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Abstract In this paper, we introduce the concept of principal and nonprin-
cipal solutions for second order impulsive dynamic equations on time scales.
Polya and Trench Factorizations play an important role in this article. First-
ly we establish these factorizations. Using these factorizations, we establish
some new oscillation criteria for second impulsive dynamic equations on time
scales.
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1. Introduction

The theory of time scales was introduced by Hilger [7] in his Ph.D thesis in 1988 in
order to unify continuous and discrete analysis, where a time scale T is an arbitrary
nonempty closed subset of the reals, and the cases when this time scale is equal to the
reals or to the integers represent the classical theories of differential and of difference
equations. And the new theory of the so-called “dynamic equations” extends these
classical cases to cases “in between”, as e.g., to the so-called q-difference equations.
Of course many other interesting time scales exist, and they give rise to plenty of
applications. The theory of dynamic equations on time scales has been developing
rapidly and has received much attention. We refer the reader to the book by Bohner
& Peterson [2] and the references cited therein.

The concept of the principal solution was introduced in 1936 by Leighton &
Morse [8]. Since then the principal and nonprincipal solutions have been used
successfully in connection with oscillation, see Bohner & Peterson [2], Özbekler &
Zafer [9] , Zafer [10] and the references cited therein.

In recent years, impulsive dynamic equations on time scales have been investi-
gated by Belarbi et al. [1], Benchohra et al. [3], [4], [5], Huang & Feng [6] and so
forth. Principal and nonprincipal solutions of impulsive differential equations with
application have been investigated by few authors and they gained some results,
see Özbekler & Zafer [9] and Zafer [10]. In the present work, using the similar
method we continue our investigation to extend the work in Özbekler & Zafer [9]
and Zafer [10] to second order impulsive dynamic equations on scale times.
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Denote by PLC[t0,∞)T the set of functions x : [t0,∞)T → R such that x is
continuous on each interval (θi, θi+1), h(θ

±
i ) exist, and h(θi) = h(θ−i ) for i ∈ N.

Throughout the remainder of the paper, we assume that for each i = 1, 2, . . . ,
the points of impulses θi are right dense(rd for short). We let T be a time scale
with supT = ∞, fix t0 ∈ T and define Tt0 = T

∩
[t0,∞).

In this paper we are concerned with oscillation of solutions of second-order im-
pulsive dynamic equations of the form

(r(t)z∆(t))∆ + q(t)zσ(t) = 0, t ̸= θi,

∆r(t)z∆(t) + qiz
σ(t) = 0, t = θi,

(1.1)

and
(r(t)z∆(t))∆ + q(t)zσ(t) = f(t), t ̸= θi,

∆r(t)z∆(t) + qiz
σ(t) = fi, t = θi,

(1.2)

where r(t) > 0 and r, q, f are rd-continuous. Here we introduce the space

D := {x | x : Tt0 → R such that x∆ : Tκ
t0 → R is continuous and such that

(rx∆)∆ : Tκ2

t0 → R is rd-continuous and x∆, (rx∆)∆ ∈ PLC[t0,∞)T}.

Definition 1.1. A function x(t) ∈ D is said to be a solution of (1.1) or (1.2)
provided x(t) satisfies (1.1) or (1.2).

Definition 1.2. We say that a solution x(t) of (1.1) or (1.2) has a generalized zero
at t if x(t) = 0 or t is left-scattered and r(ρ(t))x(ρ(t))x(t) < 0.

This paper is organized as follows. In Section 2, we give some preliminaries
and lemmas. In section 3, the main result concerning the existence of principal
and nonprincipal solution of (1.1) is given, the proof is based on Polya and Trench
Factorizations. And the section also contains two important applications, name-
ly Wong and Leighton-Wintner theorems. An example is given to illustrate the
relevance of the results.

2. Preliminaries and lemmas

Consider the linear operators

Lz := (r(t)z∆(t))∆ + q(t)zσ(t) = 0, t ̸= θi,

Iz := ∆r(t)z∆(t) + qiz
σ(t) = 0, t = θi.

