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CONTROLLABILITY OF NONLINEAR THIRD
ORDER DISPERSION EQUATION WITH

DISTRIBUTED DELAY∗
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Abstract This paper is concerned with the exact controllability of nonlinear
third order dispersion equation with infinite distributed delay. Sufficient con-
ditions are formulated and proved for the exact controllability of this system.
Without imposing a compactness condition on the semigroup, we establish
controllability results by using a fixed point analysis approach.
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1. Introduction

For a long time, the Korteweg-de Vries (KdV) equation has attracted much at-
tention due to its significant nature in physical contexts, stratified internal waves,
ion-acoustic wave, plasma physics (see [1,8]). The controllability problem of KdV e-
quation has been studied extensively by the researchers as far as the linear system is
concerned. George, Chalishajar and Nandakumaran [4] discussed the exact control-
lability of nonlinear third-order dispersion equation. They established the control-
lability results using two standard types of nonlinearities, namely Lipschitzian and
monotone. Later on, Chalishajar [3] studied the exact controllability of nonlinear
integro-differential third order dispersion system by using the Schaefer fixed-point
theorem. Recently, Sakthivel, Mahmudov and Ren [11] focused on the approximate
controllability for the nonlinear third-order dispersion equation. They discussed
the approximate controllability under the assumption that the corresponding linear
control system is approximately controllable.

It has been widely argued and accepted [6, 12] that for various reasons, time
delay should be taken into consideration in modeling. Obviously, the KdV equation
with time delay has more actual significance. Zhao and Xu [13] studied the existence
of solitary waves for KdV equation with time delay. However, it is more likely there
are multiple states, even infinite states affecting the current state. The purpose of
this paper is to study the exact controllability of the following nonlinear third order
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dispersion equation with infinite distributed delay:

∂w

∂t
(x, t) +

∂3w

∂x3
(x, t) = (Gu)(x, t) +

∫ 0

−∞ P (θ, w(x, t+ θ))dθ (1.1)

on the domain t ∈ J, 0 ≤ x ≤ 2π, with periodic boundary conditions

∂kw

∂xk
(0, t) =

∂kw

∂xk
(2π, t), k = 0, 1, 2, (1.2)

and initial condition

w(x, θ) = w0(x, θ), −∞ < θ ≤ 0, 0 ≤ x ≤ 2π, (1.3)

where J = [0, b], P : (−∞, 0]×R → R and w0 : [0, 2π]×(−∞, 0] → R are continuous
functions. wt(x, θ) = w(x, t + θ), −∞ < θ ≤ 0. u is the control function and the
operator G is defined by

(Gu)(x, t) = g(x)
{
u(x, t)−

∫ 2π

0

g(s)u(s, t)ds
}
. (1.4)

Then G is a bounded linear operator and g(x) is a piece-wise continuous nonnegative
function on [0, 2π] such that

[g] :=

∫ 2π

0

g(s)ds = 1. (1.5)

Moreover, M2 is a positive constant such that ∥G∥ ≤ M2.
The state w(·, t) takes values in a Banach space X = L2(0, 2π) with the norm

∥ · ∥ and inner product ⟨·, ·⟩. The control function u(·, t) is given in L2(J, U), a
Banach space of all admissible control functions, with U = L2(0, 2π) as a Banach
space.

The system (1.1)-(1.3) arises from realistic models, such as a Boussinesq equation-
based model for wave breaking, which depends on the whole histories (i.e., there is
the effect of infinite distributed delay on state equations). To the author’s knowl-
edge the corresponding theory for controllability of nonlinear third order dispersion
equation with time delay has not been explored. In the present paper we will con-
centrate on the case with infinite distributed delay, choose a function g on (−∞, 0]
in a way that in the weighted (or friendly in some literature) phase space B, and
establish sufficient conditions for the controllability of systems (1.1)-(1.3) by using
a fixed-point analysis approach.

