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THE EXTENDED RICCATI EQUATION
METHOD FOR TRAVELLING WAVE

SOLUTIONS OF ZK EQUATION∗
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Abstract In this article, the extended Riccati equation method is applied
to seeking more general exact travelling wave solutions of the ZK equation.
The traveling wave solutions are expressed by the hyperbolic functions, the
trigonometric functions and the rational functions. When the parameters are
taken as special values, the solitary wave solutions are obtained from the
hyperbolic function solutions. Similarly, the periodic wave solutions are also
obtained from the trigonometric function solutions. The approach developed
in this paper is effective and it may also be used for solving many other
nonlinear evolution equations in mathematical physics.
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1. Introduction

The nonlinear complex physical phenomena arise in many fields of physics, mechan-
ics, biology, chemistry and engineering, and nonlinear equations are related to it. It
plays an important role in seeking the exact travelling wave solutions of nonlinear
equation in the study of the nonlinear equations. Many powerful methods have
been developed, such as the hyperbolic tangent method [2, 3], Backlund transfor-
mation method [11–13], Darboux transformation method [4], homogeneous balance
method [10, 14], the Jacobi elliptic function expansion method [5, 9, 17], Adomian
decomposition method [6–8], the (G’/G)-expansion method [1, 18], and so on. A
search of directly seeking for exact solutions of nonlinear has been more interesting
in recent years because of the availability of symbolic computation Mathematica or
Maple. These computation systems are adequately utilized to perform some com-
plicated and tediously algebraic and differential calculations on a computer. By
using these methods and tools, a large number of nonlinear differential equations
have been solved and their abundant exact solutions have been obtained.

Zakharov-Kuznetsov(ZK) equation is used to describe the wave form of exercise
(2+1)-dimensional space, which is the promotion of famous KdV equation mod-
el and the application of progressive multi-scale found in a magnetic field of a
magnetic plasma wave. Unlike the Kadomtsev-Petviashvili(KP) equation, the ZK
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equation is not integrable by the inverse scattering transform method. It was found
that the solitary-wave solutions of the ZK equation are inelastic. The Zakharov-
Kuznetsov(ZK) equation governs the behavior of weakly nonlinear ion-acoustic
waves in a plasma comprising cold ions and hot isothermal electrons in the presence
of a uniform magnetic field [15]. In [15], the ZK equation is solved by the sine-cosine
and the tanh-function methods. In [16], the numbers of solitary waves and periodic
waves of the modified Zakharov-Kuznetsov equation are obtained.

The (G’/G)-expansion method was proposed originally by Wang et al., which is
one of the most effective direct methods to obtain travelling wave solutions of a large
number of nonlinear evolution equations. This useful method is widely employed
by many authors [1, 18]. The key ideas of the G’/G-expansion method are that
the travelling wave solutions of nonlinear evolution equations can be expressed by
polynomials in G’/G, where G satisfies a second order linear differential equation,
the degree of the polynomials can be determined by considering the homogeneous
balance between the highest order partial derivatives and nonlinear terms appearing
in nonlinear evolution equations considered, the coefficients of the polynomials can
be obtained by solving a set of simultaneous algebraic equations resulted from the
process of using the proposed method.

In this paper, a new method named the extended Riccati equation method was
proposed to find the exact travelling wave solutions to ZK equations. We used the
extended Riccati equation method that we combined Riccati equation with (G’/G)-
expansion method to obtain exact solutions to nonlinear evolution. We will get two
group values of coefficients regarding Riccati equation and nonlinear evolution. By
contrast to both Riccati equation method and (G’/G)-expansion method, at this
point, it is surely a meaningful improvement and innovation we have made to obtain
much more abundant solutions. Following the description of the extended Riccati
equation method, one can have access to exact solutions to nonlinear evolution
smoothly.

