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EXISTENCE OF MULTIPLE LIMIT CYCLES IN
CHEN SYSTEM∗
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Abstract In this paper, the existence of multiple limit cycles for Chen sys-
tem are investigated. By using the method of computing the singular point
quantities, the simple and explicit parametric conditions can be determined
to the number and stability of multiple limit cycles from Hopf bifurcation.
Especially, at least 4 limit cycles can be obtained for the Chen system as a
three-dimensional perturbed system.
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1. Introduction

In this paper, we consider Chen system which is taken the following formẋ1 = a(x2 − x1),
ẋ2 = (c− a)x1 + cx2 − x1x3,
ẋ3 = x1x2 − bx3,

(1.1)

where a, b, c ∈ R. Since Lorenz found the first classical chaotic attractor in 1963,
chaos has become one of the most interesting topics of research. In the past decades,
extensive investigation on this topic has been carried out [1, 2, 5, 9]. Particularly,
as the dual system of Lorenz model, since constructed by the authors of [3], Chen
system have been given many investigations including the analysis of Hopf bifurca-
tion (see [1, 3, 5, 8]). Nevertheless, some dynamics properties of Chen system have
not been completely understood by mathematicians as well as Lorenz system’s, for
example, the multiple critical bifurcation. Here we investigate the stability and
existence of multiple limit cycles by Hopf bifurcation, which is also helpful to make
known the complete topological structure of the chaotic Chen’s system.

In our process, not only under the condition: a > 0, b > 0, c > 0 in (1.1),
but also for the case of general real parameter variables, the stability and critical
bifurcation of Chen system are studied. Mainly the new method in [11] is applied to
compute the singular point quantities of the fixed points for Chen system, which has
been proved to be algebraic equivalent to the corresponding focal values. Thus when
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Hopf bifurcation being investigated, it is unnecessary to substitute an approximation
form of the center manifold in order to obtain a two-dimensional system with center-
focus type. The algorithm is linear and readily done with using computer symbol
operation system such as Mathematica. In contrast to the more usual ones such as
Liapunov functions-Poincaré normal form and integral averaging method (see [4]), it
is convenient to compute the higher order focal values and solve the integrability at
fixed point. And more our results are identical with and complementary to previous
work on Hopf bifurcation in Chen system.

The rest of this paper is organized as follows. In Section 2, the corresponding
singular point quantities are computed. In Section 3, the multiple Hopf bifurcations
at the two symmetrical equilibria for the Chen system are investigated and an
example of 4 limit cycles is given for the Chen system.

2. Singular point quantities of the equilibrium point

In this part, in order to present Chen system (1.1) with at least 4 limit cycles by
Hopf bifurcation, we investigate the singular point quantities of the corresponding
equilibrium point.

Evidently, Chen system always has the equilibrium O(0, 0, 0). Suppose that
b (2c − a) > 0 holds, for system (1.1) there exist another two fixed points E1 =
(
√

b(2c− a),
√

b(2c− a), 2c − a) and E2 = (−
√

b(2c− a),−
√
b(2c− a), 2c − a).

The equations in (1.1) are invariant under the transformation:

(x1, x2, x3) 7→ (−x1,−x2, x3), (2.1)

which means that if (x1(t), x2(t), x3(t)) is a solution, then (−x1(t),−x2(t), x3(t)) is
a solution too. Therefore it is enough to analyze the stability and bifurcation of E1.

On the other hand, we will consider the case of fixed points with the property:
there is a pair of purely imaginary eigenvalues, that is, the equilibrium can undergo
a generic Hopf bifurcation. However, one can figure out easily the Jacobian matrix
of system (1.1) at the fixed point O as follows

Ao =

 −a a 0
c− a c 0
0 0 −b

 ,

which never has a pair of purely imaginary eigenvalues. Therefore, it is unnecessary
to discuss Hopf bifurcation for the fixed point O.

Next, we consider the Jacobian matrix of system (1.1) at the fixed point E1 as
follows

A =

 −a a 0

−c c −
√
b(2c− a)√

b(2c− a)
√
b(2c− a) −b

 .