2. Preliminaries

Define an operator A on X with domain D = D(A) given by

D(A) =
{
w ∈ H3(0, 2π) :

∂kw

∂xk
(0) =

∂kw

∂xk
(2π); k = 0, 1, 2

}
such that

Aw = −∂3w

∂x3
.
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It follows from Lemma 8.5.2 and Korteweg-de Vries equation of Pazy [9] that A is
the infinitesimal generator of a C0-group of isometry on X. Let {T (t)}t≥0 be the
C0-group generated by A. Obviously, one can show for all w ∈ D(A),

⟨Aw,w⟩L2(0,2π) = 0.

Also, there exists a constant M > 0 such that

sup{∥T (t)∥ : t ∈ J} ≤ M.

To study the system (1.1)-(1.3), we assume that the histories xt : (−∞, 0] →
X, xt(θ) = x(t + θ) belong to some abstract phase space B, which is defined
axiomatically. In this artical, we will empoly an axiomatic definition of the phase
space B introduced by Hale and Kato [5] and follow the terminology used in [7].
Thus, B will be a linear space of functions mapping (−∞, 0] into X endowed with
a seminorm ∥ · ∥B . We will assume that B satisfies the following axioms:

(A) If x : (−∞, σ + a) → X, a > 0, is continuous on [σ, σ + a) and xσ ∈ B,
then for every t ∈ [σ, σ + a) the following conditions hold:

(i) xt is in B;

(ii) ∥x(t)∥ ≤ H∥xt∥B ;

(iii) ∥xt∥B ≤ K(t− σ) sup{∥x(s)∥ : σ ≤ s ≤ t}+M(t− σ)∥xσ∥B;

Here H ≥ 0 is a constant, K,M : [0,+∞) → [0,+∞), K is continuous and M
is locally bounded, and H,K,M are independent of x(t).

(A1) For the function x(·) in (A), xt is a B-valued continuous function on
[σ, σ + a].

(B) The space B is complete.

Example 2.1. The phase space Cr × Lp(ρ,X).

Let r ≥ 0, 1 ≤ p < ∞ and let ρ : (−∞,−r) → R be a non-negative measurable
function which satisfies the conditions (g-5), (g-6) in the terminology of [7]. In
other words, this means that ρ is locally integrable and there exists a non-negative,
locally bounded function γ on (−∞, 0] such that ρ(ξ + θ) ≤ γ(ξ)ρ(θ), for all ξ ≤ 0
and θ ∈ (−∞,−r) \ Nξ, where Nξ ⊆ (−∞,−r) is a set with Lebesgue measure
zero. The space Cr × Lp(ρ,X) consists of all classes of functions ϕ : (−∞, 0] → X
such that ϕ is continuous on [−r, 0], Lebesgue-measurable, and ρ∥ϕ∥p is Lebesgue
integrable on (−∞,−r). The seminorm in Cr × Lp(ρ,X) is defined by

∥ϕ∥B = sup{∥ϕ(θ)∥ : −r ≤ θ ≤ 0}+
( ∫ −r

−∞
ρ(θ)∥ϕ(θ)∥pdθ

)1/p
.

The space Cr × Lp(ρ,X) satisfies axioms (A), (A1), (B). More over, if r = 0 and
p = 2, the phase space Cr ×Lp(ρ,X) is reduced to B = C0×L2(ρ,X). We can take

H = 1, M(t) = γ(−t)1/2, and K(t) = 1 +
( ∫ 0

−t
ρ(θ)dθ

)1/2
, for t ≥ 0 (see [7] for the

details).

By the variation of constant formula, we can write a mild solution of (1.1)-(1.3)
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as

w(x, t) = T (t)w(x, 0) +

∫ t

0

T (t− s)(Gu)(x, s)ds

+

∫ t

0

T (t− s)

∫ 0

−∞
P (θ, w(x, s+ θ))dθds.

(2.1)

Definition 2.1. The system (1.1)-(1.3) is said to be exactly controllable over a
time interval J, if for any given wb ∈ X with [wb] = 0, there exists a control
u ∈ L2(0, b;L2(0, 2π)) = L2(J, U) such that the corresponding solution w of (1.1)-
(1.3) satisfies w(., b) = wb.

