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Abstract We consider the inverse eigenvalue problem of the one-dimensional
Schrödinger operator for finite intervals. We give sufficient conditions for
finitely many partially known spectra and partial information on the potential
to determine the Schrödinger operator on the whole interval.
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1. Introduction

Consider the Schrödinger operator

− y”(x) + q(x)y(x) = λy(x) on (0, π), (1.1)

with boundary conditions

y(0) cos(α) + y′(0) sin(α) = 0, (1.2)

y(π) cos(β) + y′(π) sin(β) = 0, (1.3)

where q(x) ∈ L1(0, π). The sequence of eigenvalues (1.1)-(1.3) λ0 < λ1 < . . . form
together the spectrum σ(q, α, β).

Our goal is to recover the potential q from a given set of eigenvalues (not nec-
essarily taken from the same spectrum) and from partial knowledge of q. For more
about this topic can be found in the paper of Korotyaev & Chelkak [5].

It is known that in most cases, two spectra is needed to recover the potential:

Theorem 1.1. (Borg [1]) Let q ∈ L1(0, π), σ1 = σq(0, β), σ2 = σq(α, β), sinα ̸= 0
and σ′

2 = σ2, if sinβ = 0, σ2 \ λ0 else. Then σ1 ∪ σ′
2 determines the potential a.e.

and no proper subset has the same property.

Hochstadt and Lieberman observed that if the potential is known on half of
the interval, then one spectrum is enough to determine the potential on the whole
interval.

Theorem 1.2. (Hochstadt & Lieberman [9]) If q ∈ L1(0, π) then q on (0, π
2 ) and

the spectrum σ(q, α, β) determine q a.e. on (0, π).

Email address: safaro@math.bme.hu(O. Sáfár)
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This theorem has been further generalized by Gesztesy and Simon. The idea
is that the knowledge of the eigenvalues can be replaced by information on the
potential and its derivatives:

Theorem 1.3. (Gesztesy & Simon [12]) Let H = − d2

dx2 + q in L2(0, 1) with
boundary conditions (1.2), (1.3) and sin(α) ̸= 0, and sin(β) ̸= 0. Suppose q is
C2k( 12 − ε, 1

2 + ε) for some k = 0, 1, . . . and for some ε > 0. Then q on [0, 1
2 ], α,

and all eigenvalues of H except for k + 1 uniquely determine β and q on (0, 1).

The following can be said in the case when we do not have information about
the potential on an interval, only in a single point:

Theorem 1.4. Let q1, q2 ∈ L1(0, π) and assume that they are in C2k(0, ε) for

some 0 < ε, and q1(0) = q2(0), . . . , q
(2k)
1 (0) = q

(2k)
2 (0). Furthermore suppose that

for α1 ̸= α2, σq1(α1, β1) = σq2(α1, β2), and σq1(α2, β1) = σq2(α2, β2) with k + 1
exceptions which are not known. Then q1(x) = q2(x) a.e. on (0, π) and β1 = β2.

This theorem can be generalized by using information about q on (0, a) for some
0 < a < π, and the known eigenvalues can be derived from more than two (but
finitely many) spectra. An almost optimal condition was given by Horváth.

Theorem 1.5. (Horváth [4]) Let 1 ≤ p < ∞, 0 ≤ a < π, q ∈ Lp(0, π) and let λn ∈
σ(q, αn, β) be real numbers λn ̸→ −∞, sin(β) ̸= 0. If the set

{
e±2i

√
λnx : n ≥ 1

}
is closed in Lp(a − π, π − a) then q on (0, a) and the eigenvalues λn determine q
in Lp. If sin(β) = 0 then the eigenvalues λn, q on (0, a) determine q in Lp if and

only if the modified system
{
e±2iµx, e±2i

√
λnx : n ≥ 1

}
with any µ ̸= λn is closed in

Lp(a− π, π − a).

One can test the closedness of this system using the Levinson-test.