2. Description of the extended Riccati equation
method

Step 1: We consider the nonlinear evolution equations, in three independent vari-
ables x, y, t and dependent variable u:

N(u, ux, ut, uxx, uxt, utt, uy, uxy · · · ) = 0, (2.1)

seeking their travelling wave solutions of the following form:

u(x, y, t) = u(ξ), ξ = kx+ cy + dt, (2.2)

where k, c and d are arbitrary constants. Equation (2.1) can be converted to an
ordinary differential equation:

N1(u, u
′, u′′, · · · ) = 0. (2.3)

Step 2: In order to construct travelling wave solutions of nonlinear equations, it
is reasonable to introduce the following ansatz:

u(x, y, t) = u(ξ) =
n∑

i=−n

aif
i(ξ), (2.4)
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where ai are constants to be determined later, the balancing number n is a positive
integer which can be determined by balancing the highest order derivative terms
with the highest power nonlinear terms in (2.3) and f(ξ) satisfies the following
elliptic equations:

f(ξ)′ = p+ qf2(ξ), (2.5)

where p, q are real parameters. And f(ξ) can also be expanded to the following
ansatz:

f(ξ) =
m∑

i=−m

bi

(
G′

G

)m

, bm ̸= 0 (2.6)

and G(ξ) satisfies the following elliptic equations:

(G(ξ))′′ + λ(G(ξ))′ + µG(ξ) = 0, (2.7)

where bi are constants to be determined later, λ, µ are real parameters. m is a
positive integer which can be determined by balancing the highest order derivative
terms with the highest power nonlinear terms in (2.5), and so we can get m = 1.

Step 3: We substitute (2.6) and (2.7) into (2.5), equate the coefficients of all
powers of (G′/G) to zero, and we can get solutions of f(ξ) with computerized
symbolic computation.

Step 4: Then we substitute (2.4) and (2.5) into (2.3), equating the coefficients
of all powers of f(ξ) to zero, solve this set of algebraic equations with computerized
symbolic computation, insert these results and solutions of f(ξ) into (2.4). Finally,
set ξ = kx+ cy + dt ,we obtain the exact travelling wave solutions of (2.1).

3. Applications

We consider the Zakharov-Kuznetsov (ZK) equations in the following form:

ut + uux + uxxx + uxyy = 0. (3.1)

To seek travelling wave solutions of(3.1), we make the transformation ξ = kx+sy−
ωt, where ω, k, s are constants to be determined later. Then (3.1) reduce to

− ωu+
ku2

2
+ (k3 + ks2)u′′ = 0. (3.2)

By balancing the highest order derivative terms and nonlinear terms in (3.2), we
get n = 2. Then we can suppose that (3.2) has the solutions in the form:

u(ξ) = a−2f
−2(ξ) + a−1f

−1(ξ) + a0 + a1f(ξ) + a2f
2(ξ). (3.3)

By substituting (2.5) and (3.3) into (3.2), collecting all terms with the same powers
of f i(ξ) and setting each coefficient of the polynomials to zero, and solving the
over-determined algebraic equations by Mathematica, we can obtain the following
results:

Set 1

kp(k2 + s2) ̸= 0, a0 = 8pq(k2 + s2), a1 = 0, a2 = −12q2(k2 + s2),

a−1 = 0, a−2 = −12p2(k2 + s2), ω = 8kpq(k2 + s2) + ka0.
(3.4)
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Set 2

kp(k2 + s2) ̸= 0, a0 = −4pq(k2 + s2), a1 = 0, a2 = 0,

a−1 = 0, a−2 = −12p2(k2 + s2), ω = 8kpq(k2 + s2) + ka0.
(3.5)

Set 3

kq(k2 + s2) ̸= 0, a0 = −4pq(k2 + s2), a1 = 0, a2 = −12q2(k2 + s2),

a−1 = 0, a−2 = 0, ω = 8kpq(k2 + s2) + ka0.
(3.6)

Similarly, we can also get the following results:

Case 1

λ = 0, q ̸= 0, b0 = ±
√
µ− pq

q
, b1 = 0, b−1 =

µ

q
. (3.7)

Case 2

q ̸= 0, p =
4µ− λ2

4q
, b0 = − λ

2q
, b1 = −1

q
, b−1 = 0. (3.8)

In the following discussion, If we choose Set 1 , we will get

ξ = kx+ sy − 16kpq(k2 + s2)t.

If we choose Set 2 and Set 3, we will get

ξ = kx+ sy − 4kpq(k2 + s2)t.

Using Case 1, substituting Set 1, Set 2, Set 3 and the general solutions of (2.6)
into (3.3), we have three types of travelling wave solutions of the ZK equations as
follows (c1 and c2 are arbitrary constants).