We define, for all θ ≤ 0, x ∈ [0, 2π] and ϕ ∈ B,

F (ϕ)(x) =

∫ 0

−∞
P (θ, ϕ(θ)(x))dθ and ϕ(θ)(x) = ϕ(x, θ) = w0(x, θ). (2.2)

Russell and Zhang [10] studied the exact controllability of a corresponding linear
system (i.e. with F ≡ 0 in (1.1)-(1.3)). In their analysis, they considered controls
which conserve quantity [w(·, t)], which corresponds to the volume (refer to Russell
and Zhang [10]). The following is their controllability result for the linear system.

Theorem 2.1. (Russell-Zhang). Let b > 0 be given and let g ∈ C0[0, 2π] be asso-
ciated with G in (1.4). Given any final state wb ∈ X with [wb] = 0, there exists a
control u ∈ L2(J, U) such that the solution w of

∂w

∂t
(x, t) +

∂3w

∂x3
(x, t) = (Gu)(x, t) (2.3)

together with the initial and boundary conditions (1.2)-(1.3) satisfies the terminal
condition w(·, b) = wb in L2(0, 2π). Moreover, there exist a positive constant C1

independent of wb such that

∥w∥L2(J,X) ≤ C1∥wb∥. (2.4)

The main purpose of this paper is to obtain sufficient conditions on the perturbed
nonlinear term F which will preserve the exact controllability. Without imposing a
compactness condition on the semigroup, we establish controllability results.

3. Controllability result

We assume the following conditions hold:

(H1) For each θ ≤ 0 and ζ1, ζ2 ∈ R, |P (θ, ζ1)− P (θ, ζ2)| < k(θ)|ζ1 − ζ2|, where
k is a measurable nonnegative function on (−∞, 0] such that

LF :=
( ∫ 0

−∞

k2(θ)

ρ(θ)
dθ

)1/2
< ∞.
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Assumption (H1) implies that, for ϕ1, ϕ2 ∈ B,

∥F (ϕ1)− F (ϕ2)∥

=
[ ∫ 2π

0

|
∫ 0

−∞
P (θ, ϕ1(θ)(x))dθ −

∫ 0

−∞
P (θ, ϕ2(θ)(x))dθ|2dx

]1/2
≤
[ ∫ 2π

0

( ∫ 0

−∞
k(θ)|ϕ1(θ)(x)− ϕ2(θ)(x)|dθ

)2
dx

]1/2
≤
( ∫ 0

−∞

k2(θ)

ρ(θ)
dθ

)1/2( ∫ 0

−∞
ρ(θ)

∫ 2π

0

|ϕ1(θ)(x)− ϕ2(θ)(x)|2dxdθ
)1/2

≤
( ∫ 0

−∞

k2(θ)

ρ(θ)
dθ

)1/2∥ϕ1 − ϕ2∥B

:=LF ∥ϕ1 − ϕ2∥B.

(3.1)

(H2) p = (1 + bMM2M3)bMLFKb < 1.

Theorem 3.1. If the conditions (H1) − (H2) and [wb] = 0 are satisfied, then the
nonlinear third order dispersion equation (1.1)-(1.3) is exactly controllable.

Proof. Consider the space C = C(J,X), the Banach space of all continuous
functions from J into X with sup norm.

Define the linear operator W̃ : L2(J, U) → X by

W̃u =

∫ b

0

T (b− s)(Gu)(x, s)ds.

By Theorem 2.1 and the assumption [wb] = 0, we obtain that the linear system

(2.3) is exactly controllable. Then the operator W̃ has an inverse operator W̃−1

which takes the values in L2(J, U)/kerW̃ and there exist a positive constant M3

such that ∥W̃−1∥ ≤ M3 (see [2]).
For an arbitrary function w(·, t), define the control function

u(x, t) = W̃−1[wb −T (b)w(x, 0)−
∫ b

0

T (b− s)

∫ 0

−∞
P (θ, w(x, s+ θ))dθds](t). (3.2)

Let ŵ(x, t) ∈ C((−∞, b];X) be the function defined by

ŵ(x, t) =

{
w0(x, t), t ∈ (−∞, 0],

T (t)w(x, 0), t ∈ J.

