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ASYMPTOTIC BEHAVIOR OF AN
AGE-STRUCTURED POPULATION MODEL

WITH DIFFUSION
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Abstract A reaction-diffusion system with stage-structure is studied. We
provide well-posedness of the model and prove that time-dependent solution-
s evolve either towards a positive equilibrium or to the trivial one. Under
suitable conditions, a branch of positive equilibrium is shown to exist.
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1. Introduction

If diffusion is ignored in modeling, there are criteria like Bendixon and Dulac The-
orems that allow if a system of autonomous differential equations does or does not
admit periodic solutions. Hence, in the planar case, the long time behavior of tra-
jectories is simple. If diffusion is present, asymptotic behavior is difficult to study.
In this case, we establish global behavior of the trajectories. This paper deals with
the system 

∂
∂tu− d1∆u = σv − eu− cu(u+ v) in Ω× [0, T ],

∂
∂tv − d2∆v = bu− fv − dv(u+ v) in Ω× [0, T ],

u(0, x) = u0,v(0, x) = v0 in Ω,

∂u
∂n = ∂v

∂n = 0 on ∂Ω× [0, T ],

(1.1)

where Ω is a bounded and regular open subset of Rn. The parameters σ, e, c, b, f
and d are positive. The model (1.1) describes the dynamics of a population with
stage-strucure. In this system, u and v denote the density of adult and juvenile re-
spectively. For further details, see for instance Bouguima etc. [3] and the references
therein.

Our goal in this paper is to perform an analytic study of (1.1). Two aspects have
to be considered: existence of solutions of (1.1) and their asymptotic behavior. It is
important to understand under what conditions the system (1.1), evolves towards
a stationary solution. The corresponding steady state system has been studied in
Canada etc. [4], Brown & Zhang [2] and Bouguima etc. [3]. Usually one thinks

of solutions of system (1.1) as a couple of functions (u, v) ∈
[
C2 (Ω) ∩ C1

(
Ω
)]2

.
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But often, it is better to start with mild solution (u, v) ∈
[
C
(
Ω
)]2

and obtain more
regularity using classical theory of parabolic systems.

The organization of the paper is as follows: in section 2 we study the spatially
homogeneous model. We deal with existence and global behavior. We consider the
spatially inhomogeneous model in section 3, where global solution is established.
Section 4 is devoted to the study of local stability of steady state solutions. In
section 5, we consider bifurcation of solution from the trivial one in suitable Sobolev
spaces. Section 6 contains the main result namely, if the trivial solution is unstable,
then the system converges to a positive equilibrium.

2. Spatially homogeneous model

In absence of spatial effects, the model (1.1) reads as follows:
.
u = σv − eu− cu(u+ v),
.
v = bu− fv − dv(u+ v),

u(0) = u0, v(0) = v0.

(2.1)

Its steady-state are solutions of the following system{
σv − eu− cu(u+ v) = 0,

bu− fv − dv(u+ v) = 0.

It is easy to see that there are two equilibriums, the trivial one (0, 0) and a positive
steady state (u∗, v∗) with 0 ≤ u∗ ≤ σ

c and 0 ≤ v∗ ≤ b
d , provided that bσ > ef . The

Jacobian matrix at (0, 0) takes the form of

J =

(
−e σ
b −f

)
.

Hence (0, 0) is locally unstable if bσ > ef . We conclude that the positive e-
quilibrium exists whenever (0, 0) is unstable. Standard arguments show that the
solution of (2.1) always exists and stay positive. In addition, we have

Proposition 2.1. If u0, and v0 ≥ 0, then

lim sup
t→∞

u(t) ≤ K =
max(σ, b)

min(c, d)
and lim sup

t→∞
v(t) ≤ K =

max(σ, b)

min(c, d)
.

Proof. Let
w = u+ v.

Then
w′ ≤ max(σ, b)w −min(c, d)w2.

Standard comparison arguments gives:

w ≤ z,

where z is the solution of the logistic equation{
z′ = max(σ, b)z −min(c, d)z2,
z(0) = w(0).
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We know that:

lim sup
t→∞

z(t) ≤ K =
max(σ, b)

min(c, d)
.