(2.1)

Let W (µ, η) = µη∆ − µ∆η denote the Wronskian of µ, η ∈ D, t ∈ Tκ
t0 . Then for

t ∈ Tκ2

t0 , we have

µσLη − ησLµ = µσ{(rη∆)∆ + qησ} − ησ{(rµ∆)∆ + qµσ}

= µσ(rη∆)∆ − ησ(rµ∆)∆

= (µrη∆ − ηrµ∆)∆

= {rW (µ, η)}∆, t ̸= θi,

(2.2)
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and
µσIη − ησIµ = µσ(∆rη∆ + qiη

σ)− ησ(∆rµ∆ + qiµ
σ)

= µσ∆rη∆ − ησ∆rµ∆

= ∆r(µση∆ − ησµ∆)

= ∆rW (µ, η), t = θi.

(2.3)

Lemma 2.1. (Polya Factorization). If (2.1) has a solution v(t) with no generalized
zeros in Tt0 , then for any η ∈ D we have

Lη = ρσ1{ρ2(ρ1η)∆}∆, t ̸= θi, t ∈ Tκ2

t0 ,

Iη = ρσ1∆ρ2(ρ1η)
∆, t = θi, t ∈ Tκ2

t0 ,
(2.4)

where ρ1(t) := 1/v(t) and ρ2(t) := r(t)v(t)vσ(t).

Proof. Assume that v(t) is a solution of (2.1) with no generalized zeros in Tt0 .
Then

ρ2(t) = r(t)v(t)vσ(t) > 0, t ∈ Tκ
t0

and

Lv ≡ 0, t ̸= θi, t ∈ Tκ2

t0 ,

Iv ≡ 0, t = θi, t ∈ Tκ2

t0 .

Taking µ(t) = v(t), we obtain

Lη =
1

vσ
{rW (v, η)}∆ =

1

vσ
(rvη∆ − rv∆η)∆

=
1

vσ
{rvvσ(η

v
)∆}∆ = ρσ1{ρ2(ρ1η)∆}∆,

and

Iη =
1

vσ
∆r(vση∆ − ησv∆) =

1

vσ
∆r(vη∆ − ηv∆)

=
1

vσ
∆rvvσ(

η

v
)∆ = ρσ1∆ρ2(ρ1η)

∆,

for all η ∈ D. We complete the proof.

Lemma 2.2. (Trench Factorization). If (2.1) has a positive solution in Tt0 , then
for any η ∈ D we have

Lη = γσ
1 {γ2(γ1η)∆}∆, t ̸= θi, t ∈ Tκ2

t0 ,

Iη = γσ
1∆γ2(γ1η)

∆, t = θi, t ∈ Tκ2

t0 ,
(2.5)

where γ1(t) > 0, γ2(t) > 0 and
∫∞
t0

∆t
γ2(t)

= ∞.

Proof. Since (2.1) has a positive solution in Tt0 , Lη, Iη have Polya Factorization
in Tt0 by Lemma 2.1.

If
∫∞
t0

∆t
ρ2(t)

= ∞, then taking γ2(t) = ρ2(t) and γ1(t) = ρ1(t), we have what we

want for t ∈ Tκ2

t0 .
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If
∫∞
t0

∆t
ρ2(t)

< ∞, we set

γ1(t) = ρ1(t)
{∫ ∞

t

∆s

ρ2(s)

}−1
> 0 and γ2(t) = ρ2(t)

∫ ∞

t

∆s

ρ2(s)

∫ ∞

σ(t)

∆s

ρ2(s)
> 0

for t ∈ Tκ2

t0 .

For t ̸= θi, t ∈ Tκ2

t0 and η ∈ D, note that

(γ1η)
∆(t) =

{ρ1(t)η(t)∫∞
t

∆s
ρ2(s)

}∆
=

(ρ1η)
∆(t)

∫∞
t

∆s
ρ2(s)

− ρ1(t)η(t){− 1
ρ2(t)

}∫∞
t

∆s
ρ2(s)

∫∞
σ(t)

∆s
ρ2(s)

.

Hence

γ2(t)(γ1η)
∆(t) = ρ2(t)(ρ1η)

∆(t)

∫ ∞

t

∆s

ρ2(s)
+ ρ1(t)η(t).

Taking the derivative of both sides we get

{γ2(γ1η)∆}∆(t) = {ρ2(ρ1η)∆}∆(t)
∫∞
σ(t)

∆s
ρ2(s)

+ ρ2(t)(ρ1η)
∆(t){− 1

ρ2(t)
}+ (ρ1η)

∆(t)

= {ρ2(ρ1η)∆}∆(t)
∫∞
σ(t)

∆s
ρ2(t)

.

It follows that

γσ
1 (t){γ2(γ1η)∆}∆(t) = ρσ1 (t){ρ2(ρ1η)∆}∆(t) = Lη(t).

