that the process
y(t) = uk(τkn(t)), obtained by the stopping time has an Itô differential for t ∈ [t0, t̄)

dy(t) = I[t0,τk
n ][A(t)y(t) +R(k)f(t, yt)]dt+ I[t0,τk

n ]R(k)g(t, yt)dW (t). (4.5)
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Therefore, by using Itô formula to Ψ and taking expectation, we can deduce that
for any t0 ≤ s ≤ t < t̄,

E
(
Ψ(τkn(t), u

k(τkn(t)))
)
=E

(
Ψ(s, uk(s))

)
+ E

∫ τk
n(t)

s

LkΨ(r, uk(r))dr,

where

LkΨ(t, u) = Ψt(t, u) + ⟨Ψu(t, u), A(t)u+R(k)f(t, ut)⟩H

+1
2Tr

[
Ψuu(t, u)R(k)g(t, ut)Q

(
R(k)g(t, ut)

)∗]
.

Consequently, letting k → ∞, we have τkn(t) → τn(t) and (4.4) holds.
By Lemma 4.2, we shall give some sufficient conditions on global existence with-

out the continuity of Eu(t).

Theorem 4.1. Let the conditions of Theorem 3.1 hold. Suppose that there are
functions a(·) ∈ N 1([t0, t];R+) and b(·) ∈ C([t0, t];R+) for any t ∈ [t0, T ), and
V ∈ C1,2([t0, T )×H;R+) such that

lim
|u|H→∞

[ inf
t0≤t<T

V (t, u(t))] = ∞, (4.6)

LV (t, u(t)) ≤ a(t) + b(t)V (t, u(t)), ∀ t ∈ [t0, T ), (4.7)

whenever V (t + s, u(t + s)) ≤ V (t, u(t)) for any s ∈ [−τ, 0]. Then there exists a
unique global mild solution u(t) of (2.1). Moreover, there exists a function L0(t)
with sup

s∈[t0,t]

L0(s) <∞ for any t ∈ [t0, T ) such that

EV (t, u(t)) ≤ e
∫ t
t0

b(s)ds
L0(t). (4.8)

Proof. Let
w(t, u(t)) = V (t, u(t))e

−
∫ t
t0

b(s)ds
, (4.9)

then from Condition (4.7) and the continuity of b(t),

Lw(t, u(t)) ≤ e
−

∫ t
t0

b(s)ds
[a(t) + b(t)V − b(t)V )] = a(t)e

−
∫ t
t0

b(s)ds , h(t), (4.10)

whenever V (t+ s, u(t+ s)) ≤ V (t, u(t)) for any s ∈ [−τ, 0].
Let w̄(t, u(t)) = supt0−τ≤s≤t w(s, u(s)) for t ∈ [t0, T ), then there is a s0 =

s0(ω) ∈ [t0− τ, t] such that w̄(t, u(t)) = w(s0, u(s0)) and either s0 = t or s0 < t and
w(s, u(s)) < w(s0, u(s0)) for s0 < s ≤ t.

If s0 < t, then for h > 0 sufficiently small w̄(t + h, u(t + h)) = w̄(t, u(t))
and Lw̄(t, u(t)) = 0. If s0 = t, then w̄(t, u(t)) = w(t, u(t)), that is, w(t, u(t)) ≥
w(t+s, u(t+s)) for any s ∈ [−τ, 0], which implies that V (t+s, u(t+s)) ≤ V (t, u(t))
for any s ∈ [−τ, 0]. From (4.10), we get Lw̄(t, u(t)) = Lw(t, u(t)) ≤ h(t). Therefore,
we have

Lw̄(t, u(t)) ≤ h(t), (4.11)

where h(·) ∈ N 1([t0, t];R+) for any t ∈ [t0, T ), which can be implied by a(·) ∈
N 1([t0, t];R+) and b(·) ∈ C([t0, t];R+) for any t ∈ [t0, T ).

Therefore, by Lemma 4.2, we can get from (4.11) that

Ew̄(τn(t), u((τn(t)))) = Ew̄(t0, u(t0)) + E
∫ τn(t)

t0
Lw̄(s, u(s))ds

≤ e
∫ t0
t0−τ b(s)dsE sup−τ≤s≤0 V (t0 + s, u(t0 + s)) +

∫ t

t0
h(s)ds

∆
= L0(t).

(4.12)
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By the Chebyshev’s inequality, we have for any t ∈ (t0, T )

P(τn ≤ t) = P(|u(τn(t))|H ≥ n) ≤ L0(t)

inft∈[t0,T ),|u(t)|H≥n V (t, u(t))e
−

∫ t
t0

b(s)ds
. (4.13)

We claim that t̄ = T . Otherwise, t̄ < T and the mild solution u(t) explodes at t̄ by
Theorem 3.1. Letting n → ∞, using sup

s∈[t0,t]

L0(s) < ∞ for any given t ∈ [t̄, T ) and

(4.13), we can get P(δ ≤ t) = 0, which is a contradiction. So u(t) exists globally on
[t0 − τ, T ).

5. Examples

In this section, we shall present two examples in order to illustrate our results.

Example 5.1. Consider the stochastic delay reaction-diffusion equation
du(t, x) = [ ∂2

∂x2u(t, x) + α(t)u(t− τ, x)− β(t)u3(t, x)]dt

+γ(t) u2(t−τ)
1+|u(t−τ)|dω(t), (t, x) ∈ R+ × [0, π],

u(t, 0) = u(t, π) = 0, t ≥ 0,

u(s, x) = ξ(s, x), (t, x) ∈ [−τ, 0]× [0, π],

(5.1)

where ω(t) is a real standard Wiener process, τ ≥ 0 and α(t), β(t), γ(t) are positive
continuous function.