Let w(x, t) = v(x, t) + ŵ(x, t), t ∈ (−∞, b]. It is easy to see that v satisfies
v(x, t) = 0, t ∈ (−∞, 0], and

v(x, t) =

∫ t

0

T (t− s)(Gu)(x, s)ds

+

∫ t

0

T (t− s)

∫ 0

−∞
P (θ, v(x, s+ θ) + ŵ(x, s+ θ))dθds, t ∈ J.

Let Zb = {v(x, t) ∈ C((−∞, b];X) : v(x, t) = 0, t ∈ (−∞, 0]}. For any v(x, t) ∈
Zb, ∥v(x, t)∥b = sup

s∈J
∥v(x, s)∥, thus (Zb, ∥ · ∥b) is a Banach space.
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On the space Zb, we define the nonliear operator Φ : Zb → Zb by (Φv)(x, t) =
0, t ∈ (−∞, 0], and

(Φv)(x, t) =

∫ t

0

T (t− s)(Gu)(x, s)ds

+

∫ t

0

T (t− s)

∫ 0

−∞
P (θ, v(x, s+ θ) + w̃(x, s+ θ))dθds

=

∫ t

0

T (t− s)

∫ 0

−∞
P (θ, v(x, s+ θ) + w̃(x, s+ θ))dθds

+

∫ t

0

T (t− η)GW̃−1[wb − T (b)w(x, 0)

−
∫ b

0

T (b− s)

∫ 0

−∞
P (θ, v(x, s+ θ) + w̃(x, s+ θ))dθds](η)dη, t ∈ J.

Note that the control (3.2) transfers the system (1.1)-(1.3) from the initial state
to the final state provided that the operator Φ has a fixed point. So if the operator
Φ has a fixed point then the system (1.1)-(1.3) is exactly controllable. To prove
the exact controllability, it is enough to show that the operator Φ has a fixed point
in Zb. The proof is based on the classical fixed point theorem for contractions. It
follows from the assumptions that Φ is well defined and continuous. In order to
prove that Φ is a contraction mapping on Zb, we take v and µ in Zb.

From the conditions (H1)− (H2) and (3.1), we get

∥(Φν)(x, t)− (Φµ)(x, t)∥

=∥
∫ t

0

T (t− s)

∫ 0

−∞
P (θ, ν(x, s+ θ) + w̃(x, s+ θ))dθds

−
∫ t

0

T (t− s)

∫ 0

−∞
P (θ, µ(x, s+ θ) + w̃(x, s+ θ))dθds

+

∫ t

0

T (t− η)GW̃−1[wb − T (b)w(x, 0)

−
∫ b

0

T (b− s)

∫ 0

−∞
P (θ, ν(x, s+ θ) + w̃(x, s+ θ))dθds](η)dη

−
∫ t

0

T (t− η)GW̃−1[wb − T (b)w(x, 0)

−
∫ b

0

T (b− s)

∫ 0

−∞
P (θ, µ(x, s+ θ) + w̃(x, s+ θ))dθds](η)dη∥

≤
∫ b

0

MLF ∥νs − µs∥Bds+ bM∥G∥∥W̃−1∥
∫ b

0

MLF ∥νs − µs∥Bds

≤(1 + bMM2M3)

∫ b

0

MLF ∥νs − µs∥Bds

≤(1 + bMM2M3)bMLFKb∥ν − µ∥b
=p∥v − µ∥b.

(3.3)

Therefore, the above inequality (3.3) imply that Φ is a contraction mapping.
Hence there exists a unique fixed point v in Zb. Let w(x, t) = v(x, t) + ŵ(x, t), t ∈
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(−∞, b]. Then w is the mild solution of problem (1.1)-(1.3). Thus the system (1.1)-
(1.3) is exactly controllable.
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