Theorem 1.6. (Levinson [7]) Let 0 ≤ a ≤ π, 1 ≤ p < ∞, 1/p+ 1/p′ = 1, let

n(t) =
∑

λn<t2

1,

N(t) =
∫∞
1

n(t)
t dt. If

lim sup
r→∞

(
N(r)− 2

(
1− a

π

)
r + 1/p′ ln r

)
> −∞ (1.4)

then the system {ei
√
λnx : n ≥ 1} is closed in Lp(a− π, π − a).

It is possible using the information on the derivatives of the potential to weaken
(1.4), and the known eigenvalues still determine q.

Theorem 1.7. Let 1 ≤ p < ∞, 0 ≤ a < π, q ∈ Lp(0, π)∩C2k(a− ε, a+ ε) if a ̸= 0,
and q ∈ Lp(0, π) ∩ C2k(0, ε) if a = 0 for some ε > 0.

Let σj , j = 1, . . . , N be the spectrum of (1.1)-(1.3) with different αj in (1.2) with
the same q in (1.1).

For each j let Sj ⊂ N and suppose that λj
n is known for n ∈ Sj. Let

nj(t) =
∑

λj
n<t2, λj

n∈Sj

1,
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Nj(r) =
∫ r

1
nj(t)

t dt, 1/p + 1/p′ = 1 and suppose that there exists t0 > 0 and c ∈ R
such that for t ≥ t0

N∑
j=1

Nj(t) ≥ 2
(
1− a

π

)
t− 1

p′
ln t− k̃ ln t− c, (1.5)

where

k̃ =


k − 1 if sin(β1), sin(β2) ̸= 0 p > 2,
k if sin(β1), sin(β2) ̸= 0 p ≤ 2,
k if sin(β1) = sin(β2) = 0 p > 2,
k + 1 if sin(β1) = sin(β2) = 0 p ≤ 2.

Then q on (0, a), q(a), q′(a), . . . , q(2k)(a) and the known eigenvalues determine q in
Lp(0, π) and β.

2. Proof of the theorems

Proof of Theorem 1.4. Let u1(λ, x) be the solution of (1.1) corresponding to q1
for which u1(λ, π) = sin(β1) and u′

1(λ, π) = − cos(β1) hold, and

m1(λ) :=
u′
1(λ, 0)

u1(λ, 0)
,

m2(λ) is defined similarly with q2 and β2. These are the so-called Weyl-Titchmarsh
m-functions. It is known (Borg [2]) that q and tan(β) is determined by the m-
function, so our goal is to show the equality of m1 and m2.

F (λ) : =
u′
1(λ, 0)u2(λ, 0)− u1(λ, 0)u

′
2(λ, 0)∏2

j=1

∏
λj
n∈ both spectra

(
1− λ

λj
n

) k+1∏
i=1

(
λ− λ̃i

)
(2.1)

=
u′
1u2 − u1u

′
2

u1u2
· u1u2∏2

j=1

∏
λj
n∈ both spectra

(
1− λ

λj
n

) ·
k+1∏
i=1

(
λ− λ̃i

)
(2.2)

= I1 · I2 · I3.

If λn = 0 then instead of
(
1− λ

λn

)
we write λ. All of the known eigenvalues in the

denominator have a multiplicity of 1. They appear in the numerator as well, since
m1(λn,j) = m2(λn,j) (j = 1, 2) because they satisfy the same boundary condition
at 0. So F (z) is an entire function.

On the other hand

I1 =
u′
1

u1
− u′

2

u2
= m1 −m2. (2.3)

Our goal is to show that F (z) ≡ 0, from which it follows that m1 = m2 and
then q1 = q2 and β1 = β2. We use a Phragmén–Lindelöf-type theorem:

Proposition 2.1. (Simon & Gesztesi [12]) If F (z) is an entire function,

F (iy) → 0 (2.4)

as |y| → ∞, y ∈ R and

sup
|z|=Rk

|F (z)| ≤ C1e
C2R

ϱ
k (2.5)
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for some 0 ≤ ϱ < 1, 0 < C1, C2 and some sequence Rk → ∞ as k → ∞ then
F (z) ≡ 0.

