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AFFINELY ADJUSTABLE ROBUST
OPTIMIZATION MODEL FOR MULTI-PERIOD
PRODUCTION AND INVENTORY SYSTEM

UNDER RISK PREFERENCE∗
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Abstract A problem of optimizing multi-period centralized production and
inventory system with waste disposal subjected to uncertain demands is inves-
tigated in this paper. Assuming limited information of distributions, that is,
only the mean, support and some measures of deviations are available for the
demand, a joint ellipsoid uncertainty set is constructed to control the degree
of conservatism of the production policies associated with the integrated man-
agers risk preference. Using Affinely Adjustable Robust Counterpart method,
we develop an uncertain optimization model in pursuit of maximizing the
overall revenue through adaptively controlling multi-period production poli-
cies, and relax it to one deterministic robust counterpart which is in fact a
tractable second order cone problem.
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1. Introduction

In an extremely complicated environment, the supply chains are inevitably facing
several kinds of uncertainty, which coursing the prediction of market demands often
deviated from the actual situation, bringing about lots of risk to overall supply
chain performance. On the one hand, in pursuit of meeting the customer needs
punctually and avoiding out of stock, the supply chain should consider of a certain
inventory level in the process of production. On the other hand, for the purpose of
the cost reduction and enhancing the competitiveness, it should control the stock
to reduce inventory level as far as possible. Therefore, how to arrange production
inventory policy subject to uncertain market demand will seriously affect the whole
enterprise profit.

The focus of robust optimization is to protect the system against the worst
instances of the uncertainty in a certain given set. Theoretically, it was original-
ly developed by Ben-Tal and Nemirovski [1, 2] and independently by El-Ghaoui et
al.[8, 9] to address the imperfect knowledge of parameters in mathematical program-
ming problems with an ellipsoidal uncertainty structure. Furthermore, Bertsimas
and Sim [4, 5] and Bertsimas et al.[6] developed another robust technique to model
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trade-offs between performance and risk using polyhedral uncertainty sets or risk
measures. Practically, based on the framework of robust optimization, Bertsimas
and Thiele [7] established a robust inventory control model to address the prob-
lem of optimally controlling a supply chain subject to uncertain demand in discrete
time, and proved that the model can be effectively handled by solving a linear pro-
gramming problem. Ben-Tal [3] took a re-parametrization technique for discrete
time linear control systems named affinely adjustable robust counterpart method
based on robust optimization, which lead to tractable deterministic optimization
problems. Under the assumption that the market demand were not exactly known
with only limited information such as mean, support, and some measures of de-
viations, See and Sim [10] proposed a robust optimization approach to address a
multi-period inventory control problem, and obtained the parameters of the replen-
ishment policies by solving a tractable deterministic optimization problem in the
form of second order cone optimization problem.

In this paper, we address the problem of optimizing multi-period production
and inventory system with waste disposal, where the demands can be partially
forecasted statistically based on historical data. We make the same assumption
about uncertain demands as See and Sim [10] did that the demands may be corre-
lated and ambiguous, which have limited information of distributions, that is, only
the mean, support, and some measures of deviations are available. Using Affine-
ly Adjustable Robust Counterpart method proposed by Ben-Tal [3] , our goal is
to develop a tractable methodology that uses past demand history to adaptively
control multi-period production policies, at the same time to control the degree of
conservatism of the solutions associated with decision makers risk tolerance as its
done by Bertsimas and Sim[4, 5].

2. Problem description and Model construction

In order to concentrate on the production policy, we construct a simplified supply
chain framework with I producers, one warehouse and one waste treatment centre,
which centralized by an integrated manager. Assuming that all producers manufac-
ture a homogeneous single item, and that the materials required for production can
be satisfied from market any time, we consider the framework over a finite discrete
horizon of T periods from t=1 to t=T. The timeline of events is as follows:

1. At the beginning of period t, the integrated manager arranges production
policies for each producer before observing the demand. We assume that the i −
th(i = 1, · · · , I) producer can produce plants xi (t) according to the plan at per-
unit cost ci (t), and each plant can be sold by a unified price pt. In the limit of
production capability, producer i has the maximal production capacity of Pi (t),
and the maximal cumulative production capacity of Qi throughout the planning
horizon.