Denote by A = ∂2

∂x2 and H = L2(0, π), then H is a Hilbert space with the inner
product

⟨u, v⟩H =

∫ π

0

u(t, x)v(t, x)dx,

and the norm

|u|H = {⟨u, u⟩H} 1
2 =

(∫ π

0

|u(t, x)|2dx
) 1

2

.

The operator A has the domain

D(A) = {u ∈ H :
∂u(x)

∂x
,
∂2u(x)

∂x2
∈ H,u(0) = u(π) = 0}.

Then it is known that

⟨Au, u⟩H ≤ −|u|2H , u ∈ D(A).

One can compute immediately that A generates a C0 semigroup S(t) satisfying
∥S(t)∥ ≤ e−t for all t ≥ 0. We can observe that the C0 semigroup S(t) leads to an
evolution system {U(t, s)}0≤s≤t by means of the relation

U(t, s) = S(t− s), 0 ≤ s ≤ t.

Let f(t, ut) = α(t)u(t−τ)−β(t)u3(t) and g(t, ut) = γ(t) u2(t−τ)
1+|u(t−τ)| . Then system

(5.1) can be written in the following abstract form{
du(t) = [Au(t) + f(t, ut)]dt+ g(t, ut)dW (t), (t, x) ∈ [0,∞)× [0, π],

u(s, x) = ξ(s, x), (t, x) ∈ [−τ, 0]× [0, π].
(5.2)
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Notice that f and g satisfy local and global Lipschitz conditions for the second
arguments, respectively.

On the other hand, let V (t, u(t)) = |u(t)|2H . Then the operator L defined in
Lemma 4.2 has the form

LV (t, u(t), u(t− τ))

≤ −2|u(t)|2H + 2⟨u(t), α(t)u(t− τ)⟩H − 2⟨u(t), β(t)u3(t)⟩H + γ2(t)|u(t− τ)|2H
≤ ( 12α

2(t) + γ2(t))|u(t− τ)|2H
≤ ( 12α

2(t) + γ2(t))V (t, u(t)),

whenever |u(t+s)|2H ≤ |u(t)|2H , ∀ s ∈ [−τ, 0]. Then it follows from Theorem 4.1 that
system (5.2) has a unique global mild solution.

Example 5.2. We consider a non-autonomous stochastic Lotka-Volterra competi-
tive system with diffusion

dui(t, x)−∆ui(t, x)dt

= ui(t, x)[(bi −
n∑

j=1

aijuj(t, x))dt+ σidω(t)], i = 1, . . . , n, x ∈ O, t ≥ 0,
(5.3)

with boundary condition ∂ui

∂n = 0 on ∂O and initial value ui(0, x) = ψi(x), where
O is a bounded open subset in Rn, ω(t) is a one-dimensional standard Brownian
motion, bi, aij and σi are all nonnegative constants.

We can also write system (5.3) as follows

du−∆udt = f(u)dt+ g(u)dω(t), x ∈ O, t ≥ 0, (5.4)

with boundary condition ∂u
∂n = 0 on ∂O and initial value u(0, x) = ψ(x), where

u = (u1, · · · , un)T , ψ(x) = (ψ1, · · · , ψn)
T , b = (b1, · · · , bn)T , a = (aij)n×n, σ =

(σ1, · · · , σn)T , f(u) = diag(u1, · · · , un)(b− au), g(u) = diag(u1, · · · , un)σ.
Let H = L2(O) be a Hilbert space with the inner product

⟨u, v⟩H =

∫
O
u(t, x) · v(t, x)dx,

and the norm

|u|H = {⟨u, u⟩H} 1
2 =

(∫
O
|u(t, x)|2dx

) 1
2

.

Let A0
i be the operator on Dom(A0

i ) ⊂ H defined by

A0
i yi = ∆yi,

where yi ∈ D(A0
i ) = {yi ∈ W 2,2(O)|∂yi

∂n = 0 on ∂O}. Then Ai, the closure of A0
i ,

is a generator of a C0 semigroup {Si(t)}t≥0 on H. And A = (A1, · · · , An)
T is a

generator of a C0 semigroup S(t) = (S1(t), · · · , Sn(t))
T on H.

Obviously, f satisfies the local Lipschitz condition, g satisfies the global Lipschitz
condition. Furthermore f(0) = g(0) = 0. If ψ ≡ 0 P-a.s. then u ≡ 0 is the unique
solution of (5.4). By the comparison theorems for stochastic differential equations
in infinite dimensions (see [7, Theorem 2.1]), we can get that the mild solution of
(5.4) is nonnegative.
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We define V : H → R+ by
V (u) = |u|2H .

It is obvious that V (u) ≥ 0 and V (u) → ∞ as |u|H → ∞. We have

LV (u(t, x))

= ⟨Au, 2u⟩H + ⟨f(u), 2u⟩H + |g(u)|2H

≤ −2
∫
O
∑n

i=1 |∇ui|2dx+
∫
O
∑n

i=1

(
biui − ui

n∑
j=1

aijuj

)
uidx+

∫
O
∑n

i=1 σ
2
i u

2
idx

≤
∫
O
∑n

i=1(bi + σ2
i )u

2
idx

≤ b̂V (u),

where b̂ = max1≤i≤n{bi + σ2
i }. Then, from Theorem 4.1, we can find that the mild

solution of (5.3) exists on [0,∞).
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