Then
Lη = γσ

1 {γ2(γ1η)∆}∆, t ̸= θi, t ∈ Tκ2

t0 .

For t = θi, t ∈ Tκ2

t0 and η ∈ D, we obtain

∆γ2(t)(γ1η)
∆(t) = ∆ρ2(t)(ρ1η)

∆(t)
∫∞
t

∆s
ρ2(s)

+∆ρ1(t)η(t)

=
∫∞
t

∆s
ρ2(s)

∆ρ2(t)(ρ1η)
∆(t).

Since t = θi, i ∈ N are right dense, it follows that

γσ
1 (t)∆γ2(t)(γ1η)

∆(t) =

∫∞
t

∆s
ρ2(s)∫∞

σ(t)
∆s

ρ2(s)

ρσ1 (t)∆ρ2(t)(ρ1η)
∆(t)

= ρσ1 (t)∆ρ2(t)(ρ1η)
∆(t).

= Iη(t).

Then
Iη = γσ

1∆γ2(γ1η)
∆, t = θi, t ∈ Tκ2

t0 .

So γ1(t) and γ2(t) satisfy (2.5) and∫ ∞

t0

∆t

γ2(t)
=

∫ ∞

t0

∆t

ρ2(t)
∫∞
t

∆s
ρ2(t)

∫∞
σ(t)

∆s
ρ2(t)

=

∫ ∞

t0

{ 1∫∞
t

∆s
ρ2(s)

}∆
∆t

=
1∫∞

t
∆s

ρ2(s)

∣∣t=∞
t=t0

−
∑
t0≤θk

∆
{∫ ∞

θk

∆s

ρ2(s)

}−1
= ∞.

The proof is complete.
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3. Main results

Theorem 3.1. If (1.1) has a positive solution in Tt0 , then there exist linearly
independent solutions u(t) and v(t) of (1.1) such that

lim
t→∞

u(t)

v(t)
= 0,

∫ ∞

t0

∆t

r(t)u(t)uσ(t)
= ∞,

∫ ∞

t0

∆t

r(t)v(t)vσ(t)
< ∞,

and
r(t)v∆(t)

v(t)
>

r(t)u∆(t)

u(t)
,

for t sufficiently large.
The solutions u(t) and v(t) are called principal and nonprincipal solutions of

(1.1), respectively.

Proof. Since (1.1) has a positive solution in Tt0 , Lη, Iη have Trench Factorization
in Tt0 . We define

u(t) =
1

γ1(t)
, v0(t) =

1

γ1(t)

∫ t

t0

∆s

γ2(s)
.

It follows that
Lu = Lv0 = 0, t ̸= θi,

Iu = Iv0 = 0, t = θi.

Not that v0(t0) = 0, u(t) and v0(t) are two linearly independent solutions of (1.1)
and

lim
t→∞

u(t)

v0(t)
= lim

t→∞

1∫ t

t0
∆s

γ2(s)

= 0.

Taking µ(t) = u(t) and η(t) = v0(t) in (2.2) and (2.3), we get

{r(t)W (u, v0)(t)}∆ = 0, t ̸= θi,

∆r(t)W (u, v0)(t) = 0, t = θi.
(3.1)

Integrating (3.1) from t0 to t, we obtain

W (u, v0)(t) =
c0
r(t)

,

where c0 = r(t0)W (u, v0)(t0) ̸= 0. Note that

(
v0
u
)∆(t) =

W (u, v0)

u(t)uσ(t)
=

c0
r(t)u(t)uσ(t)

, t ̸= θi. (3.2)

Integrating both sides of (3.2) from t0 to ∞ we get∫ ∞

t0

∆t

r(t)u(t)uσ(t)
=

1

c0
lim

ω→∞

∫ ω

t0

{v0(t)
u(t)

}∆
∆t

=
1

c0
lim

ω→∞

{v0(t)
u(t)

∣∣t=ω

t=t0
−

∑
t0≤θi<ω

∆
(v0
u

)
(θi)

}
=

1

c0
lim

ω→∞

v0(ω)

u(ω)
− v0(t0)

cu(t0)
= ∞.
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Let v(t) be any solution of (1.1) such that v(t) and u(t) are linearly independent.
Then

v(t) = c1u(t) + c2v0(t),

where c2 and c1 are constants with c2 ̸= 0. It follows that

lim
t→∞

u(t)

v(t)
= lim

t→∞

u(t)

c1u(t) + c2v0(t)
= lim

t→∞

u(t)
v0(t)

c1
u(t)
v0(t)

+ c2
= 0

and

Lu = Lv = 0, t ̸= θi,

Iu = Iv = 0, t = θi.