2. During the process of production, the i − th(i = 1, · · · , I) producer will
generate some waste at a rate of ηi (0 < ηi < 1) . Supposing of a unified treatment
of all waste to the waste treatment centre, one unit waste can be translated into
some useful goods with a conversion ratio δ (0 < δ < 1) at a per-unit procession cost
c00, the useful goods can be sold at a per-unit price p0.

3. At the beginning of period t, the integrated manager faces an initial inventory
level vt and the demand dt for the period t is realized at the end of this period.
We assume that the demand must be satisfied any time, and that the holding cost
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incurred at a per-unit holding cost c0, when excessive inventory is carried to the next
period. Further, we define that inventory has minimal level of vmin, the maximal
storage capacity of vmax. The initial inventory level of the system is v1.

The inventory level at the (t+1)-th period can be given by

v (t+ 1) = v (t) +

I∑
i=1

xi (t)− dt. (2.1)

Eliminating v -variables, the equation (2.1) can be rewritten as follows

v (t+ 1) = v (1) +
t∑

s=1

(
I∑

i=1

xi (s)− ds

)
. (2.2)

We assume an integrated manager whose objective is to determine the dynamic
production policies xi (t) for each producer i from period t=1 to period t=T so as to
maximize the total profit generated from production process and waste conversion
process over all producers and the entire planning period. The problem can be
modeled by the following liner programming

max
xi(t)

T∑
t=1

ptdt −
T∑

t=1

I∑
i=1

ci (t)xi (t)− c0

T∑
t=1

(
v (1) +

t−1∑
s=1

(
I∑

i=1

xi (s)− ds

))

+
T∑

t=1

(
I∑

i=1

xiηi

)
(δp0 − c00)

s.t. 0 ≤ xi (t) ≤ Pi (t) , 0 ≤
T∑

t=1

xi (t) ≤ Qi, i = 1, ..., I; t = 1, ..., T,

Vmin ≤ v (1) +
t∑

s=1

(
I∑

i=1

xi (s)− ds

)
≤ Vmaxt = 1, ..., T.

(2.3)

3. Robust Multi-period Model with Risk Prefer-
ence

3.1. Uncertain demand set under risk preferences

In the heat of global competition, the market demand changes so randomly that are
not necessarily identically distributed. Although the associated exact distribution
information of demand is difficult to obtain, we have reasonable estimates for the
mean value and its range according to experience and historical data. Then, the
uncertainty of demand dt can be expressed as a bounded random variable which
fluctuates in a symmetric interval with a nominal value d∗t and a deviation ∆t, that
is, dt ∈ [d∗t −∆t, d

∗
t +∆t] (t = 1, · · · , T ) . Then, the uncertainty set for all periods

can be described as follows

Ω1 =
{
d = (d1, d2, ..., dt, ...dT , ) ∈ RT | dt ∈ [d∗t −∆t, d

∗
t +∆t] , t = 1, ..., T

}
.
(3.1)

When facing with continuously changing market, different decision makers are
always likely to have different risk preferences. As a collaborative consortium, sup-
ply chain can set a parameter to wholly control or represent the risk preference of



344 L. Zhu, C. Li and W. Xu

decision maker. Hence, the uncertainty set of demand with risk preference can be
described as follows

Ω2 =

{
d = (d1, d2, ..., dt, ...dT , ) ∈ RT |

T∑
t=1

(
dt − d∗t
∆t

)2

≤ Γ

}
, (3.2)

where the parameter Γ represents the risk preferences of decision makers. When Γ =
0 , the uncertainty set is singleton, which is equivalent to the traditional case with
deterministic demand, so that the decisions in this case are the most vulnerable to
the market fluctuations. When Γ = T , the uncertainty set of demand is equivalent
to formula (3.1) so that the decisions in this case are the most conservative and are
completely immune to the market fluctuations. When 0 < Γ < T , the conservative
level of decision makers is between entirely open to entirely conservative.