To satisfy the necessary eigenvalue condition, namely A has a pair of purely imagi-
nary eigenvalues ±iω(ω > 0), we need b = (c2 + 3ac− 2a2)/c, then

ω =
√
c2 + 3ac− 2a2. (2.2)
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And more by transforming the equilibriumE1 to the origin, setting x = (x1, x2, x3) =
(x̃1 +

√
b(2c− a), x̃2 +

√
b(2c− a), x̃3 + (2c− a)), then system (1.1) takes the form

ẋ = A

 x1 +
√
b(2c− a)

x2 +
√
b(2c− a)

x3 + (2c− a)

+

 0

−(x1 +
√

b(2c− a))(x3 + (2c− a))

(x1 +
√
b(2c− a))(x2 +

√
b(2c− a))

 . (2.3)

Here we used xi instead of x̃i for i = 1, 2, 3. Thus one can construct a matrix
P which transforms A to be a block-diagonal one, i.e. using the nondegenerate
transformation x = P y, such that

P−1AP =

0 −ω 0
ω 0 0
0 0 −2ad1/c

 ,

where y = (y1, y2, y3) and

P =


a(a−c)

d0

√
cd1

− aω
d0

√
cd1

− c
2ω

√
c
d1

c2+2ac−a2

d0

√
cd1

ω
d0

√
c
d1

(3c−2a)ω
2

√
c
d1

0 1 1


and d0 = a+ c, d1 = 2c− a.

From the above conditions, one can also get comprehensively that: b(2c− a) >
0, bc > 0 and 2a2 − 3ac− c2 < 0, i.e.,

c > 0, b > 0, (3−
√
17) c

4 < a < (3+
√
17) c

4 or c < 0, b < 0, (3+
√
17) c

4 < a < (3−
√
17) c

4
(2.4)

must be all satisfied for Hopf bifurcation of Ei. It is useful to the following discus-
sion.

Moreover, after a time scaling: t → t/ω, we can get a new system from the
system (2.3):

ẏ = 1
ω [P

−1 ∗ diag(P y + E)AP y]

= 1
ω [P

−1AP y + P−1 ∗ diag(P y)AP y].
(2.5)

In order to investigate Hopf bifurcation of system (2.5), firstly by means of
transformation: y1 = (z+w)/2, y2 = (z−w)i/2, y3 = u, t = −T i, the system (2.5)
can also be transformed into the following form


dz
dT = z + a101uz + a011uw + a110zw + a200z

2 + a020w
2 + a002u

2 = Z,

dw
dT = −(w + b011uz + b101uw + b110zw + b020z

2 + b200w
2 + b002u

2) = −W,

du
dT = d001 u+ d101uz + d011uw + d110zw + d200z

2 + d020w
2 + d002u

2 = U,
(2.6)
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where u ∈ R, z, w, T ∈ C, and

a200 = −a(2a3+a2c−11ac2−2c3)
2d0d2

+ a(2a4−8a3c+9a2c2+ac3−2c4)
2d0d2ω

i,

a020 = a(2a5+7a4c−38a3c2+27a2c3+10ac4+4c5)
2d2

0d1d2
− a2(2a5+10a4c−59a3c2+64a2c3−ac4−4c5)

2d2
0d1d2ω

i,

a002 = − c2(8a4−24a3c+6a2c2+17ac3+7c4)
8d1d2ω2 + c2(2a2−4ac+c2)(4a3−8a2c−ac2+3c3)

8d1d2ω3 i,

a101 = 4a5−12a4c+4a3c2+9a2c3−2ac4−c5

2d2ω2 + a(4a−5c)c2

2d2ω
i,

a011 = − (a2−ac−c2)(12a5−44a4c+40a3c2+a2c3−c5)
2d0d1d2ω2 − (a2−ac−c2)(8a4−24a3c+16a2c2+ac3+c4)

2d0d1d2ω
i,

a110 = −a(6a3−9a2c−4ac2−c3)
d0d2

+ a2(6a3−14a2c+5ac2+c3)
d0d2ω

i,

bkjl = ākjl (kjl = 200, 020, 002, 101, 011, 110),

d200 = 2a2(2a4−10a3c+9a2c2+4ac3−c4)
d2
0d2c

− 2a2(a3−6a2c+4ac2+3c3)ω
d2
0d2c

i,

d020 = − 2a2(2a4−10a3c+9a2c2+4ac3−c4)
d2
0d2c

− 2a2(a3−6a2c+4ac2+3c3)ω
d2
0d2c

i,

d002 = −a(4a−5c)c2

2d2ω
i,

d101 = −a(4a3−10a2c+7ac2+c3)
d0d2

− 2a(a−c)(4a3−7a2c+c3)
d0d2ω

i,

d011 = a(4a3−10a2c+7ac2+c3)
d0d2

− 2a(a−c)(4a3−7a2c+c3)
d0d2ω

i,

d110 = 4a2(a2−ac−c2)ω
cd0d2

i,

d001 = 2ad1

cω i,

where d2 = 4a4 − 16a3c+ 14a2c2 + 3ac3 + c4.
According to Theorem 3.1 in [11], we have