First we prove that (2.4) holds. Denote

m(z, x) =
u′(z, x)

u(z, x)
.

The m-function is known to have the following asymptotic expansion.

Proposition 2.2. (Levitan [8]) If q is C2k(0, δ) for some δ > 0 and for some k ∈ N
then

m(z, x) = i
√
z

(
2k+2∑
l=0

Cl(x)z
− l

2 + o(z−k−1)

)
, x ∈ [0, δ], (2.6)

as |z| → ∞ in any sector 0 < ε < arg(z) < π − ε, where C0(x) = 1, C1(x) = 0,

C2(x) = −1
2q(x), Cj(x) =

i
2C

′
j−1(x)− 1

2

∑j−1
l=1 Cl(x)Cj−l(x).

Using the equality of the derivatives of q1 and q2 we get that Cq1
l (0)−Cq2

l (0) =
0, l = 0, . . . , 2k + 2, so

I1 = o
(
λ−k− 1

2

)
, (2.7)

as |λ| → ∞ in a sector separated from the real axis.
To estimate the second factor we need the following propositions. By using the

well-known eigenfunction asymptotics (see e.g. Levitan [11] Ch.I. or the proof of
Theorem 1.8 in Horvat́h [3]), we get the following proposition.

Proposition 2.3. We consider the Schrödinger equation

−y”(x) + q(x)y(x) = zy(x) on (0, π)

for some q ∈ L1(0, π) with the initial conditions y(π) = sin(γ), y′(π) = − cos(γ).
Then for the solution v(x, z) we have if sin(γ) = 0:

v(x, z) =
sin(

√
z(π − x))√
z

+O

(
e|ℑ

√
z|(π−x)

|z|

)
,

v
′
(x, z) = − cos(

√
z(π − x)) +O

(
e|ℑ

√
z|(π−x)√
|z|

)
,

(2.8)

if sin(γ) ̸= 0,

v(x, z) = sin(γ) cos(
√
z(π − x)) +O

(
e|ℑ

√
z|(π−x)√
|z|

)
,

v
′
(x, z) = sin(γ) sin(

√
z(π − x))

√
z +O

(
e|ℑ

√
z|(π−x)

)
,

(2.9)

where x is fixed, z is large. The estimates are uniform in x ∈ [0, π].

Proposition 2.4. (Zettl [13]) We consider the eigenvalues of the system (1.1)-
(1.3). If 0 < α, β < π then

λn = n2 +
2

π
(cot(β)− cot(α)) +

1

π

∫ π

0

q + o(1), (2.10)
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where n ≥ 0, n → ∞.

For α = 0, 0 < β < π

λn =

(
n+

1

2

)2

+
2

π
cot(β) +

1

π

∫ π

0

q + o(1), (2.11)

where n ≥ 0, n → ∞.

For α = 0, β = 0

λn = n2 +
1

π

∫ π

0

q + o(1), (2.12)

where n ≥ 1, n → ∞.

We examine the two factors of I2 separately, with the notation u1(x, λ) = u(x, λ),
β1 = β. Following from Propositions 2.3 and 2.4, the accurate form of the factors
depends on the boundary conditions. We have to distinguish four different cases:

(i) sin(α) = 0, sin(β) = 0

u(x, λ)∏(
1− λ

λn

) =
u(x, λ)∏∞

n=1

(
1− λ

n2

) · ∏∞
n=1

(
1− λ

n2

)∏(
1− λ

λn

) . (2.13)

The denominator of the first factor can be calculated directly using the following
identity.