3.2. Robust model and affinely adjustable robust counterpart

Assuming that the production policies xi (t) is made based on the demands dr
observed at period r, which satisfies r ∈ It ,where It is a given subset of {1, · · · , t} .
Further, assuming we should specify our production policies when the demand is
uncertain but can be restricted into the uncertainty set Ω2 . Considering the AARC
methodology proposed by Ben-Tal [3], we restrict our production policy with affine
decision rules

xi (t) = y0i (t) +
∑
r∈It

yri (t) dr, (3.3)

where the coefficients yri (t) are new non-adjustable variables. With this approach,
problem (2.3) after few changes becomes the following uncertain Linear Program-
ming problem with variables yri (t) , F

max
y0
i (t),y

r
i (t)

T∑
t=1

I∑
i=1

(
y0i (t) +

∑
r∈It

yri (t) dr

)
[ηi (δp0 − c00)− ci (t)]

−
T∑

t=1

((
v (1) +

t−1∑
s=1

(
I∑

i=1

(
y0i (s) +

∑
r∈Is

yri (s) dr

)
− ds

))
c0 − ptdt

)

s.t. 0 ≤ y0i (t) +
∑
r∈It

yri (t) dr ≤ P t
i , i = 1, ..., I, t = 1, ..., T,

0 ≤
T∑

t=1

y0i (t) +
∑
r∈It

yri (t) dr ≤ Qi, i = 1, ..., I,

Vmin ≤ v (1) +

t∑
s=1

(
I∑

i=1

(
y0i (s) +

∑
r∈Is

yri (s) dr

)
− ds

)
≤ Vmax, t = 1, ..., T,

∀d ∈ Ω2.

(3.4)

In order to obtain the deterministic robust counterpart of the robust model (3.4),
we can equivalently make some changes on it. Obviously, the following equation
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holds

t∑
s=1

∑
r∈Is

yri (s) dr =

t∑
r=1

 ∑
s∈S={s|s≤t,r∈Is}

yri (s)

 dr, t = 1, · · · , T. (3.5)

Based on the above equation (3.5), we have the following changes in the objective
function and inequality constraints. When introducing the following notations

cti,s = −c0, 1 ≤ s ≤ t− 1, cti,s = ηi (δp0 − ci (t)) , 1 ≤ t ≤ T ;

qts = c0, 1 ≤ s ≤ t− 1, qtt = pt, 1 ≤ t ≤ T.S = {s | s ≤ t, r ∈ Is} .

The objective function can be reformulated as follows

T∑
t=1

I∑
i=1

((
y0i (t) +

∑
r∈It

yri (t) dr

)
[ηi (δp0 − c00)− ci (t)]

−
t−1∑
s=1

(
y0i (s) +

∑
r∈Is

yri (s) dr

)
c0

)
+

T∑
t=1

(
ptdt + c0

t−1∑
s=1

)
− Tv (1) c0

=
T∑

t=1

I∑
i=1

t∑
s=1

cti,sy
0
i (s) +

T∑
t=1

t∑
r=1

(
I∑

i=1

∑
s∈S

cti,sy
r
i,s (s) + qtr

)
dr − Tv (1) c0.