This proves the desired result.
We shall show that the system (2.1) has no positive periodic solutions. Our

method involves an application of the criterion of Bendixon (see th.4.1 in Verhulst
[8]). As a consequence, we establish the global behavior of solutions.

Theorem 2.1. System (2.1) has no positive periodic solutions. In addition, if
bσ < ef , then (u(t), v(t)) tends to (0, 0). If bσ > ef , then (u(t), v(t)) tends to
(u∗, v∗).

Proof. Let
f(u, v) = σv − eu− cu(u+ v)

and
g(u, v) = bu− fv − dv(u+ v).

Then the divergence of the vector field (f, g) is

div(f, g) =
∂f

∂u
+

∂g

∂v
< 0.

It follows from Dulac’s criterion (see Strogatz [7], p202) that system (2.1) has
no periodic solutions. The last proposition and Poincaré-Bendixon Theorem imply
that the positive solution of system (2.1) tends either to the origin or to (u∗, v∗) .

3. Spatially inhomogeneous model

Ordinary differential equations such as described above, assume an homogenous
environment. However, the search of food by the fish population often happen by
random movement. This Fickian dispersion would be modeled by the laplacian
operator. Adding diffusion terms to the system (2.1), we obtain a reaction-diffusion
system like (1.1).

3.1. local existence of solutions.

In this section, we are concerned with local existence of solutions in the Banach
space X = C(Ω).

Proposition 3.1. There exists t∗ > 0 such that the problem (1.1) has a unique
smooth solution in [0, t∗) . Furthermore, if t∗ is maximal and t∗ < ∞, then

lim
t→t∗

(|u|∞ + |v|∞) = +∞.

This result is well known and we give only a sketch of the proof. The first step is
to convert the system using variation of constants formula, to an integral equation:

U(t) = T (t)U0 +

t∫
0

T (t− s)F (U(s))ds,
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where
U = (u, v), U0 = (u0, v0)

and
F (U) = (σv − eu− cu(u+ v), bu− fv − dv(u+ v)) .

Here {T (t)}t≥0 is an analytic semigroup on X, generated by the closure of the
operator A = (di∆) on a convenient domain for which Neumann conditions hold.
Since F is locally Lipschitzian, one can prove existence of a local solution defined
on maximal interval [0, t∗). Using assumptions on F and that T (t) is analytic, we
deduce the smoothness properties of the solutions, see for instance proposition (2.1)
in Dung & Smith [5].

3.2. Positivity of the solution

We will prove that problem (1.1) preserves positiveness.

Proposition 3.2. If u0, v0 ≥ 0, then u(t, .) and v(t, .) ≥ 0 for t ≥ 0.

Proof. Note that u(t, x) = u+(t, x)− u−(t, x). The function u satisfies:
∂
∂tu− d1∆u = σv − eu− cu(u+ v) in Ω× [0, t∗],

u(0, x) = u0 in Ω,

∂u
∂n = 0 on ∂Ω× [0, t∗].

(3.1)

Let ∥u∥ = sup
[0,t∗]

∥u(t)∥
C(Ω)

.

Multiply the equation in (3.1) by u− and integrate over Ω, this implies that

1

2

d

dt

∫
Ω

∣∣u−∣∣2 dx+ d1

∫
Ω

∣∣∇u−∣∣2 dx = −σ

∫
Ω

vu− + e

∫
Ω

uu− + c

∫
Ω

u(u+ v)u−dx.

(3.2)
We now estimate each of the terms of the right hand side of (3.2) separately. By
Young inequality we will have

σ
∫
Ω
vu− ≤ σ

ε

∫
Ω
|u−|2 dx+ σε

∫
Ω
v2dx,

e
∫
Ω
uu− ≤ e

ε

∫
Ω
|u−|2 dx+ eε

∫
Ω
u2dx,

c
∫
Ω
u2u−dx ≤ c

∫
Ω
u( 1ε |u

−|2 + εu
2

)dx,

c
∫
Ω
uu−v ≤ c

∫
Ω
u( 1ε |u

−|2 + εv
2

)dx.

Here ε is any positive number. It follows via (3.2) combined with the previous
inequalities that

1
2

d
dt

∫
Ω
|u−|2 dx

≤ (σ+e+2c∥u∥)
ε

∫
Ω
|u−|2 dx+ ε(σ + c ∥u∥)

∫
Ω
v2dx+ ε(e+ c ∥u∥)

∫
Ω
u2dx.