When µ < 0 , we obtain the hyperbolic function solutions of (3.1).

u1(ξ) = 8pq(k2 + s2)

−12q2(k2 + s2)

(
±

√
µ−pq
q + µ

q

(√
−µ c1 sinh

√
−µξ+c2 cosh

√
−µξ

c2 sinh
√
−µξ+c1 cosh

√
−µξ

)−1
)2

−12p2(k2 + s2)

(
±

√
µ−pq
q + µ

q

(√
−µ c1 sinh

√
−µξ+c2 cosh

√
−µξ

c2 sinh
√
−µξ+c1 cosh

√
−µξ

)−1
)−2

,

u2(ξ) = −4pq(k2 + s2)

−12p2(k2 + s2)

(
±

√
µ−pq
q + µ

q

(√
−µ c1 sinh

√
−µξ+c2 cosh

√
−µξ

c2 sinh
√
−µξ+c1 cosh

√
−µξ

)−1
)−2

,

u3(ξ) = −4pq(k2 + s2)

−12q2(k2 + s2)

(
±

√
µ−pq
q + µ

q

(√
−µ c1 sinh

√
−µξ+c2 cosh

√
−µξ

c2 sinh
√
−µξ+c1 cosh

√
−µξ

)−1
)2

.

If c1 ̸= 0, (c1)
2 > (c2)

2, then u(ξ) becomes the solitary wave solutions of (3.1) as
follows:

u1(ξ) = 8pq(k2 + s2)− 12q2(k2 + s2)
(
±

√
µ−pq
q + µ

q
√
−µ

coth(
√
−µξ + ξ0)

)2

−12p2(k2 + s2)
(
±

√
µ−pq
q + µ

q
√
−µ

coth(
√
−µξ + ξ0)

)−2

,

u2(ξ) = −4pq(k2 + s2)− 12p2(k2 + s2)
(
±

√
µ−pq
q + µ

q
√
−µ

coth(
√
−µξ + ξ0)

)−2

,

u3(ξ) = −4pq(k2 + s2)− 12q2(k2 + s2)
(
±

√
µ−pq
q + µ

q
√
−µ

coth(
√
−µξ + ξ0)

)2

,
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where ξ0 = tanh−1 c2
c1
.

If c2 ̸= 0, (c2)
2 > (c1)

2, then u(ξ) becomes the solitary wave solutions of (3.1)
as follows:

u1(ξ) = 8pq(k2 + s2)− 12q2(k2 + s2)
(
±

√
µ−pq
q + µ

q
√
−µ

tanh(
√
−µξ + ξ0)

)2

−12p2(k2 + s2)
(
±

√
µ−pq
q + µ

q
√
−µ

tanh(
√
−µξ + ξ0)

)−2

,

u2(ξ) = −4pq(k2 + s2)− 12p2(k2 + s2)
(
±

√
µ−pq
q + µ

q
√
−µ

tanh(
√
−µξ + ξ0)

)−2

,

u3(ξ) = −4pq(k2 + s2)− 12q2(k2 + s2)
(
±

√
µ−pq
q + µ

q
√
−µ

tanh(
√
−µξ + ξ0)

)2

,

where ξ0 = tanh−1 c1
c2
.

When µ > 0, we get the trigonometric function solutions of (3.1).

u1(ξ) = 8pq(k2 + s2)

−12q2(k2 + s2)

(
±

√
µ−pq
q + µ

q

(√
µ

−c1 sin
√
µξ+c2 cos

√
µξ

c2 sin
√
µξ+c1 cos

√
µξ

)−1
)2

−12p2(k2 + s2)

(
±

√
µ−pq
q + µ

q

(√
µ

−c1 sin
√
µξ+c2 cos

√
µξ

c2 sin
√
µξ+c1 cos

√
µξ

)−1
)−2

,

u2(ξ) = −4pq(k2 + s2)

−12p2(k2 + s2)

(
±

√
µ−pq
q + µ

q

(√
µ

−c1 sin
√
µξ+c2 cos

√
µξ

c2 sin
√
µξ+c1 cos

√
µξ

)−1
)−2

,

u3(ξ) = −4pq(k2 + s2)

−12q2(k2 + s2)

(
±

√
µ−pq
q + µ

q

(√
µ

−c1 sin
√
µξ+c2 cos

√
µξ

c2 sin
√
µξ+c1 cos

√
µξ

)−1
)2

.