(3.6)

Accordingly, we can also do some changes in inequality constraints separately

0 ≤
T∑

t=1

y0i (t) +
∑
r∈It

yri (t) dr ≤ Qi

⇓

0 ≤
T∑

t=1

y0i (t) +
T∑

t=1

(∑
s∈S

yri (s)

)
dr ≤ Qi (3.7)

Vmin ≤ v (1) +

t∑
s=1

(
I∑

i=1

(
y0i (s) +

∑
r∈Is

yri (s) dr

)
− ds

)
≤ Vmax

⇓

Vmin ≤ v (1) +
t∑

s=1

I∑
i=1

y0i (s) +
t∑

r=1

(
I∑

i=1

∑
s∈S

yri (s)

)
dr −

t∑
s=1

ds ≤ vmax. (3.8)

In summary, the uncertain optimization problem has an equivalently version as
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follow

max
y0
i (t),y

r
i (t)

F

s.t.

T∑
t=1

I∑
i=1

t∑
s=1

cti,sy
0
i (s) +

T∑
t=1

t∑
r=1

(
I∑

i=1

∑
s∈S

cti,sy
r
i,s (s) + qtr

)
dr − Tv (1) c0 ≤ F,

0 ≤ y0i (t) +
∑
r∈It

yri (t) dr ≤ P t
i , i = 1, ..., I, t = 1, ..., T,

0 ≤
T∑

t=1

y0i (t) +
T∑

t=1

(∑
s∈S

yri (s)

)
dr ≤ Qi, i = 1, ..., I,

Vmin ≤ v (1) +
t∑

s=1

I∑
i=1

y0i (s) +
t∑

r=1

(
I∑

i=1

∑
s∈S

yri (s)

)
dr −

t∑
s=1

ds ≤ vmax,

t = 1, ..., T.

(3.9)

Where i, st = −c0, 1 ≤ s ≤ t− 1, cti,s = ηi (δp0 − ci (t)) , 1 ≤ t ≤ T ; qts = c0, 1 ≤ s ≤
t− 1, qtt = pt, 1 ≤ t ≤ T .

On the basis of the above model (3.9), then we discuss the robust counterpart.

Lemma 3.1. Considering the following optimization problem

Z∗ = min
y

{
aT y | yT y ≤ 1

}
. (3.10)

The optimal value can be given as Z∗ = −∥a∥2.

Proof. The objective function, obvious a linear one, is convex, while the constraint
function can be written as g (y) = yT y − 1, which has a definite Hessian matrix
▽2g (y) = 2I ≻ 0 , is also convex. As a convex optimization, its optimal solution
is equivalent to its KKT point. Assume the optimal solution vector is y∗, then y∗

must satisfy the following equation system

{▽f (y∗) + λ▽ g (y∗) = 0;λ▽ g (y∗) = 0;λ ≥ 0} . (3.11)

By solving system (14), we have λ = 1
2 ∥a∥2 , y

∗ = − a
∥a∥2

, then the optimal

value Z∗ = −∥a∥2 .

Lemma 3.2. There exists a relaxed relationship between the following constraints

t∑
s=1

dsxs ≤ y,∀d ∈ Ω2 ⇒
relaxation

t∑
s=1

d∗sxs +
√
Γ

(
t∑

s=1

∆2
sx

2
s

) 1
2

, t = 1, · · · , T. (3.12)

Proof. Firstly, we prove the conclusion when t=T. We have

T∑
t=1

dtxt ≤ y, ∀d ∈ Ω2 ⇔ max
d∈Ω2

T∑
t=1

dtxt ≤ y. (3.13)

According to the above reformulation, we have following sub-optimization problem

Z∗
T = max

dt

{
t∑

s=1

dsxs |
T∑

t=1

(
dt − d∗t
∆t

)2

≤ Γ

}
. (3.14)
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Let dt = dt − d∗t , we arrive at the following equivalent problem

Z∗
T =

T∑
t=1

d∗txt − min
dt

∆t
√

Γ

{
√
Γ

T∑
t=1

(
− dt

∆t

√
Γ

)
∆txt |

T∑
t=1

(
− dt

∆t

√
Γ

)2

≤ 1

}
. (3.15)