Similarly we get {u(t)
v(t)

}∆
=

W (v, u)(t)

v(t)vσ(t)
=

c3
r(t)v(t)vσ(t)

, (3.3)

where c3 = r(t0)W (v, u)(t0) ̸= 0. Integrating both sides of (3.3) from t0 to ∞ we
get ∫ ∞

t0

∆t

r(t)v(t)vσ(t)
=

1

c3

{u(t)
v(t)

∣∣t=∞
t=t0

−
∑
t0≤θi

∆
u(θi)

v(θi)

}
= − u(t0)

c3v(t0)
< ∞.

Pick t1 ∈ Tt0 so that v(t)vσ(t) > 0 for t ∈ Tt1 . If v(t) is replaced by −v(t), the

expression r(t)v∆(t)
v(t) remains the same. So without loss of generality we assume

v(t) > 0 for t ∈ Tt1 . It is easy to see that for t ∈ Tt1 ,

r(t)v∆(t)

v(t)
− r(t)u∆(t)

u(t)
=

r(t)W (u, v)(t)

u(t)v(t)
= − c3

u(t)v(t)
, t ̸= θi.

Since the right side is continuous, by taking limit as t → θ± we can get

r(t)v∆(t)

v(t)
− r(t)u∆(t)

u(t)
=

r(t)W (u, v)(t)

u(t)v(t)
= − c3

u(t)v(t)
, t = θi.

It remains to show that c3 < 0. Since

lim
t→∞

v(t)

u(t)
= ∞,

{v(t)
u(t)

}∆
=

W (u, v)(t)

u(t)uσ(t)
= − c3

r(t)u(t)uσ(t)
,

and v(t)
u(t) is continuous for t ∈ Tt1 , we can get the desired result that c3 < 0 if t is

large enough. This proof is complete.

Theorem 3.2. (Leighton-Wintner Theorem). If r(t) > 0 and∫ ∞

t0

∆τ

r(τ)
=

∫ ∞

t0

q(τ)∆τ +
∑
t0≤θi

qi = ∞,

then (1.1) is oscillatory in Tt0 .
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Proof. Suppose that Eq. (1.1) is nonoscillatory. Then by Theorem 3.1, there is
a solution v(t) of (1.1) and a number t2 ∈ Tt0 such that v(t) > 0 in Tt2 and∫ ∞

t2

∆t

r(t)v(t)vσ(t)
< ∞.

Define

z(t) =
r(t)v∆(t)

v(t)
, t ̸= θi, t ∈ Tt2 .

It is not difficult to see that

r(t) + µ(t)z(t) = r(t) + µ(t) r(t)v
∆(t)

v(t) = r(t){v(t)+µ(t)v∆(t)}
v(t)

= r(t)vσ(t)
v(t) > 0, t ̸= θi.

Then

z∆(t) =
v(t){r(t)v∆(t)}∆ − r(t){v∆(t)}2

v(t)vσ(t)

= −q(t)− v(t)

r(t)vσ(t)
z2(t)

= −q(t)− z2(t)

r(t) + µ(t)z(t)

≤ −q(t), t ̸= θi,

(3.4)

and

∆z(t) =
r(t+)v∆(t+)

v(t+)
− r(t−)v∆(t−)

v(t−)

=
∆r(t)v∆(t)

v(t)

= −qiv
σ(t)

v(t)

= −qi, t = θi.

(3.5)

Integrating both sides of (3.4) from T to t, we obtain

z(t)− z(T )−
∑

T≤θi<t

∆z(θi) ≤ −
∫ t

T

q(τ)∆τ. (3.6)

Using (3.5) in (3.6), we get

z(t) ≤ z(T )−
{ ∑

T≤θi<t

qi +

∫ t

T

q(τ)∆τ
}
.

Then
lim
t→∞

z(t) = −∞.

Let t3 ∈ Tt2 where t3 is sufficiently large such that

z(t) =
r(t)v∆(t)

v(t)
< 0, t ̸= θi, t ∈ Tt3 .
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It follows that
v∆(t) < 0, t ̸= θi, t ∈ Tt3 .