If c1 ̸= 0, (c1)
2 > (c2)

2, then u(ξ) becomes the periodic wave solutions of (3.1)
as follows:

u1(ξ) = 8pq(k2 + s2)− 12q2(k2 + s2)
(
±

√
µ−pq
q + µ

q

(√
µ tan(ξ0 −

√
µξ)

)−1
)2

−12p2(k2 + s2)
(
±

√
µ−pq
q + µ

q

(√
µ tan(ξ0 −

√
µξ)

)−1
)−2

,

u2(ξ) = −4pq(k2 + s2)− 12p2(k2 + s2)
(
±

√
µ−pq
q + µ

q

(√
µ tan(ξ0 −

√
µξ)

)−1
)−2

,

u3(ξ) = −4pq(k2 + s2)− 12q2(k2 + s2)
(
±

√
µ−pq
q + µ

q

(√
µ tan(ξ0 −

√
µξ)

)−1
)2

,

where ξ0 = tan−1 c2
c1
.

If c2 ̸= 0, (c2)
2 > (c1)

2, then u(ξ) becomes the periodic wave solutions of (3.1)
as follows:

u1(ξ) = 8pq(k2 + s2)− 12q2(k2 + s2)
(
±

√
µ−pq
q + µ

q

(√
µ cot(

√
µξ + ξ0)

)−1
)2

−12p2(k2 + s2)
(
±

√
µ−pq
q + µ

q

(√
µ cot(

√
µξ + ξ0)

)−1
)−2

,

u2(ξ) = −4pq(k2 + s2)− 12p2(k2 + s2)
(
±

√
µ−pq
q + µ

q

(√
µ cot(

√
µξ + ξ0)

)−1
)−2

,

u3(ξ) = −4pq(k2 + s2)− 12q2(k2 + s2)
(
±

√
µ−pq
q + µ

q

(√
µ cot(

√
µξ + ξ0)

)−1
)2

,

where ξ0 = tan−1 c1
c2
.



428 X. Li, J. Han and F. Wang

Using Case 2, substituting Set 1, Set 2, Set 3 and the general solutions of (2.6)
into (3.3), we have three types of travelling wave solutions of the ZK equations as
follows (c1 and c2 are arbitrary constants).

When pq < 0, we obtain the hyperbolic function solutions of (3.1).

u1(ξ) = 8pq(k2 + s2) + 12pq(k2 + s2)
(

c1 sinh
√
−pqξ+c2 cosh

√
−pqξ

c2 sinh
√
−pqξ+c1 cosh

√
−pqξ

)2

−12p2(k2 + s2)
(
−

√
−pq
q

c1 sinh
√
−pqξ+c2 cosh

√
−pqξ

c2 sinh
√
−pqξ+c1 cosh

√
−pqξ

)−2

,

u2(ξ) = −4pq(k2 + s2)− 12p2(k2 + s2)
(
−

√
−pq
q

c1 sinh
√
−pqξ+c2 cosh

√
−pqξ

c2 sinh
√
−pqξ+c1 cosh

√
−pqξ

)−2

,

u3(ξ) = −4pq(k2 + s2) + 12pq(k2 + s2)
(

c1 sinh
√
−pqξ+c2 cosh

√
−pqξ

c2 sinh
√
−pqξ+c1 cosh

√
−pqξ

)2

.

If c1 ̸= 0, (c1)
2 > (c2)

2, then u(ξ) becomes the solitary wave solutions of (3.1)
as follows:

u1(ξ) = 8pq(k2 + s2) + 12pq(k2 + s2) tanh2(
√
−pqξ + ξ0)

−12p2(k2 + s2)
(
−

√
−pq
q tanh(

√
−pqξ + ξ0)

)−2

,

u2(ξ) = −4pq(k2 + s2)− 12p2(k2 + s2)
(
−

√
−pq
q tanh(

√
−pqξ + ξ0)

)−2

,

u3(ξ) = −4pq(k2 + s2) + 12pq(k2 + s2) tanh2(
√
−pqξ + ξ0),

where ξ0 = tanh−1 c2
c1
.