According to the lemma 3.1, we have the optimal value of the sub-optimization
problem as

Z∗
T ≤

T∑
t=1

d∗txt +
√
Γ

(
T∑

t=1

∆2
tx

2
t

) 1
2

. (3.16)

Then, we have the conclusion for t=T

T∑
t=1

dtxt ≤ y, ∀d ∈ Ω2 ⇒
relaxation

T∑
t=1

d∗txt +
√
Γ

(
T∑

t=1

∆2
tx

2
t

) 1
2

. (3.17)

Next, we prove the conclusion when t = 1, · · · ,T − 1. As the inequality for t =
1, · · · ,T− 1 can be convert to the case of t=T as follows

t∑
s=1

dsxs ≤ y, ∀d ∈ Ω2 ⇔
t∑

s=1

dsxs +

T∑
s=t+1

ds × 0, ∀d ∈ Ω2, t = 1, ..., T − 1. (3.18)

Then we have the conclusion according to above proof

t∑
s=1

dsxs ≤ y,∀d ∈ Ω2 ⇒
relaxation

t∑
s=1

d∗sxs +
√
Γ

(
t∑

s=1

∆2
sx

2
s

) 1
2

, t = 1, · · · , T. (3.19)

Theorem 3.1. Original uncertain optimization problem (3.9) can be relaxed to
the following deterministic robust counterpart which is in fact a second order cone
problem as follows

max
y0
i (t),y

r
i (t)

F

s.t. αr =
T−r+1∑
t=1

 I∑
i=1

∑
s∈S′

cti,sy
r
i (s) + qt+r−1

r

 , r = 1, · · · , T,

T∑
t=1

I∑
i=1

t∑
s=1

cti,sy
0
i (s) +

T∑
r=1

d∗rαr +
√
Γ

(
T∑

r=1

∆2
rα

2
r

) 1
2

− Tv (1) c0 ≤ F,

y0i (t) +
∑
r∈It

yri (t) d
∗
r −

√
Γ

(∑
r∈It

yri (t)
2
∆2

r

) 1
2

≥ 0,

y0i (t) +
∑
r∈It

yri (t) d
∗
r +

√
Γ

(∑
r∈It

yri (t)
2
∆2

r

) 1
2

≤ Pi (t) ,

i = 1, · · · , I; t = 1, · · · , T,

δri =
∑
s∈S

yri (s) , i = 1, · · · , I; r = 1, · · · , T,

(3.20)
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T∑
t=1

y0i (t) +
T∑

r=1

δri d
∗
r −

√
Γ

(
T∑

r=1

δr2i ∆2
r

) 1
2

≥ 0,

T∑
t=1

y0i (t) +
T∑

r=1

δri (t) d
∗
r +

√
Γ

(
T∑

r=1

δr2i ∆2
r

) 1
2

≤ Qi, i = 1, · · · , I,

βr
t =

I∑
i=1

∑
s∈S

yri (s)− 1, r = 1, · · · , t, t = 1, · · · , T,

v (1) +
t∑

s=1

I∑
i=1

y0i (s) +
t∑

r=1

βr
t d

∗
r −

√
Γ

(
t∑

r=1

βr2
t ∆2

r

) 1
2

≥ Vmin,

v (1) +
t∑

s=1

I∑
i=1

y0i (s) +
t∑

r=1

βr
t d

∗
r +

√
Γ

(
t∑

r=1

βr2
t ∆2

r

) 1
2

≤ vmax,

t = 1, · · · , T,

where S
′
= {s | s ≤ t+ r − 1, r ∈ Ir}.