∞∏
n=1

(
1− λ

n2

)
=

sin(π
√
λ)

π
√
λ

. (2.14)

The second factor is bounded due to the following lemma:

Proposition 2.5. (Horváth [3]) If z∗n = zn +O(1), z∗n ̸= 0,

w(z) =
∞∏

n=1

(
1− z

zn

)
, w∗(z) =

∞∏
n=1

(
1− z

z∗n

)
, (2.15)

then ∣∣∣∣ w(z)w∗(z)

∣∣∣∣ , ∣∣∣∣w∗(z)

w(z)

∣∣∣∣ (2.16)

are both bounded if |z − zn| > δ, |z − z∗n| > δ ∀n.

If |λ− λn| > δ, |λ− n2| > δ, using (2.8) we get

u(x, λ)∏(
1− λ

λn

) =

sin(π
√
λ)√

λ
+O

(
e|ℑπ

√
λ|

|λ|

)
sin(π

√
λ)√

λ

= O(1). (2.17)

We can choose δ small enough so that the excluded circles are disjoint for large n.
From the maximum modulus principle it follows that (2.18) is valid on the entire
complex plane.

If λn = 0 for some n, then in (2.13), the factor 1− λ
λn

is replaced by λ.

We use similar calculations in the other three cases.
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(ii) sin(α) ̸= 0, sin(β) = 0

u(x, λ)∏(
1− λ

λn

) =
u(x, λ)∏∞

n=0

(
1− λ

(n+ 1
2 )

2

) ·

∏∞
n=0

(
1− λ

(n+ 1
2 )

2

)
∏(

1− λ
λn

) . (2.18)

Using (2.8) and the identity

∞∏
n=0

(
1− λ(

n+ 1
2

)2
)

= cos(π
√
λ) (2.19)

we get

=

sin(π
√
λ)√

λ
+O

(
e|ℑπ

√
λ|

|λ|

)
cos(π

√
λ)

= O

(
1√
λ

)
. (2.20)

(iii) sin(α) = 0, sin(β) ̸= 0

u(x, λ)∏(
1− λ

λn

) =
u(x, λ)∏∞

n=0

(
1− λ

(n+ 1
2 )

2

) ·

∏∞
n=0

(
1− λ

(n+ 1
2 )

2

)
∏(

1− λ
λn

) (2.21)

Using (2.9) we get

=

cos(π
√
λ) +O

(
e|ℑπ

√
λ|√

|λ|

)
cos(π

√
λ)

= O(1). (2.22)

(iv) sin(α) ̸= 0, sin(β) ̸= 0

u(x, λ)∏(
1− λ

λn

) =
u(x, λ)∏∞

n=1 λ
(
1− λ

n2

) · ∏∞
n=1 λ

(
1− λ

n2

)∏(
1− λ

λn

) (2.23)

=

cos(π
√
λ) +O

(
e|ℑπ

√
λ|√

|λ|

)
√
λ sin(π

√
λ)

= O

(
1√
λ

)
. (2.24)

The same is true for u2(x, λ). Since α1 ̸= α2, at least one of them is not equal
to 0. It follows that

I2 = O

(
1√
λ

)
. (2.25)

I3 is clearly O(λk+1); putting (2.7) and (2.25) together we get

F (z) = o(λ−k− 1
2 )O

(
1√
λ

)
O(λk+1) = o(1). (2.26)

Finally, to apply Proposition 2.1, we have to show that (2.5) holds.
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We use Proposition 2.3 to estimate I1. If sin(β1) = 0 and sin(β2) = 0, then from
Proposition 2.3 we have:

I1 =
u

′

1u2 − u1u
′

2

u1u2

=

− sin(π
√
λ) cos(π

√
λ)√

λ
− − sin(π

√
λ) cos(π

√
λ)√

λ
+O

(
e2|ℑ

√
λπ|

λ

)
sin(π

√
λ) sin(π

√
λ)

λ +O
(

e2|ℑ
√

λπ|

λ
3
2

) = O(1).