Theorem 2.1. For the system (2.6), setting c110 = 1, c101 = c011 = c200 = c020 =
0, ckk0 = 0, k = 2, 3, · · · , we can derive successively and uniquely the terms of the
following formal series:

F (z, w, u) = zw +
∞∑

α+β+γ=3

cαβγz
αwβuγ

(2.7)

such that
dF

dT
=

∂F

∂z
Z − ∂F

∂y
W +

∂F

∂u
U =

∞∑
m=1

µm(zw)m+1 (2.8)

and if α ̸= β or α = β, γ ̸= 0, cαβγ is determined by following recursive formula:

cαβγ = 1
β−α−γd001

[d200(1 + γ)cα−2,β,γ+1 − b020(1 + β)cα−2,β+1,γ

+d110(1 + γ)cα−1,β−1,γ+1 − (a200 + b110β − a200α− d101γ)cα−1,β,γ

−b011(1 + β)cα−1,β+1,γ−1 + d020(γ + 1)cα,β−2,γ+1

+(b200 − b200β + a110α+ d011γ)cα,β−1,γ

−(d002 + b101β − a101α− d002γ)cα,β,γ−1

−b002(1 + β)cα,β+1,γ−2 + a020(1 + α)cα+1,β−2,γ

+a011(1 + α)cα+1,β−1,γ−1 + a002(1 + α)cα+1,β,γ−2]

and for any positive integer m, µm is determined by the following recursive formula:

µm = d200cm−2,m,1 − b020(1 +m)cm−2,m+1,0 + d110cm−1,m−1,1

−(a200 − a200m+ b110m)cm−1,m,0 + d020cm,m−2,1

+(b200 + a110m− b200m)cm,m−1,0 + a020(1 +m)cm+1,m−2,0,
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where c110 = 1, c101 = c011 = c200 = c020 = 0, ckk0 = 0, k = 2, 3, · · · .

Definition 2.1 ([11]). For the system (2.6), µm in (2.8) is called the m-th singular
point quantity at the origin, m = 1, 2, · · · .

Lemma 2.1 ([11]). For system (2.6), the singular point quantity µm is algebraic
equivalent to the m-th focal value v2m+1 at the origin of system (2.5), i.e., for any
positive integer m = 2, 3, · · · , if v3 = v5 = · · · = v2m−1 = 0 and µ1 = µ2 = · · · =
µm−1 = 0 hold, the v2m+1 = iπµm.

Now applying the recursive formulas in Theorem 2.1 in the Mathematica sym-
bolic computation system, we can obtain the first two singular point quantities
easily:

µ1 = i a2(a− c)ωf1/(d0d1d2d3),

µ2 = i a3(a− c)f2/(3ωd
3
0d

3
1d

3
2d

2
3d4),

(2.9)

where d3 = a4 − 4a3c+ 2a2c2 + 3ac3 + c4, d4 = 4a3 − 20a2c+ 18ac2 + 9c3 and

f1 = (a− 4c)(2a3 − 2a2c− 2ac2 − c3),

f2 = 1568a22 − 36128a21c+ 356480a20c2 − 1941440a19c3 + 6178504a18c4

−10564816a17c5 + 4177594a16c6 + 18011318a15c7 − 28847216a14c8

−1501417a13c9 + 34159380a12c10 − 12029641a11c11 − 21438405a10c12

+6477957a9c13 + 11655208a8c14 − 207621a7c15 − 3893740a6c16

−1373755a5c17 + 252636a4c18 + 333003a3c19 + 112625a2c20

+18978ac21 + 1404c22.