By choosing ε small enough, we can eliminate the second and the third term of the
right hand side of the last inequality. We arrive at the differential inequality:

1

2

d

dt

∫
Ω

∣∣u−∣∣2 dx ≤ C0(σ + e+ 2c ∥u∥)
∫
Ω

∣∣u−∣∣2 dx
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for some constant C0 independent of u. Therefore∫
Ω

∣∣u(t)−∣∣2 dx ≤
∥∥u−(0, x)

∥∥2
L2(Ω)

+ 2C0(σ + e+ 2c ∥u∥)
∫ t

0

∫
Ω

∣∣u(t)−∣∣2 dx.
Since u(0, x) = u0(x) ≥ 0 then u−(0, x) = 0.
Gronwall’s inequality implies that∫

Ω

∣∣u−∣∣2 dx = 0.

Hence
u−(t, x) = 0

and u is positive.
The positiveness of v is obtained in a similar manner. This completes the proof

of the proposition.

3.3. Global existence of the solution

Global existence, that is the solutions are defined on the whole t ≥ 0 is established
for positive solutions.

Proposition 3.3. The solutions u, v provided by proposition (3.1) are defined on
[0,+∞) .

Proof. Let u1(t) =
∫
Ω
u(t, x)dx and v1(t) =

∫
Ω
v(t, x)dx.

Integrating the equations in (1.1) over Ω we obtain{
d
dtu1(t) ≤ σv1(t),

d
dtv1(t) ≤ bu1(t).

Therefore:
d

dt
(u1(t) + v1(t)) ≤ 2(σ + b)(u1(t) + v1(t))

and

u1(t) + v1(t) ≤ u(0) + v(0) + 2(σ + b)

∫ t

0

(u(s) + v(s))ds.

By Gronwall’s inequality we find that:

u1(t) + v1(t) ≤ (u(0) + v(0)) exp 2(σ + b)t. (3.3)

Since u(t, x) ≤ u1(t) and v(t, x) ≤ v1(t), we conclude from (3.3) that (u(t), v(t))
exists globally on C(Ω).

4. Steady state solution

The corresponding steady state system of (1.1) is
−d1∆u = σv − eu− cu(u+ v) = f1(u, v) in Ω,

−d2∆v = bu− fv − dv(u+ v) = f2(u, v) in Ω,

∂u
∂n = ∂v

∂n = 0 on ∂Ω.

(4.1)

Observe that the equilibrium given by (2.1) is also a steady state of system (1.1).
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Proposition 4.1. The trivial equilibrium (0, 0) is unstable iff bσ > ef.

Proof. The linearized problem around (0, 0) is

∂
∂tu− d1∆u = σv − eu in Ω× R+,

∂
∂tv − d2∆v = bu− fv in Ω× R+,

u(0, x) = u0,v(0, x) = v0 in Ω,

∂u
∂n = ∂v

∂n = 0 on ∂Ω× R.+

Let X = C2(Ω)× C2(Ω) and Y = C(Ω). Define L : X → Y by

L

(
u
v

)
=

(
−d1∆u
−d2∆v

)
−
(

σv − eu
bu− fv

)
.

It is proved in Brown & Zhang [2] that L has a principal eigenvalue, i.e; there exists
λ1 ∈ R and strictly positive functions u, v >> 0 such that{

−d1∆u− σv + eu = λ1u,

−d2∆v − bu+ fv = λ1v.
(4.2)

By integrating on Ω both sides of of system (4.2), we obtain{
−σ

∫
Ω
v + e

∫
Ω
u = λ1

∫
Ω
u,

−b
∫
Ω
u+ f

∫
Ω
v = λ1v

∫
Ω
.

Let

ξ =

∫
Ω
u∫

Ω
v
> 0,

so we have { −σ
ξ + e = λ1,

−bξ + f = λ1.

To determine λ1, we need to solve the algebraic equation for ξ

bξ2 + (e− f)ξ − σ = 0.

By a simple calculation, we find that

λ1 =
2(ef − bσ)√

(f − e)2 + 4bσ + (f + e)
.

Hence λ1 > 0 iff ef − bσ > 0.