Therefore v(t) is decreasing on each interval Ii = (θi, θi+1]T, i ∈ N. And since v(t)
is continuous, we get v(t) is decreasing on Tt3 . It follows∫ ∞

t3

∆t

r(t)v(t)vσ(t)
≥ 1

v2(t3)

∫ ∞

t3

∆t

r(t)
= ∞,

which implies that ∫ ∞

t3

∆t

r(t)v(t)vσ(t)
= ∞,

which contradicts. The proof is complete.

Example 3.1. Let T = P22 =
∞∪
i=0

[4i, 4i + 2], θi = 4i + 1, i ∈ N. Consider the

dynamic equation with impulse{ 1

t2
x∆(t)

}∆
+ t3xσ(t) = 0, t ̸= 4i+ 1,

∆
{ 1

t2
x∆(t)

}
+ (4i+ 1)2xσ(t) = 0, t = 4i+ 1.

(3.7)

It is not difficult to see that∫ ∞

4

t2∆t =

∫ ∞

4

t3∆t+
∑

4≤4i+1

(4i+ 1)2 = ∞.

Therefore Eq. (3.7) is oscillatory on [4,∞)T by Theorem 3.2.

Theorem 3.3. (Wong′s Theorem) Suppose that (1.1) is nonoscillatory and z(t) is
a nonprincipal solution of (1.1). If

lim sup
t→∞

H(t) = − lim inf
t→∞

H(t) = ∞,

then (1.2) is oscillatory, where

H(t) =

∫ t

t0

1

r(s)z(s)zσ(s)

{∫ s

to

f(τ)zσ(τ)∆τ +
∑

t0≤θi<s

fiz
σ(θi)

}
∆s,

the function f(t) and the sequence {fi} are as in (1.2).

Proof. We suppose that y(t) is a nonoscillatory solution of Eq.(1.2). Define y(t) =
z(t)w(t), then

zσ(t)Ly − yσ(t)Lz = {r(t)z(t)y∆(t)− r(t)z∆(t)y(t)}∆

= {r(t)(y
z
)∆(t)z(t)zσ(t)}∆

= (rw∆zzσ)∆(t), t ̸= θi,

and

zσ(t)Iy − yσ(t)Iz = ∆r(t){zσ(t)y∆(t)− z∆(t)yσ(t)}

= ∆r(t)z(t)zσ(t)
y∆(t)z(t)− z∆(t)y(t)

z(t)zσ(t)

= ∆r(t)w∆(t)z(t)zσ(t), t = θi,
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i.e.

(rw∆zzσ)∆(t) = zσ(t)f(t), t ̸= θi, (3.8)

∆r(t)w∆(t)z(t)zσ(t) = fiz
σ(t), t = θi. (3.9)

Since y(t) and z(t) are continuous, it follows that

∆w(t) = 0.

Integrating both sides of (3.8) from t0 to s, we obtain

w∆(s) =
c5

r(s)z(s)zσ(s)
+

1

r(s)z(s)zσ(s)

{∫ s

t0

f(τ)zσ(τ)∆τ +
∑

t0≤θi<s

fiz
σ(θi)

}
.

(3.10)
Integrating both sides of (3.10) from t0 to t, we obtain

w(t) = c4 + c5

∫ t

t0

∆s

r(s)z(s)zσ(s)

+

∫ t

t0

1

r(s)z(s)zσ(s)

{∫ s

t0

f(τ)zσ(τ)∆τ +
∑

t0≤θi<s

fiz
σ(θi)

}
∆s,

where c4 = w(t0), c5 = r(t0)z(t0)z
σ(t0)w

∆(t0). Which implies that

lim sup
t→∞

w(t) = − lim inf
t→∞

w(t) = ∞.

Then w(t) is oscillatory. Because z(t) is nonoscillatory, it follows that y(t) =
z(t)w(t) is oscillatory.

Remark 3.1. If qi ≡ 0, i.e, if there is no impulse condition, Lemma 2.1, Lemma
2.2, Theorem 3.1 and Theorem 3.2 reduce to Theorem 4.59, Theorem 4.60, Theorem
4.61 and Theorem 4.64 in Bohner & Peterson [2] respectively.

Remark 3.2. If we take qi ≡ fi ≡ 0, Theorem 3.3 recovers Theorem 3.2 in Zafer
[10].

Remark 3.3. If we take T = R, then we recover all the results obtained by
A.Özbekler & Zafer [9].
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