In fact, if letting µ1 = 0, then one can simplify µ2 as follows

µ2 = 9 i a3(a− c) g2/(4ωd
3
0d

3
1d

3
2d

2
3d4), (2.10)

where g2 = c19(29410863522a3−29410865128a2c−29410861563ac2−14705430308c3).
Similarly if letting µ1 = µ2 = 0 continuously, then by computing, we can get

easily

µ3 = µ4 = · · · = µ20 = 0. (2.11)

Thus from above singular point quantities µi, i = 1, 2, and Lemma 2.1, then we
have

Theorem 2.2. For the flow on center manifold of the system (2.5), the first 2 focal
values of the origin as follows

v3 = iπµ1, v5 = iπµ2,

in the above expression of v5, we have let v3 = 0.

3. Hopf bifurcation of the two symmetrical equilib-
riums

In this section, we present there exist at least 4 limit cycles by Hopf bifurcation for
Chen system. That is, if we change the parameters of system (1.1) slightly, the two
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symmetrical equilibriums will undergo a generic Hopf bifurcation, i.e. E1 and E2

are all surrounded by two smaller limit cycles respectively.

Firstly whether or not the first two focal values vanish simultaneously is inves-
tigated. The equations µ1 = 0 and µ2 = 0 are coupled, then we obtain only one
case: a − c = 0 because of guaranteeing the equilibrium property, a ̸= 0 can not
hold. Meanwhile we consider µ1 = 0 and µ2 ̸= 0, i.e., f1 = 0, g2 ̸= 0, and from the
conditions in (2.4), then a = 4c should be excluded. Therefore, we have

Lemma 3.1. The origin of system (2.5) or the equilibrium Ei (i = 1, 2) of system
(1.1) is a weak focus of order 2 if and only if

2a3 − 2a2c− 2ac2 − c3 = 0, i.e. a = κ0c, (3.1)

where κ0 = 1
6 [2 + (98 + 18

√
17)

1/3
+ 16(98 + 18

√
17)

−1/3
] ≈ 1.73991.

Now we can apply the method of constructing limit cycles to investigate the
bifurcation of limit cycles from the origin for perturbed system (2.5), which has
been introduced in [6, 12] ( also see [7, 10]). Starting from the critical values (c∗, a∗)
which satisfies the condition (3.1) from Lemma 3.1, we can show the existence of 4
small limit cycles for the generic case of Chen system. Since the proof is similar to
the previous ones but rather tedious, it is omitted here.

Theorem 3.1. There exist certain perturbed coefficients of system (2.6) such that
there are 2 limit cycles in a small enough neighborhood of the origin for system
(2.5).

Moveover, we note that, due to the nondegenerate transformation: x= P y and
the time re-scaling: t → t/ω, system (2.5) is topological equivalent to system (2.3)
in the vicinity of the origin. In particular, if the system (2.5) has 2 small amplitude
limit cycles in the vicinity of the origin, then the same is true for the origin of system
(2.3) or for the equilibrium E1 of system (1.1). At the same time, because of the
symmetry, the system (1.1) also has 2 limit cycles in the vicinity of the equilibrium
E2 under the above assumption.

Therefore, we have the following conclusion.

Theorem 3.2. For the Chen system (1.1), under the conditions of Theorem 3.1,
there exist 4 small amplitude limit cycles by Hopf bifurcation.

Remark 3.1. (i) If µ1 ̸= 0 holds in (2.9), then Ei is a weak focus of order 1, we
can also take a perturbation to guarantee that one small limit cycle is generated
by Hopf bifurcation at the origin of system (2.5). Namely, when v3 = iπµ1 > 0,
the limit cycle is subcritical for each Ei (i = 1, 2) of system (1.1). For the contrary
case, it is supercritical.

(ii) In fact, for the Chen system (1.1), the above Hopf bifurcation is investigated
under generic condition whether or not the three parameters a, b and c are all
confined to be positive.

4. Conclusions

In summary, we have investigated more deeply Hopf bifurcation of Chen system by
a new method based on precise symbolic computation, and obtained its singular
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point quantities and at least 4 limit cycles. Our results and many previous work on
Chen system are complementary.

In addition, when the first two singular point quantities disappear, the first all
twenty ones of equilibrium Ei will disappear in the section 3. Thus we have reason
to think that the highest order of the weak focus Ei is 2, which means there exist
only 4 small limit cycles at most by Hopf bifurcation for Chen system. But it
still need further proof. Another question is whether there exists a logical relation
because the conclusion in Theorem 3.2 for Chen system is identical with the one for
Lorenz system reported in a forthcoming paper.
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Bulletin des Sciences Mathématiques, 129 (2005), 83-98.
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