Remark 4.1. We have shown that addition of diffusion does not have a destabi-
lizing effect on the trivial equilibrium of the ODE equations.

5. Bifurcation of the steady state solution

We will show that the non trivial equilibrium can emerge from the trivial one. We
introduce a positive parameter λ.
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Let

X =

{
u ∈ W 2,p(Ω),

∂u

∂n
= 0 on ∂Ω

}
, Y = Lp(Ω) with p > n,

and consider the bifurcation problem

L

(
u
v

)
+ λA

(
u
v

)
+ λG

(
u
v

)
= 0, (5.1)

where the operators L,A and G are defined from X ×X into Y × Y by

L

(
u
v

)
=

(
d1∆u
d2∆v

)
,

A

(
u
v

)
=

(
σv − eu
bu− fv

)
and

G

(
u
v

)
=

(
−cu(u+ v)
−dv(u+ v)

)
.

We analyze the local structure of the set of positive solutions of (5.1) near λ = 0.
To make this analysis, we will find out the bifurcation equations at this value by
Lyapunov-Schmidt Method.

The null space of L is given by

kerL = {(u, v) ∈ X ×X, (u, v) = (α, β) ∈ R2}.

The spaces X ×X and Y × Y can be decomposed as follow:

X ×X = kerL+X1

and
Y × Y = kerL+ Y1,

where X1 and Y1 are the L2 orthogonal complements of X ×X and Y × Y respec-
tively.

Let P and Q be the orthogonal projections on X1 and Y1 respectively.
Each element (u, v) ∈ X ×X admits a unique decomposition of the form:

(u, v) = (α, β) + U, (α, β) ∈ R2, U = P (u, v) ∈ X1.

It is clear that (5.1) is equivalent to{
QLU + λQAU + λQG((α, β) + U ) = 0,

A(α, β) + (I −Q)G((α, β) + U ) = 0.
(5.2)

Lemma 5.1. The operator QL : X1 → X1 is invertible.

Proof. The operator QL is injective and surjective. Indeed, let x =

(
u
v

)
∈ X1

such that QL

(
u
v

)
= 0, then

L

(
u
v

)
∈ kerL.
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This implies that there exists (α, β) ∈ R2 such that

L

(
u
v

)
= (α, β),

then 
d1∆u = α,

d2∆v = β,

∂u
∂n = ∂v

∂n = 0, on ∂Ω.

Integrating over Ω, we obtain that

(α, β) = (0, 0)

and

L

(
u
v

)
= (0, 0).

This implies that

(u, v) ∈ X1 ∩ kerL = {(0, 0)} .

Let (x1, x2) ∈ X1 be fixed. From classical results of elliptic equations. The system
d1∆u = x1,

d2∆v = x2,

∂u
∂n = ∂v

∂n = 0, on ∂Ω.

has a solution (u, v) ∈ X × X. Hence (u, v) = (α, β) + U ∈ kerL + X1. It follows
that U is a solution of the previous system.

Consider the equation

T (λ,U, (α, β)) = QLU + λQAU + λQG((α, β) + U) = 0.

Lemma 5.2. There exits a neighborhood Oλ of λ = 0, a neighborhood OU ⊂ X1 of
U = 0 and a function φ : Oλ → OU such that T (λ, φ(λ, (α, β)), (α, β)) = 0.

Proof. We have T (0, 0, (α, β)) = 0. The derivative of T at the point λ = 0 and
U = 0, gives DUT (0, 0, (α, β))V = QLV which is invertible. Applying the Implicit
Function Theorem, we obtain the desired result.

Using the previous lemma, the bifurcation problem (5.1) is equivalent to:

F (λ, (α, β)) = A(α, β) + (I −Q)G((α, β) + φ(λ, (α, β)) = 0.

Theorem 5.1. If bσ > ef , then (5.1) has a positive solution (u(λ), v(λ)) such that
(u(0), v(0)) = (0, 0).

Proof. Let

φ(λ, (α, β)) = (φ1(λ, (α, β), φ2(λ, (α, β))

and

G((α, β) + φ(λ, (α, β)) =

(
−c [ α(α+ β) + (2α+ β)φ1 + φ2

1 + φ1φ2 + αφ2]
−d [ β(α+ β) + (2β + α)φ2 + φ2

2 + φ1φ2 + βφ1]

)
.
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The equation
F (0, (α, β)) = 0

implies that
A(α, β) +G(α, β) = 0,

so

(α, β) = (0, 0) or (α, β) = (α∗, β∗) with 0 < α∗ <
σ

c
, 0 < β∗ <

b

d
.