(2.27)

If sin(β1) ̸= 0 and sin(β2) ̸= 0 then

I1 =
u

′

1u2 − u1u
′

2

u1u2
=

sin(β1) sin(β2)
√
λ sin(π

√
λ) cos(π

√
λ)

sin(β1) sin(β2) cos(π
√
λ) cos(π

√
λ) +O

(
e2|ℑ

√
λπ|√
λ

)
−

sin(β1) sin(β2)
√
λ sin(π

√
λ) cos(π

√
λ) +O

(
e2|ℑ

√
λπ|
)

sin(β1) sin(β2) cos(π
√
λ) cos(π

√
λ) +O

(
e2|ℑ

√
λπ|√
λ

) = O(1).

(2.28)

Finally, if sin(β1) ̸= 0 and sin(β2) = 0 then

I1 =
u
′
1u2−u1u

′
2

u1u2

=
sin(β1)

√
λ sin(π

√
λ)

sin(π
√

λ)√
λ

+sin(β1) cos(π
√
λ) cos(π

√
λ)+O

(
e2|ℑ

√
λπ|

)
sin(β1) cos(π

√
λ)

sin(π
√

λ)√
z

+O

(
e2|ℑ

√
λπ|

√
λ

)
= O(

√
z).

(2.29)

The estimates (2.27), (2.28), (2.29) of I1 are valid on any circle on the complex
plane which does not intersect the ν1, ν2, . . . roots of u1u2. Let Rk be a sequence
of radii such that |Rk − νi| > δ > 0, ∀k∀i, and Rk → ∞ as k → ∞. It is possible
to find such Rk’s since the roots of the solutions are separated. So, irrespectively
of the boundary conditions, I1 · I2 can be estimated by a polynomial of λ.

Since I3 is clearly O(λk+1), F (z) ≡ 0 follows from Proposition 2.1, which means
m1 = m2 and then q1 = q2 and β1 = β2. The proof of Theorem 1.4 is complete.

To prove Theorem 1.7 we need the following Proposition.

Proposition 2.6. Let us suppose that λn ̸= 0 if n ∈ Sj. Define

ωSj (z) :=
∏
n∈Sj

(
1− z

λj
n

)
. (2.30)

In this case ωSj (z) is an entire function, and its roots are exactly λj
n. Furthermore

ln |ωSj (z)| =
∫ ∞

1

nSj (
√
t)

t

|z|2 − xt

|z|2 − 2xt+ t2
dt+O(x), (2.31)

where z = x+ iy.
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Proof.

ln |ωSj (z)|2 =
∑

λj
n∈Sj

ln

∣∣∣∣1− z

λj
n

∣∣∣∣2 =
∑

λj
n∈Sj

ln

((
1− x

λn

)2

+
y2

λj
n
2

)

=
∑

λj
n∈Sj

ln

((
1− 2x

λj
n

)2

+
|z|2

λ2
n

)
=

∫ ∞

1

ln

((
1− 2x

t

)2

+
|z|2

t2

)
dnSj (

√
t)

=

[
ln

((
1− 2x

t

)2

+
|z|2

t2

)
nSj (

√
t)

]∞
1

−
∫ ∞

1

nSj (
√
t)

− 2x
t2

2|z|2
t3

1− 2x
t − |z|2

t2

dt

=

∫ ∞

1

nSj (
√
t)

t

|z|2 − xt

|z|2 − 2xt+ t2
dt+O(x).

(2.32)

Proof of Theorem 1.7.

F (λ) =
u′
1(λ, 0)u2(λ, 0)− u1(λ, 0)u

′
2(λ, 0)∏k̃

i=1

(
λ− λ̃i

)∏N
j=1

∏
n∈Sj

(
1− λ

λj
n

) k̃∏
i=1

(
λ− λ̃i

)
. (2.33)

To estimate the denominator we need the integral representation from Proposition
2.6.