If c2 ̸= 0, (c2)
2 > (c1)

2, then u(ξ) becomes the solitary wave solutions of (3.1)
as follows:

u1(ξ) = 8pq(k2 + s2) + 12pq(k2 + s2) coth2(
√
−pqξ + ξ0)

−12p2(k2 + s2)
(
−

√
−pq
q coth(

√
−pqξ + ξ0)

)−2

,

u2(ξ) = −4pq(k2 + s2)− 12p2(k2 + s2)
(
−

√
−pq
q coth(

√
−pqξ + ξ0)

)−2

,

u3(ξ) = −4pq(k2 + s2) + 12pq(k2 + s2) coth2(
√
−pqξ + ξ0),

where ξ0 = tanh−1 c1
c2
.

When pq = 0, we get the rational function solutions of (3.1) (u2(ξ) has no
reasonable solutions)

u1(ξ) = −12(k2 + s2)
(

c2
c1+c2ξ

)2

,

u3(ξ) = −12(k2 + s2)
(

c2
c1+c2ξ

)2

.

(3.9)

When pq > 0, we get the trigonometric function solutions of (3.1).

u1(ξ) = 8pq(k2 + s2) + 12pq(k2 + s2)
(

−c1 sin
√
pqξ+c2 cos

√
pqξ

c2 sin
√
pqξ+c1 cos

√
pqξ

)2

−12p2(k2 + s2)
(
−

√
pq

q

−c1 sin
√
pqξ+c2 cos

√
pqξ

c2 sin
√
pqξ+c1 cos

√
pqξ

)−2

,

u2(ξ) = −4pq(k2 + s2)− 12p2(k2 + s2)
(
−

√
pq

q

−c1 sin
√
pqξ+c2 cos

√
pqξ

c2 sin
√
pqξ+c1 cos

√
pqξ

)−2

,

u3(ξ) = −4pq(k2 + s2) + 12pq(k2 + s2)
(

−c1 sin
√
pqξ+c2 cos

√
pqξ

c2 sin
√
pqξ+c1 cos

√
pqξ

)2

.
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If c1 ̸= 0, (c1)
2 > (c2)

2, then u(ξ) becomes the periodic wave solutions of (3.1)
as follows:

u1(ξ) = 8pq(k2 + s2) + 12pq(k2 + s2)
(
tan(ξ0 −

√
pqξ)

)2
−12p2(k2 + s2)

(
−

√
pq

q tan(ξ0 −
√
pqξ)

)−2

,

u2(ξ) = −4pq(k2 + s2)− 12p2(k2 + s2)
(
−

√
pq

q tan(ξ0 −
√
pqξ)

)−2

,

u3(ξ) = −4pq(k2 + s2) + 12pq(k2 + s2)
(
tan(ξ0 −

√
pqξ)

)2
,

where ξ0 = tan−1 c2
c1
.

If c2 ̸= 0, (c2)
2 > (c1)

2, then u(ξ) becomes the periodic wave solutions of (3.1)
as follows:

u1(ξ) = 8pq(k2 + s2) + 12pq(k2 + s2)
(
cot(

√
pqξ + ξ0)

)2
−12p2(k2 + s2)

(
−

√
pq

q cot(
√
pqξ + ξ0)

)−2

,

u2(ξ) = −4pq(k2 + s2)− 12p2(k2 + s2)
(
−

√
pq

q cot(
√
pqξ + ξ0)

)−2

,

u3(ξ) = −4pq(k2 + s2) + 12pq(k2 + s2)
(
cot(

√
pqξ + ξ0)

)2
,

where ξ0 = tan−1 c1
c2
.

4. Conclusion

In short, we have proposed the extended Riccati equation method and utilized it to
find the exact solutions of nonlinear equations with the help of mathmatica software.
We have successfully obtained some travelling wave solutions of the ZK equations.
When the parameters are taken as special values, the solitary wave solutions and
the periodic wave solutions are obtained, and solutions obtained are partly new.
At last, it is worthwhile to mention that this method is effective for solving other
nonlinear evolution equations in mathematical physics. It is truly a promising and
powerful method deserves further employing and studying.
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