The linearized operator
D(α,β)F (0, (0, 0))V = AV

is invertible. If bσ − ef > 0, then the Implicit Function Theorem implies the
existence of a neighborhood O(0,0) of (0, 0), a neighborhood O0 of 0 and a function
Φ : O0 → O(0,0) such that

F (λ,Φ(λ)) = 0.

Similarly

D(α,β)F (0, (α∗, β∗)) =

(
−e− 2cα∗ − cβ∗ σ − cα∗

b− dβ∗ −f − dα∗ − 2dβ∗

)
.

Let

M = D(α,β)F (0, (α∗, β∗)) =

(
−e− 2cα∗ − cβ∗ σ − cα∗

b− dβ∗ −f − dα∗ − 2dβ∗

)
.

Since (α∗, β∗) is a solution of{
σβ∗ − eα∗ − cα∗(α∗ + β∗) = 0,

bα∗ − fβ∗ − dβ∗(α∗ + β∗) = 0,

then it satisfies

(−e− cα∗)α∗ + (σ − cα∗)β∗ = 0,

(b− dβ∗)α∗ + (−f − dα∗)β∗ = 0,

so (α∗, β∗) is an eigenvector of the matrix

B =

(
(−e− cα∗) (σ − cα∗)
(b− dβ∗) (−f − dα∗)

)
associated to the eigenvalue 0. Since the trace trB < 0, we conclude that B has two
eigenvalues: λ1 = 0 and λ2 < 0.

We have

σ − cα∗ > 0,

b− dβ∗ > 0.

This implies thatM is irreducible andM < B. Applying Perron-Frobenius Theorem
(Dung & Smith [5], p60), we find that

λ1(M) < λ1(B) = 0.
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Hence M is invertible. The implicit function Theorem implies the existence of
a neighborhood O(α∗,β∗) of (α∗, β∗) and a neighborhood O0 of 0 and a function
Ψ : O0 → O(α∗,β∗) such that

F (λ,Ψ(λ)) = 0.

The two nontrivial solutions defined on a neighborhood of λ = 0 are given by

(u1(λ), v1(λ)) = Φ(λ) + φ(λ,Φ(λ))

and
(u2(λ), v2(λ)) = Ψ(λ) + φ(λ,Ψ(λ)).

The principal eigenvalue of the operator L+ λA is

Z(λ) =
2λ(bσ − ef)√

(f − e)2 + 4bσ + (f + e)
.

If λ > 0, then Z(λ) > 0, and the results in Brwn and Zhang [2] and Canada etc.
[4] imply that (5.1) has a unique positive solution that is (u2(λ), v2(λ)).

6. Asymptotic behavior

Sufficient conditions are obtained by Pao [6] to ensure the convergence of the time-
dependent solution to a steady state solution between upper and lower solutions. It
is crucial to remark that since all the coefficients are constant, the system (4.1) has
a unique positive solution (u, v) in the region

[
0, σ

c

]
×
[
0, b

d

]
when λ1 < 0 (see for

instance Canada etc. [4]). The dynamic of the system is considered in the following
theorem.

Let (φ1, φ2) be the principal eigenfunction associated to λ1.

Proposition 6.1. Let (u(t, u0), v(t, v0)) be the solution of (1.1) and (u, v) be the
positive solution of (4.1).

Assume that bσ > ef. If the initial distribution (u0, v0) satisfies

σ

cmaxφ1
φ1 ≤ u0 ≤ σ

c
,

b

dmaxφ2
φ2 ≤ v0 ≤ b

d
,

then the solution (u(t, u0), v(t, v0)) converges to (u, v) as t → ∞.
Assume that bσ < ef . If the initial distribution (u0, v0) satisfies

0 ≤ u0 ≤ σ

c
, 0 ≤ v0 ≤ b

d
,

then the solution (u(t, u0), v(t, v0)) converges to (0, 0) as t → ∞.