On the imaginary axis x = 0, using the substitution t = τ2 and integration by
parts in (2.32), we obtain:[

N(τ)
2y2

y2 + τ4

]∞
1

−
∫ ∞

1

N(τ)
−8y2τ3

(y2 + τ4)2
dt+O(1). (2.34)

Since the first term is zero, from (1.5) we get

ln

∣∣∣∣∣∣
N∏
j=1

ωj(iy)

∣∣∣∣∣∣ ≥
∫ ∞

1

2
(
1− a

π

) −8y2τ3

(y2 + τ4)2
dτ

−
∫ ∞

1

(
1

p′
+ k̃

)
ln τ

−8y2τ3

(y2 + τ4)2
dτ −

∫ ∞

1

c
−8y2τ3

(y2 + τ4)2
dτ +O(1).

(2.35)

Let τ =
√
yr, then the first term becomes

2
(
1− a

π

)∫ ∞

1√
y

8r4y4
√
y

y4(1 + r4)2
dr = 2

(
1− a

π

)√
y

∫ ∞

1√
y

8r4

(1 + r4)
dr. (2.36)

Substituting 1√
y = 0 to the lower boundary:

2
(
1− a

π

)√
y

π√
2
. (2.37)

The second and the third term of (2.35) can be computed directly:∫ ∞

1

(
1

p′
+ k̃

)
ln τ

−8y2τ3

(y2 + τ4)2
dτ +

∫ ∞

1

c
−8y2τ3

(y2 + τ4)2
dτ =(

1

p′
+ k̃

)
1

2
ln(1 + y2) + c

2y2

y2 + 1
=

(
1

p′
+ k̃

)
ln y +O(1).

(2.38)
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If λn = 0 (which can happen at most once in each spectrum), then ωSj (z) :=

z
∏

n∈Sj

(
1− z

λn

)
. The estimate of the denominator is still unchanged. The + ln(z)

term is cancelled out because in (2.38) we have k̃− 1 instead of k̃ since we counted
this eigenvalue before. Depending on the boundary conditions we get:

(i) sin(β1) ̸= 0, sin(β2) ̸= 0

F (λ) = o(λ−k− 1
2 )

O
(
e2|ℑ

√
λ|(π−a)

)
e2(π−a)

√
λ
2

O
(
λ
k̃+ 1

p′
)
= o

(
λ
− 1

2+
1
p′ +k̃−k

)
. (2.39)

(ii) sin(β1) = 0, sinβ2 = 0

F (λ) = o(λ−k− 1
2 )

O
(

e2|ℑ
√

λ|(π−a)

|λ|

)
e2(π−a)

√
λ
2

O
(
λ
k̃+ 1

p′
)
= o

(
λ
− 3

2+
1
p′ +k̃−k

)
. (2.40)

Substituting into the definition of k̃, we get that F (iy) → 0 as |y| → ∞.
We use Proposition 2.3 to estimate F (z). The same computation as in (2.27)

yields I1 = 0(1), and the order of the numerator of I2 is 1
2 .

To calculate the order of the denominator of I2, we use Borel’s theorem (see
Markushevich & Silverman [10] page 292).

Theorem 2.1. (Borel) The order of the canonical product

Π(z) =
∞∏

n=1

(
1− z

an

)
(2.41)

is equal to the convergence exponent of the sequence an.

Let n be large enough to λn > 0. From (1.5) we have

c1
√
λn ≤ N(

√
λn) =

∫ √
λn

1

∑
λk<t2 1

t
dt ≤ (n− 1) ln

√
λn. (2.42)

From lnx < x
ε
2 , ∀ε > 0 if x is large, it follows that

c1λ
1
2−

ε
2

n ≤ n ∀ε > 0, (2.43)

c1λn ≤ n
2

1−ε ∀ε > 0. (2.44)

It follows that the convergence exponent of the known eigenvalues are at most 1
2 , so

the order of the denominator is at least 1
2 , along any sequence of circles whose radii

go to infinity and are not equal to any of the known eigenvalues. Such a sequence
exists since there are finitely many spectra with separated elements.

Since I3 is a polynomial of λ, the theorem follows from Proposition 2.1.
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