Proof. According to the model (3.9), considering constraint come from the ob-
jective function, we define the following additional variables

αr
t =

I∑
i=1

∑
s∈S

cti,sy
r
i (s) + qtr. (3.21)

Let αr =
∑T−r+1

t=1 αr
t+r−1 , according to the lemma 3.2, the original constraint

can be equivalently converted to the following one:

T∑
t=1

I∑
i=1

t∑
s=1

cti,sy
0
i (s) +

T∑
t=1

t∑
r=1

(
I∑

i=1

∑
s∈S

cti,sy
r
i,s (s) + qtr

)
dr − Tv (1) c0 ≤ F

⇓
T∑

t=1

I∑
i=1

t∑
s=1

cti,sy
0
i (s) +

T∑
r=1

drαr − Tv (1) c0 ≤ F

⇓ relaxation

T∑
t=1

I∑
i=1

t∑
s=1

cti,sy
0
i (s) +

T∑
r=1

d∗rαr +
√
Γ

(
T∑

r=1

∆2
rα

2
r

) 1
2

− Tv (1) c0 ≤ F. (3.22)

For the second constraint, we directly have by the lemma 3.2:

0 ≤ y0i (t) +
∑
r∈It

yri (t) dr ≤ Pi (t)

⇓ relaxation

y0i (t) +
∑
r∈It

yri (t) d
∗
r −

√
Γ

(∑
r∈It

yri (t)
2
∆2

r

) 1
2

≥ 0, (3.23)
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y0i (t) +
∑
r∈It

yri (t) d
∗
r +

√
Γ

(∑
r∈It

yri (t)
2
∆2

r

) 1
2

≤ Pi (t) . (3.24)

Let δri =
∑

s∈S yri (s) , according to the lemma 3.2, the third constraint can be
equivalently converted to the following one:

0 ≤
T∑

t=1

y0i (t) +
T∑

t=1

 ∑
s∈S={s|s≤t,r∈Is}

yri (s)

 dr ≤ Qi

⇓ relaxation

T∑
t=1

y0i (t) +

T∑
r=1

δri d
∗
r −

√
Γ

(
T∑

r=1

δr2i ∆2
r

) 1
2

≥ 0, (3.25)

T∑
t=1

y0i (t) +
T∑

r=1

δri d
∗
r +

√
Γ

(
T∑

r=1

δr2i ∆2
r

) 1
2

≤ Qi. (3.26)

Samely, let βr
t =

∑I
i=1

∑
s∈S yri (s) − 1 , according to the lemma 3.2, the forth

constraint can be equivalently converted to the following one:

Vmin ≤ v (1) +

t∑
s=1

I∑
i=1

y0i (s) +

t∑
r=1


I∑

i=1

∑
s∈S={s|s≤t,r∈Is}

yri (s)− 1

 dr ≤ vmax

⇓ relaxation

v (1) +

t∑
s=1

I∑
i=1

y0i (s) +

t∑
r=1

βr
t d

∗
r −

√
Γ

(
t∑

r=1

βr2
t ∆2

r

) 1
2

≥ Vmin, (3.27)

v (1) +
t∑

s=1

I∑
i=1

y0i (s) +
t∑

r=1

βr
t d

∗
r +

√
Γ

(
t∑

r=1

βr2
t ∆2

r

) 1
2

≤ vmax. (3.28)

In result, the robust counterpart of uncertain optimization problem (3.9) with
affine decision rules, can be relaxed to a second order cone problem, which can be
effectively solved by some commercial software.

4. Conclusions

In this paper, we address the problem of optimizing overall profit of multi-period
production and inventory system with waste disposal subjected to uncertain de-
mands. Our contributions over the related works can be summarized as follows: (a)
Assuming only the mean, support, and some measures of deviations are available
for each demand, we construct a joint ellipsoid uncertainty set to control the degree
of conservatism of the solutions associated with the integrated manager risk pref-
erence. (b) Using Affinely Adjustable Robust Counterpart method, we develop an
uncertain optimization model to adaptively control multi-period production poli-
cies, and relax it to one deterministic robust counterpart which is in fact a tractable
second order cone problem. In advance, the computational studies and proofs are
required in the future work.
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