Proof. We distinguish two cases:
Case when bσ > ef and initial values verify

σ

cmaxφ1
φ1 ≤ u0 ≤ σ

c
,

b

dmaxφ2
φ2 ≤ v0 ≤ b

d
.

Let (
u
v

)
= ε

(
φ1

φ2

)
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with ε such that

0 < ε < min

{
σ

cmaxφ1
,

b

dmaxφ2

}
and (

u
v

)
=

(
σ
c
b
d

)
be respectively a system of ordered lower and upper solutions of (1.1). Since the
system is quasimonotone in ⟨u∗, u

∗⟩, with

u∗ = (u, v), u∗ = (u, v).

Theorem 8.3.1 in Pao [6] implies that (1.1) has a unique solution satisfying(
u
v

)
≤

(
u(t, u0)
v(t, v0)

)
≤

(
u
v

)
.

In particular for fixed t1 > 0, we have :(
u
v

)
≤

(
u(t1, u0)
v(t1, v0)

)
≤

(
u
v

)
. (6.1)

Let (U, V ) and (U, V ) be the solutions of (1.1) corresponding respectively to initials
values (u, v), (u, v). In this case, Lemma 10.4.1 in Pao [6] implies that:(

U
V

)
≤

(
u(t+ t1, u0)
v(t+ t1, v0)

)
≤

(
U
V

)
.

Furthermore, Theorem 8.3.1 in Pao [6] shows that the solutions

(
U
V

)
and

(
U
V

)
remain in ⟨u∗, u

∗⟩, it follows from Theorem 10.4.1 in Pao [6] that

(u, v) ≤ lim
t→∞

(u(t+ t1, u0), v(t+ t1, v0)) ≤ (u, v).

We conclude that
lim
t→∞

(u(t, u0), v(t, v0)) = (u, v).

Case when bσ < ef and initial values verify

0 ≤ u0 ≤ σ

c
, 0 ≤ v0 ≤ b

d
.

In this case , system (4.1) has only the trivial solution (0, 0), and(
u
v

)
=

(
0
0

)
is a lower solution of (1.1). Let t1 > 0 be fixed. Similarly, we have:(

0
0

)
≤

(
u(t1, u0)
v(t1, v0)

)
≤

(
u
v

)
. (6.2)

By Lemma 10.4.1, Theorem 10.4.1 in Pao [6] and the fact that for λ1 > 0, the
unique solution of (4.1) is (0, 0), we obtain that

lim
t→∞

(u(t, u0), v(t, v0)) = (0, 0).
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Concluding remarks

Besides of the mathematical interest of the results, there is an ecological motivation.
In this paper, we propose a simple model with age structure which is more realistic
than the well known logistic equation. Both adults and juveniles can become extinct.
Such extinction occurs when bσ is low or ef is high. On the other hand if bσ is
high or ef is low, the system has a stable positive equilibrium. When the diffusion
is fast, a branch of positive equilibrium for the stationary problem bifurcates from
the extinction state.

Acknowledgements

We are very grateful to the reviewers for their valuables comments, which are very
helpful in the revision of the paper.

References

[1] H. Amann, Ordinary differential equations, an introduction to nonlinear anal-
ysis, de Gruter Studies in Mathematics 13, New York, 1990.

[2] K.J. Brown and Y. Zhang, On a system of reaction-diffusion equations describ-
ing a population with two age groups, Math. Anal. Appl., 282 (2003), 444-452.

[3] S.M. Bouguima, S. Fekih and W. Hennaoui, Spatial structure in a juvenile-adult
model, Nonlinear Analysis: Real World Applications, 9 (2008), 1184-1201.

[4] A. Canada, P. Magal and J.A. Montero,Optimal control of harvesting in a
nonlinear elliptic system arising from population dynamics, Math. Anal. Appl.,
254 (2001), 571-581.

[5] L. Dung and H. Smith, A parabolic system modeling microbial competition in
an unmixed bio-reactor, J. Differential Equations, 130 (1996), 59-91.

[6] C.V. Pao, Nonlinear parabolic and elliptic equations, Plenum, New York, 1992.

[7] S.H. Strogatz, Nonlinear dynamics and chaos, Addison Wesley publishing com-
pany, 1994.

[8] F. Verhulst, Nonlinear differential equations and dynamical systems, Springer-
Verlag, 1990.


